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Abstract Based on the variant of the deteriorated positive-definite and skew-
Hermitian splitting (VDPSS) preconditioner developed by Zhang and Gu (BIT
Numer. Math. 56:587–604, 2016), a generalized VDPSS (GVDPSS) preconditioner
is established in this paper by replacing the parameter α in (2,2)-block of the VDPSS
preconditioner by another parameter β. This preconditioner can also be viewed as a
generalized form of the VDPSS preconditioner and the new relaxed HSS (NRHSS)
preconditioner which has been exhibited by Salkuyeh and Masoudi (Numer. Algo-
rithms, 2016). The convergence properties of the GVDPSS iteration method are
derived. Meanwhile, the distribution of eigenvalues and the forms of the eigenvectors
of the preconditioned matrix are analyzed in detail. We also study the upper bounds
on the degree of the minimum polynomial of the preconditioned matrix. Nume-
rical experiments are implemented to illustrate the effectiveness of the GVDPSS
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preconditioner and verify that the GVDPSS preconditioned generalized minimal
residual method is superior to the DPSS, relaxed DPSS, SIMPLE-like, NRHSS,
and VDPSS preconditioned ones for solving saddle point problems in terms of the
iterations and computational times.

Keywords Saddle point problem · Generalized VDPSS preconditioner · GMRES ·
Preconditioning · Spectral properties
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1 Introduction

Consider the following large and sparse saddle point problem

Au =
(

A BT

−B 0

) (
x

y

)
=

(
p

−q

)
≡ b, (1)

where A ∈ R
m×m is a nonsymmetric positive definite (i.e., its symmetric part is pos-

itive definite), B ∈ R
n×m has full row rank, and p ∈ C

m and q ∈ C
n are given

vectors with n ≤ m. The above assumptions show that the coefficient matrix A is
nonsingular and (1) has unique solution. This kind of linear system is important and
frequently arose in a variety of scientific and engineering applications, such as mixed
or hybrid finite element approximations of second-order elliptic problems, compu-
tational fluid dynamics, constrained optimization, electronic networks and computer
graphics, optimal control, weighted least squares problems, and so forth; see [2, 18,
20, 28] and references therein.

Due to the fact that the matrices A and B in (1) are large and sparse, iterative
methods are preferable for solving the saddle point problem (1) in terms of storage
requirements and computing time. A number of effective iteration methods have been
developed for solving the saddle point problem (1), and their numerical properties
have been studied in the literature, such as SOR-like methods [13, 15, 31, 32], Uzawa-
type methods [13, 15, 19, 29, 43], Hermitian and skew-Hermitian splitting (HSS)
methods [8] and its variants [3, 6, 7, 9, 10], RPCG iteration methods [11, 14], and so
forth.

Meanwhile, Krylov subspace iteration methods [37] are a class of effective meth-
ods for solving such systems of linear equations. However, Krylov subspace methods
without good preconditioner often suffer from slow convergence or even stagnation
when they are applied to the nonsymmetric saddle point problem (1) as A is usu-
ally ill-conditioned. In order to accelerate the convergence of the associated Krylov
subspace method, the preconditioning technique is often used [2, 38]. A high-quality
preconditioner plays a crucial role in guaranteeing the fast convergence rate of Krylov
subspace methods. The preconditioner usually reduces the number of iteration steps
required for convergence. In general, favorable convergence rates of the Krylov sub-
space methods are often associated with a clustering of most of the eigenvalues of
the preconditioned matrix around 1 and away from 0 [17]. Moreover, convergence
properties of the Krylov subspace methods are also dependent on the properties of
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the corresponding eigenvectors of the preconditioned matrix except for the case that
the preconditioned matrix is symmetric [1, 5]. In recent years, considerable efforts
have been invested in investigating the preconditioners for Krylov subspace methods,
such as the generalized minimal residual (GMRES) method [37]. In [3, 41, 42], the
authors applied the block-diagonal and block-triangular preconditioners. Bai et al.
[12] and Dollar et al. [27] employed the constraint preconditioners. Bai, Golub et al.
[6, 7, 10, 36], Zhang et al. [44, 45], Fan et al. [30], and Cao et al. [21, 24] derived the
HSS-based preconditioners. On the basis of the shift-splitting of a matrix [16], Cao
et al. [22, 23] and Chen et al. [25, 26] investigated the shift-splitting and generalized
shift-splitting preconditioners for saddle point problems and so on. By combining the
Semi implicit method for pressure linked equations (SIMPLE) preconditioner [33]
with the relaxed deteriorated positive-definite and skew-Hermitian splitting (RDPSS)
preconditioner presented by Cao et al. [21], Zhang and Zhang newly constructed
the SIMPLE-like (SL) preconditioners [35] for saddle point problems. Very recently,
Zhou et al. [46] proposed the modified shift-splitting (MSS) preconditioner for non-
symmetric saddle point problems. For more details, we refer the readers to [18] for a
comprehensive survey of existing approaches for solving saddle point problems.

