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Abstract In this paper, based on the complex-symmetric and skew-Hermitian
splitting (CSS) of the coefficient matrix, a modified complex-symmetric and skew-
Hermitian-splitting (MCSS) iteration method is presented to solve a class of
complex-symmetric indefinite linear systems from the classical state-space formula-
tion of frequency analysis of the degree-of-freedom discrete system. The convergence
properties of the MCSS method are obtained. The corresponding MCSS precon-
ditioner is proposed and some useful properties of the preconditioned matrix are
established. Numerical experiments are reported to verify the efficiency of both the
MCSS method and the MCSS preconditioner.
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1 Introduction

Consider the equations of motion of the degree-of-freedom linear system

Mq̈ + Cq̇ + Kq = p, (1.1)
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where q is the configuration vector, p is the vector of generalized components of
dynamic forces, matrices M , K, and C are the inertia, stiffness, and viscous damping
matrices, respectively. Complex harmonic excitation at the driving circular frequency
ω > 0, i.e., of the type p(t) = f eiωt , admits the steady state solution q(t) =
q̃(ω)eiωt , where q̃ solves the linear system E(ω)q̃(ω) = f and E(ω) is the dynamic
impedance matrix. Substituting q(t) = q̃(ω)eiωt into (1.1) leads to the following
matrix E(ω)

E(ω) = −ω2M + iωC + K,

which leads to the complex-symmetric linear system

[−ω2M + K + iωC]q̃(ω) = f, (1.2)

where M , K, and C are real symmetric positive definite matrices, and i = √−1
denotes the imaginary unit. When the driving circular frequency ω is sufficiently
large, −ω2M +K in (1.2) is symmetric indefinite. This implies that the linear system
(1.2) is a complex-symmetric indefinite linear system. At present, system such as
(1.2) attracts considerable attention because it comes from many actual problems
in scientific computing and engineering applications, such as Helmholtz equations
[1–4]. One can also see [5–12] for more examples and additional references.

In recent years, many efficient numerical methods for solving complex-symmetric
linear system have been developed in the literatures. One can deal with one of its
several 2n × 2n equivalent real formulations blow

[ −ω2M + K −ωC

ωC −ω2M + K

] [
x

y

]
=

[
f

g

]
(1.3)

to obtain the solution of complex-symmetric linear system in [8, 9, 13, 14]. For other
real equivalent formulations, one can see [8, 9]. In [8], the nonsymmetric Krylov
subspace methods combining with standard incomplete LU (ILU) preconditioner to
solve this formulation can perform reasonably well. Further, based on the different
real equivalent formulations, the different types of block preconditioners are dis-
cussed in [9] and argued that if either the real or the symmetric part of the coefficient
matrix is positive semidefinite, block preconditioners for real equivalent formulations
may be a useful alternative to preconditioners for the original complex formulation.
Based on the following parameter-dependent formulation

[ −ω2M + K − αωC ω
√
1 + α2C

ω
√
1 + α2C ω2M − K − αωC

] [
x1
z

]
=

[
b1
d

]
, α > 0, (1.4)

a class of “C-to-R” methods has been proposed in [13]. Essentially, the “C-to-R”
method is a preconditioned iteration method applied to a Schur complement reduc-
tion of a bilaterally transformed variant of the block two-by-two linear system (1.4).
In the implementations, the corresponding Schur complement linear system can be
solved efficiently by using the preconditioner −ω2M + K + αωC [13, 14].
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For solving the linear system (1.2) efficiently, based on the Hermitian and
skew-Hermitian splitting of the coefficient matrix, a class of Hermitian and skew-
Hermitian splitting (HSS) iteration method is designed in [15]. To improve the
efficiency of the HSS method, the alternately iterating preconditioned HSS (PHSS)
method [5] is developed. At each step of the PHSS iteration, it not only needs to
solve the linear sub-system with Hermitian positive definite matrix αV + H but also
needs to solve the linear sub-system with the shifted skew-Hermitian matrix αV +S,
where matrices H and S, respectively, are Hermitian and skew-Hermitian parts of
the coefficient matrix in (1.3) and matrix V is Hermitian positive definite, when the
coefficient matrix in (1.3) is positive definite. The shifted skew-Hermitian system,
however, can be much more problematic. To overcome this drawback, the modified
HSS (MHSS) method [16] and the preconditioned MHSS (PMHSS) method [6, 17]
are proposed. A considerable advantage of the PMHSS method consists in the fact
that the solution of linear system with the shifted skew-Hermitian matrix is avoided
and only two linear sub-systems with the real and symmetric positive definite coeffi-
cient matrix −ω2M + K + αωC need to be solved when the preconditioning matrix
V is chosen to matrix ωC in [17].