For nonsymmetric saddle point problem (1), on the basis of the splitting of the
coefficient matrix A

A = H + S,

where

H =
(

A 0
0 0

)
, S =

(
0 BT

−B 0

)
.

Pan et al. [36] considered the following splitting of A

A = (αI + H) − (αI − S) = (αI + S) − (αI − H), (2)

where α > 0 and I is the identity matrix with appropriate size. With a quite similar
strategy of the alternating iteration method, the following splitting iteration method
was derived.{

(αI + H)u(k+ 1
2 ) = (αI − S)u(k) + b,

(αI + S)u(k+1) = (αI − H)u(k+ 1
2 ) + b,

k = 0, 1, 2, · · · . (3)

From the above iteration scheme, authors proposed the deteriorated positive-definite
and skew-Hermitian splitting (DPSS) preconditioner as follows

PDPSS = 1

2α
(αI + H)(αI + S) = 1

2α

(
αI + A 0

0 αI

)(
αI BT

−B αI

)
(4)

for non-Hermitian saddle point problems. Since the factor 1
2 has no effect on the pre-

conditioned systems, we replace 1
2α

by 1
α

. From (1) and (4), we see that the disparity
between the preconditioner PDPSS and the matrix A is

RDPSS = PDPSS − A =
(

αI 1
α
ABT

0 αI

)
. (5)
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A general criterion for an efficient preconditioner is that it should be as close as pos-
sible to the coefficient matrix A [44]. To get a closer approximation to the coefficient
matrix A than the DPSS preconditioner, recently, Zhang and Gu [44] employed the
variant of the deteriorated PSS (VDPSS) preconditioner for the nonsymmetric saddle
point problem (1) as follows:

PV DPSS = 1

α

(
A 0
0 αI

) (
αI BT

−B αI

)
=

(
A 1

α
ABT

−B αI

)
. (6)

The difference between PV DPSS and A is given by

RVDPSS = PVDPSS − A =
(

0 1
α
ABT − BT

0 αI

)
. (7)

It has been mentioned in [44] that although the (1,2)-block in the matrix (7) is dif-
ferent from that of (5), the (1,1)-block in (7) vanishes, and therefore, it means that
PVDPSS gives a better approximation to A for the same α. However, it should be
noted that the (1,2)-block in (7) tends to +∞ whereas the (2,2)-block approaches to
0 as α → 0+. In addition, it may be a large α such that (1,2)-block in (7) tends to 0,
while (2,2)-block in (7) can become large in this case. Thus, the α is still needed to
be found in order to balance the proportion of the two sub-blocks.

Motivated by this situation and inspired by the idea of [30], an additional new
parameter will be introduced to overcome the above difficulty. That is, we replace
the parameter α in (2,2)-block in PVDPSS by another parameter β and a new precon-
ditioner which is referred to as the generalized VDPSS (GVDPSS) preconditioner is
derived in this paper. Besides, the spectral properties of the GVDPSS preconditioner
and the upper bounds on the degree of the minimal polynomial of the precondi-
tioned matrix are investigated. Numerical experiments are implemented to confirm
the effectiveness of the GVDPSS preconditioned GMRES method for nonsymmetric
saddle point problems.

The framework of this paper is organized as follows. Section 2 introduces the
new proposed preconditioner, i.e., the GVDPSS preconditioner and derives the con-
vergence properties of the GVDPSS iteration method. The spectral properties of the
GVDPSS preconditioner and the upper bounds of the degree of the minimal poly-
nomial of the preconditioned matrix are discussed in Section 3. We analyze some
implementation aspects about the preconditioner PGVDPSS in Section 4. Section 5 is
devoted to performing numerical examples to examine the feasibility and effective-
ness of the GVDPSS preconditioned GMRES method for nonsymmetric saddle point
problems and illustrate that the GVDPSS preconditioned GMRES method has supe-
riority compared with the DPSS, RDPSS, SL, NRHSS, and VDPSS preconditioned
GMRES methods for solving saddle point problems. Finally, the paper is ended with
some conclusions in Section 6.

2 The generalized variant of the deteriorated PSS preconditioner

Since the spectral distribution of the preconditioned matrix relates closely to the con-
vergence rate of Krylov subspace methods, it is expected that the preconditioned
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saddle point matrix has desired eigenvalue distribution like tightly clustered spectra
or positive real spectra; see [4, 38].

In order to obtain the better preconditioner for the nonsymmetric saddle point
problems, based on the coefficient matrix splitting in [6] and (2), we have the
following matrix splitting

A = (� + H) − (� − S) = (� + S) − (� − H),

where H and S are defined as in (2), and

� =
(

αI 0
0 βI

)

with α, β > 0 and I is the identity matrix with appropriate size.
With a quite similar strategy utilized in (3), we may establish the following

splitting iteration method{
(� + H)u(k+ 1

2 ) = (� − S)u(k) + b,

(� + S)u(k+1) = (� − H)u(k+ 1
2 ) + b,

k = 0, 1, 2, · · · . (8)

Note that the splitting iteration (8) can be derived from the matrix splitting

A = M − N ,

where M = 1
2�−1(� + H)(� + S) and N = 1

2�−1(� − H)(� − S). After proper
manipulations, we have

M = 1

2

(
α−1I 0

0 β−1I

) (
αI + A 0

0 βI

) (
αI BT

−B βI

)
= 1

2

(
αI + A 1

α
(αI + A)BT

−B βI

)
. (9)

To get a better approximation of the coefficient matrix A, we replace the shift term
αI in (1,1)-block of the second matrix in (9) with zero matrix and change the factor
1
2 to 1, then a new preconditioner which is referred to as the GVDPSS preconditioner
is constructed as follows:

PGVDPSS =
(

α−1I 0
0 β−1I

)(
A 0
0 βI

) (
αI BT

−B βI

)
=

(
A 1

α
ABT

−B βI

)
, (10)

where α > 0 and β > 0 are two given constants.
The difference between PGVDPSS and A is

RGVDPSS = PGVDPSS − A =
(

0 ( 1
α
A − I )BT

0 βI

)
. (11)