When −ω2M + K is symmetric positive definite, the aforementioned methods
are often popular, such as the PMHSS method [17] and the “C-to-R” method [13,
14, 17]. When −ω2M + K is symmetric indefinite, these two numerical methods
may breakdown. “C-to-R” iteration method may be a risk because the preconditioner
−ω2M + K + αωC may be singular (such as, in theory, choosing the values of
ω and α satisfies ω2M = K + αωC). The PMHSS method is invalid because the
spectral radius of the iteration matrix of the corresponding iteration method may be
very close to 1 or even larger than 1 when matrix −ω2M + K + αωC may be very
close to singular or singular. To avoid the symmetric indefinite matrix −ω2M +K in
(1.2), the complex-symmetric and skew-Hermitian splitting (CSS) iteration method
[18] is established by the complex-symmetric and skew-Hermitian splitting (CSS) of
the coefficient matrix from the classical state-space formulation of frequency analy-
sis of discrete dynamic linear systems [10]. The convergence properties of the CSS
method are obtained. Whereas, in theory, it only shows in [18] that the spectral
radius of the iteration matrix of the CSS method is less than or equal to one. In this
paper, to overcome their shortcomings and improve the convergence rate of the CSS
method, by introducing a proper matrix for the classical state-space formulation of
frequency analysis of the degree-of-freedom discrete system and combining with the
CSS method, we establish a modified CSS (MCSS) method for solving the complex-
symmetric linear system (1.2). The convergence properties of the MCSS method are
discussed.

The remainder of the paper is organized as follows. In Section 2, the MCSS
method is established. In Section 3, we discuss the convergence of the MCSS
method and the eigenproperties of the MCSS-preconditioned matrix. In Section 4,
the results of numerical experiments from the degree-of-freedom linear system and
Helmholtz equations are reported. Finally, in Section 5, we give some conclusions to
end the paper.
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2 The MCSS method

In this section, we design the MCSS method for solving the complex-symmetric
linear system (1.2). To this end, the system (1.2) can be rewritten in the classical
state-space formulation as follows:

Ax ≡
[

iωK −K

K C + iωM

] [
q̃(ω)

iωq̃(ω)

]
=

[
0
f

]
. (2.1)

Let

P =
[

(1 − i)I 0
1
ω
I Q

]
,

where matrix Q is real symmetric positive definite, I denotes an identity matrix with
proper sizes here and in the subsequent discussions. By left-multiplying matrix P for
the complex linear system (2.1), we obtain

Ax ≡
[

(1 + i)ωK (i − 1)K
iK + QK −K

ω
+ QC + iωQM

] [
q̃(ω)

iωq̃(ω)

]
=

[
0

Qf

]
≡ b. (2.2)

Remark 2.1 When M , K, and C are real and symmetric positive definite matrices
and ω �= 0, matrix A in (2.2) is nonsingular because matrix P is nonsingular and
matrix A is nonsingular as well in [18]. The potential advantage of the coefficient
matrix in (2.2) is the fact that the indefinite symmetric matrix −ω2M + K can be
avoided. Here, we can easily choose the proper matrix Q to keep matrix −K

ω
+ QC

positive definite. For example, if we take Q = 2K
ω

C−1, then −K
ω

+ QC = K
ω

is
symmetric positive definite. Even if Q = I , the symmetric positive definite matrix
−K

ω
+C in (2.2) is often encountered in [5, 6, 18–20]. In particular, when the driving

circular frequency ω is sufficiently large, we can also obtain a symmetric positive
definite matrix −K

ω
+C. For simplicity, without loss of generality, we assume Q = I

throughout this paper.