From (10), we observe that the GVDPSS preconditioner can be regarded as gener-
alized versions of the VDPSS preconditioner derived by Zhang and Gu [44] and the
new relaxed HSS (NRHSS) preconditioner proposed by Salkuyeh and Masoudi [40].
That is to say, when β = α and α = 1, the GVDPSS preconditioner reduces to the
VDPSS preconditioner and NRHSS preconditioner, respectively. In addition, we find
that the nonzero (2,2)-block tends to the null matrix as the parameter β → 0+ and
α can be chosen properly such that (1,2)-block in (11) tends to zero matrix as much
as possible. Specially, as we mentioned when α tends to +∞, (2,2)-block in RVDPSS
becomes unbounded, while we can choose β → 0+ for the GVDPSS preconditioner
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such that (2,2)-block in RGVDPSS tends to zero matrix. This indicates that, for large
values of α, the GVDPSS preconditioner is much closer to the coefficient matrix
A than the VDPSS preconditioner in some degree, and the GVDPSS preconditioner
with proper parameters α and β should be a better approximation to the coefficient
matrix A than the VDPSS and NRHSS preconditioners due to the independence of
the parameters α and β. Therefore, the GVDPSS preconditioner is expected to be a
better preconditioner than the VDPSS and NRHSS preconditioners, and the merit of
the GVDPSS preconditioner will be stressed by the numerical experiments.

Actually, the GVDPSS preconditioner PGVDPSS can be induced by a fixed-point
iteration, which is based on the following splitting of the matrix A:

A = PGVDPSS − RGVDPSS =
(

A 1
α
ABT

−B βI

)
−

(
0 ( 1

α
A − I )BT

0 βI

)
. (12)

Based on the above splitting, we can construct a new iterative method, called the
GVDPSS iteration method, which is defined as follows:

The GVDPSS iteration method Let α > 0 and β > 0 be two given constants.
Given an initial guess (x(0)T , y(0)T )T . For k = 0, 1, 2, · · · , until (x(k)T , y(k)T )T

converges, compute

(
A 1

α
ABT

−B βI

) (
x(k+1)

y(k+1)

)
=

(
0 ( 1

α
A − I )BT

0 βI

)(
x(k)

y(k)

)
+

(
p

−q

)
. (13)

Hence, the GVDPSS iteration method can be written in the following fixed-point
form:

(
x(k+1)

y(k+1)

)
= Mα,β

(
x(k)

y(k)

)
+ c, (14)

where

Mα,β =
(

A 1
α
ABT

−B βI

)−1 (
0 ( 1

α
A − I )BT

0 βI

)

is the iteration matrix and

c =
(

A 1
α
ABT

−B βI

)−1 (
p

−q

)
.

The fixed-point iteration (14) converges to the solution u = A−1b for arbitrary initial
guesses u(0) = (x(0)T , y(0)T )T and right-hand sides b if and only if ρ(Mα,β) < 1,
where ρ(T ) denotes the spectral radius of T . Now, we discuss the convergence of the
GVDPSS iteration method. We start with some lemmas which will be useful in our
proofs.
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Lemma 2.1 Let

P1 =
(

A 0
0 I

)
, P2 =

(
I 1

α
BT

−B βI

)
.

Here, P2 has the block-triangular factorization

P2 =
(

I 0
−B I

) (
I 0
0 Ã

) (
I 1

α
BT

0 I

)

with Ã = βI + 1
α
BBT . Then the form of P−1

GVDPSS is given by

P−1
GVDPSS = P−1

2 P−1
1 =

(
I − 1

α
BT

0 I

) (
I 0
0 Ã−1

)(
I 0
B I

)(
A−1 0

0 I

)

=
(

A−1 − 1
α
BT Ã−1BA−1 − 1

α
BT Ã−1

Ã−1BA−1 Ã−1

)
. (15)

Lemma 2.2 Let A ∈ R
m×m be positive definite and B ∈ R

n×m be of full row rank.
If x ∈ C

n �= 0 and x∗BA−1BT x = a + bi, then a > 0.

Proof Since x ∈ C
n �= 0 and x∗BA−1BT x = a + bi, it holds that x∗BA−T BT x =

a − bi, and therefore, x∗B(A−1 + A−T )BT x = 2a. Owing to the fact that A−1

is positive definite, A−1 + A−T is symmetric positive definite, which together with
x �= 0 and rank(B) = n gives a > 0. This completes the proof.

Lemma 2.3 [46] If S is a skew-Hermitian matrix, then iS (i is the imaginary unit) is
a Hermitian matrix and u∗Su is a purely imaginary number or zero for all u ∈ C

m.

Theorem 2.1 Let A ∈ R
m×m be nonsymmetric positive definite and B ∈ R

n×m be
full of row rank. Then the GVDPSS iteration method is convergent if and only if the
parameters α and β satisfy

α > 0, β > max

{
a1

2
+ b2

1

2a1
− c1

α
, 0

}
, (16)

where

x∗BA−1BT x

x∗x
= a1 + ib1,

x∗BBT x

x∗x
= c1 (17)

and x is an eigenvector corresponding to an eigenvalue of the matrix Ã−1BA−1BT .
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Proof By making use of Lemma 2.1, we derive

P−1
GVDPSSA = I − P−1

GVDPSSRGVDPSS

= I −
(

A−1 − 1
α
BT Ã−1BA−1 − 1

α
BT Ã−1

Ã−1BA−1 Ã−1

)(
0 ( 1

α
A − I )BT

0 βI

)

=
(

Im K1
0 K2

)
, (18)

where K1 = −( 1
α
BT −A−1BT − 1

α2 BT Ã−1BBT + 1
α
BT Ã−1BA−1BT − β

α
BT Ã−1)

and K2 = Ã−1BA−1BT . As a result, the iteration matrix Mα,β can be rewritten by

Mα,β = P−1
GVDPSSRGVDPSS = I − P−1

GVDPSSA =
(

0 −K1
0 In − K2

)
. (19)

Hence, if μ is an eigenvalue of the matrix Mα,β , then μ = 0 or μ = 1 − λ, where λ

is an eigenvalue of the matrix K2. Therefore, there exists a vector x �= 0 such that

K2x = Ã−1BA−1BT x = λx,

which can be written as

BA−1BT x = λ

(
βI + 1

α
BBT

)
x. (20)

As we know that the vector x �= 0, then the definition x∗
x∗x does make sense.

Premultiplying (20) with x∗
x∗x and utilizing the symbols defined as in (17) yield

λ = x∗BA−1BT x

βx∗x + 1
α
x∗BBT x

= a1 + ib1

β + c1
α

= α(a1 + ib1)

αβ + c1
. (21)

To ensure the convergence of the GVDPSS iteration method, it must hold that

|μ| =
∣∣∣∣1 − α(a1 + ib1)

αβ + c1

∣∣∣∣ =
∣∣∣∣ (αβ + c1 − αa1) − iαb1

αβ + c1

∣∣∣∣ < 1.

After some manipulations, we obtain

α > 0, β >
a1

2
+ b2

1

2a1
− c1

α
. (22)

Combining β > 0 and (22), we obtain the conditions for the convergence of the
GVDPSS iteration method.

According to Theorem 2.1, the following sufficient conditions for the convergence
of the GVDPSS iteration method can be obtained immediately.
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Corollary 2.1 Assume the conditions in Theorem 2.1 are satisfied. Then, the
GVDPSS iteration method for solving saddle point problem (1) is convergent if the
parameters α and β satisfy:

α > 0, β >

{
ρ(H̃ )

2
+ ρ(S̃)2

2λmin(H̃ )
− σ 2

min

α
, 0

}
, (23)

where

H̃ = B(A−1 + A−T )BT

2
, S̃ = B(A−1 − A−T )BT

2
,

λmin(.) and ρ(.) denote the minimum eigenvalue and spectral radius of a matrix,
respectively, and σmin is the minimum singular value of the matrix B. In particular,
if A is symmetric definite, the conditions (23) reduce to

α > 0, β >

{
ρ(BA−1BT )

2
− σ 2

min

α
, 0

}
. (24)

Proof Denote the function

f (a1, b1, c1, α) = a1

2
+ b2

1

2a1
− c1

α
.