Based on the following matrix splitting of the coefficient matrix A in (2.2)

A =
[

(1 + i)ωK 0
0 −K

ω
+ C + iωM

]
+

[
0 (i − 1)K

(1 + i)K 0

]
≡ P + S, (2.3)

where matrix P is complex-symmetric and matrix S is skew-Hermitian, i.e., the
matrix splitting (2.3) of matrixA is a complex-symmetric and skew-Hermitian matrix
splitting. Since matrix S is skew-Hermitian, all its eigenvalues of matrix S are pure
imaginary numbers. Here, we consider that the driving circular frequency ω is suf-
ficiently large such that matrix −K

ω
+ C is symmetric positive definite. In this case,

matrix P is positive definite.
Based on (2.3), we have

(αI + P)x = (αI − S)x + b (2.4)

and

(αI + S)x = (αI − P)x + b. (2.5)
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By alternately iterating between two systems of fixed-point equations (2.4) and
(2.5), we present a modified CSS (MCSS) method to solve the system of linear
equations (2.2) and describe as follows.

The MCSS method Let α > 0 and x(0) ∈ C
n be an arbitrary initial guess. For

k = 0, 1, 2, . . . until the sequence of iterates {x(k)}∞k=0 converges, compute the next
iterate x(k+1) according to the following procedure:{

(αI + P)x(k+ 1
2 ) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI − P)x(k+ 1
2 ) + b.

(2.6)

Since matrixP is a complex-symmetric matrix, theMCSSmethod does not belong
to a class of the classical HSS methods [15] because of P∗ �= P , nor belong to a
class of the classical NSS methods [22] because of P∗P �= PP∗. When matrix P is
positive definite, the MCSS method belongs to the class of the PSS methods [23].

Evidently, at each step of the MCSS iteration, we need to solve two linear sub-
systems, whose coefficient matrices, respectively, are the matrix αI + P and the
matrix αI + S. Since matrices αI + P and αI + S are positive definite, there
can employ some Krylov subspace methods (such as GMRES) to solve the linear
systems.

After straightforward derivations, the MCSS method can be reformulated into the
standard form

x(k+1) = Mαx(k) + Nαb, k = 0, 1, 2, . . . (2.7)

where
Mα = (αI + S)−1(αI − P)(αI + P)−1(αI − S)

is the iteration matrix of the MCSS method and

Nα = 2α(αI + S)−1(αI + P)−1.

In addition, if we introduce matrices

Bα = 1

2α
(αI + P)(αI + S) and Cα = 1

2α
(αI − P)(αI − S),

then
A = Bα − Cα and Mα = B−1

α Cα. (2.8)

Therefore, one can readily verify that the MCSSmethod can be induced by the matrix
splitting A = Bα −Cα . From (2.8), we know that the splitting matrix Bα can be used
as a preconditioner, which can be called the MCSS preconditioner, to improve the
convergence rate of GMRES. When Bα is used as a preconditioner, the multiplicative
factor 1

2α has no effect on the preconditioned system, and it can be deleted.

3 Convergence analysis

In this section, we prove that under suitable conditions, the MCSS method (2.6)
converges to the unique solution of (2.1) for any initial guess. To establish the
convergence theory of the MCSS method, the following lemma is required.
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Lemma 3.1 ([15]) Let A ∈ C
n×n, A = Mi − Ni (i = 1, 2) be two splittings of

A, and x(0) ∈ C
n be a given initial vector. If {x(k)} is a two-step iteration sequence

defined by {
M1x

(k+ 1
2 ) = N1x

(k) + b,

M2x
(k+1) = N2x

(k+ 1
2 ) + b,

k = 0, 1, . . ., then

x(k+1) = M−1
2 N2M

−1
1 N1x

(k) + M−1
2 (I + N2M

−1
1 )b, k = 0, 1, . . . .