By utilizing Lemma 2.2 and the symbols defined as in (17), it is easily seen that
a1, c1 > 0 and b2

1 ≥ 0 and it is not difficult to verify that the function f (a1, b1, c1, α)

is monotonically increasing about b2
1 and monotonically decreasing about c1. It

follows from (17) that

a1 = x∗B(A−1 + A−T )BT x

2x∗x
= x∗H̃x

x∗x
, b1 = x∗B(A−1 − A−T )BT x

2ix∗x
= x∗S̃x

ix∗x
= −x∗iS̃x

x∗x
.

Since H̃ and S̃ are Hermitian and skew-Hermitian matrices, respectively, it holds
that λmin(H̃ ) ≤ a1 ≤ ρ(H̃ ), 0 ≤ b2

1 ≤ ρ(S̃)2 and c1 ≥ σ 2
min by Lemma 2.3. Then an

upper bound for f (a1, b1, c1, α) is derived as follows:

f (a1, b1, c1, α) ≤ ρ(H̃ )

2
+ ρ(S̃)2

2λmin(H̃ )
− σ 2

min

α
. (25)

By making use of Theorem 2.1, inequalities (23) and (25), it can be seen that the
GVDPSS iteration method is convergent if α and β satisfy (23). Specifically, if A is
symmetric positive definite, the conditions (24) can be directly derived from (23) as
H̃ = BA−1BT and S̃ = 0 in this case.

It is worthy noting that the GVDPSS iteration method contains two parameters α

and β, and how to select the optimal parameters α and β for the GVDPSS iteration
method is very practical and meaningful. However, it is a difficult task for us at
present, and this problem needs to be investigated in the future.
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3 The spectral properties of the preconditioned matrix P−1
GVDPSSA

The eigenvalue and eigenvector distributions of the preconditioned matrix relate
closely to the convergence rate of Krylov subspace methods. Therefore, it is mean-
ingful to investigate the spectral properties of the preconditioned matrix P−1

GVDPSSA.
In the following, we will deduce the eigenvalue distribution of the preconditioned
matrix P−1

GVDPSSA. Besides, the eigenvectors and the upper bounds of the minimal
polynomial of the preconditioned matrix P−1

GVDPSSA are also discussed.

Theorem 3.1 Let the GVDPSS preconditioner be defined as in (10), then the precon-
ditioned matrix P−1

GVDPSSA has eigenvalue 1 of algebraic multiplicity at least m. The
real and imaginary parts of the remaining eigenvalues of the preconditioned matrix
P−1
GVDPSSA satisfy

ασ 2
mλmin(Ĥ )

αβ + σ 2
m

≤ Re(λ) ≤ ασ 2
1 λmax(Ĥ )

αβ + σ 2
1

, |Im(λ)| ≤ ασ 2
1 ρ(Ŝ)

αβ + σ 2
1

,

where σm and σ1 are the minimum and maximum singular values of the matrix B,

respectively, and Ĥ = A−1+(A−1)T

2 and Ŝ = A−1−(A−1)T

2 are the symmetric and
skew-symmetric parts of the matrix A−1, respectively.

Proof It follows from (18) that

P−1
GVDPSSA =

(
Im K1
0 K2

)
, (26)

where K1 = −( 1
α
BT −A−1BT − 1

α2 BT Ã−1BBT + 1
α
BT Ã−1BA−1BT − β

α
BT Ã−1)

and K2 = Ã−1BA−1BT .
Equation (26) implies that the eigenvalues of the preconditioned matrix

P−1
GVDPSSA are given by 1 with algebraic multiplicity as least m. The remaining

non-unit eigenvalues of P−1
GVDPSSA are the solution of the eigenvalue problem

Ã−1BA−1BT u = λu, (27)

where Ã = βI + 1
α
BBT , which can be precisely rewritten as the generalized

eigenvalue problem

BA−1BT u = λ

(
βI + 1

α
BBT

)
u. (28)