Moreover, if the spectral radius ρ(M−1
2 N2M

−1
1 N1) < 1, then the iterative sequence

{x(k)} converges to the unique solution x∗ ∈ C
n of the system (1.2) for all initial

vectors x(0) ∈ C
n.

Concerning the convergence property of the stationary MCSS iteration method,
we have the following theorem.

Theorem 3.1 Let A = P + S ∈ C
n×n with

P =
[

(1 + i)ωK 0
0 −K

ω
+ C + iωM

]
and S =

[
0 (i − 1)K

(i + 1)K 0

]
,

where ω, M , K and C are previously defined. If matrix −K
ω

+ C is positive definite,
then for α > 0, the iteration matrix Mα of the MCSS method is

Mα = (αI + S)−1(αI − P)(αI + P)−1(αI − S), (3.1)

and its spectral radius ρ(Mα) of the MCSS iteration matrix satisfies

ρ(Mα) < 1 for ∀α > 0.

Proof Setting in Lemma 3.1

M1 = αI + P, N1 = αI − S, M2 = αI + S and N1 = αI − P
and considering that αI +P and αI +S are nonsingular for α > 0 , we obtain (3.1).

Using the convergence theorem of the PSS method (Theorem 2.3 in [23]), it is not
difficult to find that the results in Theorem 3.1 hold.

If the extreme eigenvalues of the matrix P are known, then the value of α which
minimizes the upper bound can be obtained. This fact is precisely stated as the
following corollary, one can see [22] for more details.

Corollary 3.1 Let the conditions of Theorem 3.1 be satisfied and λ(P) denote the
spectral set of matrix P . Then,

Mα ≤ σα < 1,

where

σα = max
λj ∈λ(P)

|α − λj |
|α + λj | = max

γj +iηj ∈λ(P)

√
(α − γj )2 + η2j√
(α + γj )2 + η2j

.
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Moreover, if γmin and γmax, ηmin, and ηmax are the lower and the upper bounds of the
real, the absolute values of the imaginary parts of the eigenvalues of the matrix P ,
respectively, and 	 = [γmin, γmax] × [ηmin, ηmax], then

α∗ = argmin
α

{
max

(γ,η)∈	

√
(α − γj )2 + η2j√
(α + γj )2 + η2j

}

=

⎧⎪⎪⎨
⎪⎪⎩

√
γminγmax − η2max for ηmax <

√
γmin(γmax − γmin)

2
,

√
γ 2
min + η2max for ηmax ≥

√
γmin(γmax − γmin)

2

and

σα∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√√√√γmin + γmax − 2
√

γminγmax − η2max

γmin + γmax + 2
√

γminγmax − η2max

for ηmax <

√
γmin(γmax − γmin)

2
,

√√√√√√
√

γ 2
min + η2max − γmin√

γ 2
min + η2max + γmin

for ηmax ≥
√

γmin(γmax − γmin)

2
.

Some remarks on Theorem 3.1 and Corollary 3.1 are given below.

• The convergence rate of the MCSS method is bounded by σα , which depends
on the spectrum of the positive definite matrix P , and does not depend on the
spectrum of the skew-Hermitian matrix S and nor on the eigenvectors of the
matrices P , S, and A.

• From Theorem 3.1 and Corollary 3.1, it makes sense to seek α to make ρ(Mα) as
small as possible, but the determination of the optimal parameter α is a nontrivial
task. Even so, Corollary 3.1 is still helpful for us to choose an effective parameter
α for the MCSS method.

• If we use the proper matrix V (such as symmetric positive definite matrix V )
instead of I in (2.6), then this yields the preconditionedMCSS (PMCSS) method.
If we take

V =
[

(1 − i
α
)ωK 0

0 −K
ω

+ C − i
α
ωM

]
,

then αV +P is symmetric positive definite. In this case, we can solve the corre-
sponding linear sub-system either exactly by a sparse Cholesky factorization or
inexactly by conjugated gradient scheme. Since matrix αV + S is positive def-
inite, the solution of linear sub-system with matrix αV + S can be obtained by
Krylov space methods (such as GMRES).

• From Theorem 3.1, the preconditioned matrix B−1
α A is positive definite. It is

because all the eigenvalues of the MCSS-preconditioned matrix lie in the interior
of the disk of radius 1 centered at the point (1, 0).
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With respect to the eigenvalue distribution of the MCSS-preconditioned matrix
B−1

α A, we have the following theorem. One can see [18] for details.

Theorem 3.2 Let the conditions of Theorem 3.1 be satisfied. Then all the eigenvalues
of B−1

α A satisfy |1 − |λ|| ≤ 1.

4 Numerical experiments

In this section, numerical experiments are used to verify the performance of the
MCSS method and the MCSS preconditioner. At the same time, we compare the
MCSS method with the CSS method, the HSS method [15], the MHSS method
[16], the SHNS method [19], and the GPMHSS method (Method 2.1) [24] and also
compare their deuterogenic preconditioners.

In our numerical experiments, M = I and C = ωCV + CH , where CV = 5I
and CH = μK with μ = 0.02, and K is the five-point centered difference matrix
approximating the negative Laplacian operator with homogeneous Dirichlet bound-
ary conditions, on a uniform mesh in the unit square [0, 1]×[0, 1] with the mesh size
h = 1

m+1 . The matrix K ∈ R
n×n possesses the tensor-product form K = I ⊗ Vm +

Vm ⊗ I with Vm = h−2tridiag(−1, 2, −1) ∈ R
m×m. In addition, the right-hand side

vector b is to be adjusted such that b = (1 + i)Ae (e = (1, 1, . . . , 1)T ).
All tests are started from the zero vector and these six methods terminate if the

relative residual error satisfies ‖r(k)‖2
‖r(0)‖2 < 10−6. In the following table, “IT” denotes

the number of iteration steps. “CPU” denotes the construction time (in seconds). “−”
denotes that the iteration sequences do not converge within 1000 iterations.

First, we test that the MCSS method is regarded as a solver. We compare the
MCSS method with the CSS, HSS, MHSS, SHNS, and GPMHSS methods to solve
the complex symmetric linear system (2.1) under the bigger ω. For the coefficient
matrix A in (2.1), the HSS method in [15] is established below{

(αI + H)x(k+ 1
2 ) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI − H)x(k+ 1
2 ) + b,

(α > 0),

where

H = 1

2
(A + A∗) =

[
0 0
0 C

]
and S = 1

2
(A − A∗) =

[
iωK −K

K iωM

]
.

Clearly, A = H + S. Further, we set Z = 1
2i (A − A∗). Then,

A = H + iZ (4.1)

and S = iZ. Therefore, the corresponding MHSS method in [16] is described as
follows: {

(αI + H)x(k+ 1
2 ) = (αI − iZ)x(k) + b,

(αI + Z)x(k+1) = (αI + iH)x(k+ 1
2 ) − ib,

(α > 0).

Based on (4.1), we can establish the SHNS method and the GPMHSS method as
well. Specifically, one can see [19, 24] for more details.
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Next, we need to choose the proper parameter for these six methods. Since the
parameter α plays an important role in the HSS method and its other versions (such
as MHSS, SHNS, and GPMHSS), along with CSS, an accurate approximation to
the optimal value of parameter α may significantly speed up the convergence rate of
these iteration method. Although this is very difficult, many researchers have devoted
to estimate the value of the parameter α and have obtained many valuable results, see
[25–29]. By adopting a reasonable and simple optimization principle, Chen in [29]
derived a cubic polynomial equation to estimate the parameter α for the HSS method.
Numerical results show that the strategy for computing the optimal parameter in [29]
is better than that in [15, 28]. Based on this, noting that the minimal singular value of
the matrix S is 0 in our experiments, we estimate the value of the parameter α using
the method proposed in [29], i.e.,