It is evident that u �= 0. Without loss of generality, we assume ‖u‖2 = 1.
Premultiplying (28) with u∗ results in

u∗BA−1BT u = λ

(
β + 1

α
u∗BBT u

)
. (29)

Let v = BT u, then (29) reduces to

v∗A−1v = λ

(
β + 1

α
v∗v

)
, (30)
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which implies that

v∗(A−1)T v = λ̄

(
β + 1

α
v∗v

)
. (31)

Owing to the positive definiteness of the matrix A−1, we obtain Ĥ = A−1+(A−1)T

2 is
symmetric positive definite. Combining (30) with (31) yields

v∗Ĥv

v∗v
= Re(λ)

(
β

v∗v
+ 1

α

)
,

v∗Ŝv

v∗v
= Im(λ)i

(
β

v∗v
+ 1

α

)
. (32)

By making use of Lemma 2.3, it is not difficult to verify that

λmin(Ĥ ) ≤ v∗Ĥv

v∗v
≤ λmax(Ĥ ),

v∗iŜv

v∗v
≤ ρ(Ŝ), σ 2

m ≤ v∗v = u∗BBT u≤ σ 2
1 .(33)

Here, σm and σ1 are the minimum and maximum singular values of the matrix B,
respectively. By applying (32) and (33), we obtain

ασ 2
mλmin(Ĥ )

αβ + σ 2
m

≤ Re(λ) ≤ ασ 2
1 λmax(Ĥ )

αβ + σ 2
1

, |Im(λ)| ≤ ασ 2
1 ρ(Ŝ)

αβ + σ 2
1

.

This proof is completed.

Remark 3.1 From (30), the non-unit eigenvalues of the preconditioned matrix
P−1

GVDPSSA satisfy

λ = v∗A−1v

β + 1
α
v∗v

= αv∗A−1v

αβ + v∗v
. (34)

Let 0 < α0 < +∞ and 0 < β0 < +∞. By making use of (34), we derive the
following conclusions:

(a) Let (α, β) → (0, β0), then λ → 0.
(b) Let (α, β) → (+∞, β0), then λ → 1

β0
v∗A−1v.

(c) Let (α, β) → (α0, β0), then λ → α0v
∗A−1v

α0β0+v∗v .
(d) Let (α, β) → (0, +∞), then λ → 0.
(e) Let (α, β) → (α0, +∞), then λ → 0.
(f) Let (α, β) → (+∞, +∞), then λ → 0.
(g) Let (α, β) → (0, 0), then λ → 0.

(h) Let (α, β) → (α0, 0), then λ → α0v
∗A−1v
v∗v .

Let (λ, x) be an eigenpair of the matrix (βI + 1
α
BBT )−1BA−1BT . In the same

manner applied in the proof of Theorem 2.1, it has

λ = x∗BA−1BT x

βx∗x + 1
α
x∗BBT x

= a1 + ib1

β + c1
α

= α(a1 + ib1)

αβ + c1
. (35)
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It is not difficult to verify that

λ →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, α → 0+ or β → +∞,
a1
β0

+ i
b1
β0

, α → +∞ and β → β0 (0 < β0 < +∞),
α0a1+iα0b1

c1
, β → 0+ and α → α0 (0 < α0 < +∞),

α0a1+iα0b1
α0β0+c1

, α → α0 and β → β0 (0 < α0 < +∞, 0 < β0 < +∞).

We summarize the above results in the following theorem.

Theorem 3.2 The eigenvalues of the preconditioned matrixP−1
GV DPSSA tend to scat-

ter near the points (1, 0) and (0, 0) as α → 0+ or β → +∞, tend to scatter near
the points (1, 0) and (

a1
β0

,
b1
β0

) as α → +∞ and β → β0 (0 < β0 < +∞), and

tend to scatter near the points (1, 0) and (
α0a1
c1

,
α0b1
c1

) as β → 0+ and α → α0

(0 < α0 < +∞). In addition, the eigenvalues of P−1
GV DPSSA tend to scatter near the

points (1, 0) and (
α0a1

α0β0+c1
,

α0b1
α0β0+c1

) as α → α0 and β → β0 (0 < α0 < +∞, 0 <

β0 < +∞), where a1, b1, and c1 are defined as in (17).