2α3+ (λmax+λmin− σ 2
max

λmax − λmin
)α2−2

σ 2
maxλmin

λmax − λmin
α− σ 2

maxλ
2
min

λmax − λmin
= 0, (4.2)

where λmin and λmax are the minimal and the maximal eigenvalues of the matrix H ,
and σmax is the maximal singular value of the matrix S. Since the eigenvalues of
the matrix P in the MCSS are complex, the minimal and the maximal value of the
absolute value of all the eigenvalues of matrices P instead of the corresponding λmin
and λmax in (4.2) is to estimate the value of the parameter α for the MCSS method, as
well as the matrix C in the CSS method [18]. In this case, the corresponding number
of the iteration steps and CPU times with varying ω are listed in Table 1.

Some remarks on Table 1 are given below.

• When the GPMHSS method in [24] is applied, the choice of the preconditioner
P is P = I . The goal of this choice is to tend a fair comparison with MCSS,
CSS, HSS, MHSS, and SHNS.

• When using (4.2) to obtain the value of the parameter for the HSS and MHSS
methods, we find that this strategy for the choice of the parameter for the HSS
and MHSS methods is invalid because this way leads to the non-convergence of
the HSS and MHSS methods. In this case, Table 1 does not list the numerical
results of the HSS and MHSS methods.

Table 1 α, IT, and CPU for MCSS, CSS, and GPMHSS with n = 512

ω 100 200 300 500

α 5.1524 5.1261 5.1171 5.1099

MCSS IT 9 6 6 5

CPU 0.078 0.063 0.047 0.047

α 5.1543 5.1265 5.1173 5.11

CSS IT 8 6 6 5

CPU 0.062 0.047 0.032 0.032

α 9.6900e+3 1.9371e+4 2.9054e+4 5 4.8419e+4

GPMHSS IT 124 122 121 121

CPU 1.25 1.094 1.079 1.125
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• When this strategy in (4.2) for the choice of the parameter for the SHNS method
is also invalid because of λmax = λmin. This implies that we do not obtain the
value of the parameter for the SHNS method. In this case, Table 1 does not
present the numerical results of the SHNS method.

• Numerical results in Table 1 show that the performance of the MCSS and CSS
methods is almost the same. Whereas, there is a certain risk for the CSS method.
It is reason that the spectral radius of the iteration matrix of the CSS method is
less than or equal to one in [18].

From Table 1, the convergence rate of MCSS, CSS, and GPMHSS depends on the
parameter α and the driving circular frequency ω. The numerical results in Table 1
show that the MCSS method solving this class of complex linear system (2.1) is
feasible and competitive.

In order to further contrast the performance of the above six methods, the value
of iteration parameter α is selected by the statement on the choice of the iteration
parameter [21], that is to say, experience suggests that in most applications and for an
appropriate scaling of the problem, a “small” value of α (usually between 0.01 and
0.5) may give good results. The numerical results are reported in Tables 2 and 3.

In Tables 2 and 3, we show the number of iterations and CPU times for MCSS,
CSS, HSS, MHSS, and SHNS methods. In our numerical computations, we find
that the GPMHSS method is not convergent, Tables 2 and 3 do not list its numeri-
cal results. But beyond that, the other five methods are convergent. From Tables 2
and 3, the performance of the MCSS and CSS methods is almost the same, the HSS
and MHSS methods too. MCSS, CSS, HSS, and MHSS outperform SHNS under the
convergent condition. Fixing the mesh size with ω and α increasing, a trend of the
number of iterations of MCSS, CSS, and SHNS reduces and a trend of the number of
iterations of the HSS and MHSS methods grows. These numerical results in Tables 2
and 3 further show that the MCSS method for solving this class of complex linear
system (2.1) is very competitive under certain conditions.

Table 2 α, IT, and CPU for MCSS, CSS, and GPMHSS with n = 512

ω 100 200 300 500 1000

α 0.01 0.05 0.1 0.5 1

MCSS IT 8 6 6 5 4

CPU 0.157 0.093 0.109 0.094 0.078

CSS IT 8 6 6 5 4

CPU 0.079 0.062 0.047 0.047 0.032

HSS IT 43 45 46 50 50

CPU 0.296 0.297 0.297 0.375 0.343

MHSS IT 43 45 46 50 50

CPU 0.218 0.203 0.219 0.266 0.219

SHNS IT 59 56 54 52 50

CPU 0.5 0.484 0.453 0.407 0.45
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Table 3 α, IT, and CPU for MCSS, CSS, and GPMHSS with n = 2048

ω 100 200 300 500 1000

α 0.01 0.05 0.1 0.5 1

MCSS IT 14 8 7 6 5

CPU 2.953 1.687 1.453 1.328 1.11

CSS IT 11 8 6 6 5

CPU 0.938 0.609 0.531 0.516 0.407

HSS IT 40 42 43 45 45

CPU 1.375 1.328 1.485 1.484 1.422

MHSS IT 40 42 43 45 45

CPU 0.969 1.062 1.016 1.016 1.094

SHNS IT 53 51 49 48 45

CPU 2.703 2.688 2.5 2.375 2.234

In the sequel, the MCSS iteration is used as a preconditioner with GMRES(20),
comparing with the CSS, HSS, GPMHSS, MHS, and SHNS preconditioners. When
comparing these six preconditioners, the choice of parameter α is similar to the front.
Specifically, see Tables 4 and 5.

In our numerical computations, the GMRES(20) method terminates if the relative

residual error satisfies ‖r(k)‖2
‖r(0)‖2 < 10−6. In Tables 4 and 5, “PMCSS” denotes the MCSS-

preconditioned GMRES(20) method, “PCSS” denotes the CSS-preconditioned
GMRES(20) method, “PHSS” denotes the HSS-preconditioned GMRES(20) method,
“PGPMHSS” denotes the GPMHSS-preconditioned GMRES(20) method, “PMHSS”

Table 4 IT and CPU for MCSS-, CSS-, HSS-, GPMHSS-, MHSS- and SHNS-preconditioned
GMRES(20) with n = 512

ω 100 50 30 20 1

α 0.01 0.05 0.1 0.5 1

PMCSS IT 1 1 1 3 8

CPU 0.032 0.047 0.109 0.11 0.187

PCSS IT 2 2 4 4 11

CPU 0.156 0.141 0.234 0.219 0.453

PHSS IT 1 7 − 20 8

CPU 0.031 0.094 − 0.25 0.093

PGPMHSS IT 1 1 1 1 10

CPU 0.031 0.031 0.047 0.047 0.125

PMHSS IT 1 7 − 20 8

CPU 0.047 0.078 − 0.39 0.203

PSHNS IT 1 1 1 1 15

CPU 0.45 0.484 0.453 0.407 0.5
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Table 5 IT and CPU for MCSS-, CSS-, HSS-, GPMHSS-, MHSS-, and SHNS-preconditioned
GMRES(20) with n = 2048

ω 100 50 30 20 1

α 0.01 0.05 0.1 0.5 1

PMCSS IT 1 1 1 1 5

CPU 1.953 0.609 1.813 1.062 4.828

PCSS IT 2 2 2 3 10

CPU 2.641 2.829 2.407 3.172 7.719

PHSS IT 1 − − 18 8

CPU 0.172 − − 1.328 1.047

PGPMHSS IT 1 1 1 10 7

CPU 0.234 0.235 0.219 0.985 0.734

PMHSS IT 1 − − 18 8

CPU 0.172 − − 1.328 0.672

PSHNS IT 1 1 1 1 111

CPU 0.219 0.219 0.266 0.25 9.172

denotes the MHSS-preconditioned GMRES(20) method, and “PSHNS” denotes the
SHNS-preconditioned GMRES(20) method.

In Tables 4 and 5, we report some numerical results for GMRES(20) precondi-
tioned with MCSS, CSS, HSS, GPMHSS, MHSS, and SHNS. From these results, we
observe when used as a preconditioner, the MCSS preconditioner is quite competi-
tive in terms of convergence rate, robustness, and efficiency when Krylov subspace
methods combining with these six preconditioners are applied to solve the linear
system (2.1) under certain conditions. It is noted that when the HSS preconditioner
and the MHSS preconditioner are applied to solve the linear system (2.1), break-
down may happen from Tables 4 and 5. Further, by a lot of numerical experiments,
we find that the number of iterations of the MCSS-preconditioned GMRES(20)
is stable with the grid increasing when the driving circular frequency ω exceeds
30. This implies that the efficiency of the MCSS preconditioner may be accepted
when it is applied to solve the large sparse linear system (2.1) for the sufficiently
large ω.

Finally, we consider the complex-symmetric linear systems from the following
Helmholtz equations

−
u − σ1u + iσ2u = f,

where σ1 and σ2 are real coefficient functions, and u satisfies Dirichlet boundary
conditions in D = [0, 1] × [0, 1]. The above equation describes the propagation of
damped time-harmonic waves. We take H the five-point centered difference matrix
approximating the negative Laplacian operator on an uniform mesh with mesh size
h = 1

m+1 . The matrix H ∈ R
n×n possesses the tensor-product form H = Bm ⊗

I + I ⊗ Bm with Bm = h−2·tridiag(−1, 2, −1) ∈ R
m×m. Hence, H is an n × n
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Table 6 IT and CPU of MCSS-preconditioned GMRES(20) for Eq. (4.1)

α 0.01 0.05 0.1 0.5 1

n = 512 IT 3 3 3 3 3

CPU 0.235 0.219 0.219 0.187 0.125

n = 2048 IT 2 2 2 2 2

CPU 2.484 2.64 2.578 2.297 2.81

n = 3528 IT 1 1 1 1 1

CPU 5.859 6.031 5.969 5.828 5.68

block-tridiagonal matrix, with n = m2. This leads to the complex-symmetric linear
system (1.2) of the form

[(H − σ1I ) + iσ2I ]x = b,

which is equal to

Ax ≡
[

(1 + i)H (i − 1)H
(1 + i)H −H + σ2 + iσ1

] [
x

ix

]
=

[
0
b

]
. (4.3)

To keep matrix −H + σ2I symmetric positive definite and matrix H − σ1I sym-
metric indefinite, some values of σ1 and σ2 need to be selected. For convenience, we
set σ1 = 4h−2 and σ2 = 10h−2. In our computations, the right-hand side vector b is
adjusted to be b = (1 + i)Ae (e = (1, 1, . . . , 1)T ).

By investigating the aforementioned numerical results, the MCSS method and the
MCSS preconditioner, respectively, has certain advantages, compared with the other
five methods and their deuterogenic preconditioners. TheMCSS preconditioner com-
bining with GMRES(20) outperforms the MCSS method. In this case, we only test
the efficiency of the MCSS preconditioner for solving the linear system (4.3).

From Table 6, the MCSS preconditioner is quite competitive in terms of con-
vergence rate, robustness, and efficiency when some Krylov subspace methods
combining with the MCSS preconditioner are applied to solve the linear system (4.3)
under certain conditions. Table 6 implies that the MCSS preconditioner maybe be
suitable for the large sparse linear system (4.3) from Helmholtz equations.

5 Conclusion

In this paper, we have introduced the modified CSS (MCSS) method for a class
of complex-symmetric indefinite linear system. Theoretical analysis shows that the
MCSS method is unconditionally convergent under certain conditions. Numerical
experiments illustrate the efficiency of both the MCSS method and the MCSS
preconditioner. In particular, the resulting MCSS preconditioner leads to fast con-
vergence when it is used to preconditioned Krylov subspace methods such as
GMRES.
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