It is easy to see that a1 > 0 and c1 > 0 by virtue of Lemma 2.2 and the definitions
of a1, c1. By making use of (35), we have

Re(λ) = αa1

αβ + c1
> 0, (36)

where Re(λ) denotes the real part of λ. It follows immediately from (36) that
all eigenvalues of P−1

GVDPSSA have positive real parts. Thus, the eigenvalues of
P−1

GVDPSSA lie in a positive box, which may result in faster convergence of Krylov
subspace acceleration. In particular, when A is a symmetric positive definite, b1 = 0,
and therefore, the eigenvalues of P−1

GVDPSSA locate in a positive real interval.
Recalling that the convergence of Krylov subspace methods is not only depen-

dent on the eigenvalue distribution of the preconditioned matrix but also on the
corresponding eigenvectors of the preconditioned matrix [1, 5]. We next discuss the
eigenvector distribution of P−1

GVDPSSA in the following theorem.

Theorem 3.3 Let the GVDPSS preconditioner PGV DPSS be defined as in (10), if the
matrix I− 1

α
BT Ã−1B is nonsingular, then the preconditioned matrixP−1

GV DPSSA has

m+k (0 ≤ k ≤ n) linearly independent eigenvectors. If the matrix I − 1
α
BT Ã−1B is

singular, then the preconditioned matrix P−1
GV DPSSA has m + i + j (0 ≤ i + j ≤ n)

linearly independent eigenvectors. There are

1) m eigenvectors of the form

(
ul

0

)
(l = 1, 2, · · · , m) that correspond to the

eigenvalue 1, where ul (l = 1, 2, · · · , m) are arbitrary linearly independent
vectors.
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2) If the matrix I − 1
α
BT Ã−1B is nonsingular, k (0 ≤ k ≤ n) eigenvectors of

the form

(
(I− 1

α
BT Ã−1B)A−1BT

λ−1 v1
l

v1
l

)
that correspond to the eigenvalues λ �= 1,

where v1
l �= 0 and v1

l (1 ≤ l ≤ k) satisfy BA−1BT v1
l = λ(βI + 1

α
BBT )v1

l .

3) If the matrix I − 1
α
BT Ã−1B is singular, i (0 ≤ i ≤ n) eigenvectors

(
u2

l

v2
l

)

(1 ≤ l ≤ i) that correspond to the eigenvalue 1, where v2
l �= 0, v2

l (1 ≤ l ≤ i)

satisfy (I − 1
α
BT Ã−1B)A−1BT v2

l = 0 and BA−1BT v2
l = (βI + 1

α
BBT )v2

l ,
and u2

l are arbitrary vectors, j (0 ≤ j ≤ n) eigenvectors of the form(
(I− 1

α
BT Ã−1B)A−1BT

λ−1 v3
l

v3
l

)
(1 ≤ l ≤ j) that correspond to the eigenvalues λ �= 1,

where v3
l �= 0 and v3

l (1 ≤ l ≤ j) satisfy BA−1BT v3
l = λ(βI + 1

α
BBT )v3

l .

Proof Let λ be an eigenvalue of the preconditioned matrix P−1
GVDPSSA and

(
u

v

)
be

the corresponding eigenvector. To derive the eigenvector distribution, we consider
the following generalized eigenvalue problem:(

Im K1
0 K2

)(
u

v

)
= λ

(
u

v

)
, (37)

where K1 = −( 1
α
BT − A−1BT − 1

α2 BT Ã−1BBT + 1
α
BT Ã−1BA−1BT −

β
α
BT Ã−1) = (I − 1

α
BT Ã−1B)A−1BT and K2 = Ã−1BA−1BT with Ã = βI +

1
α
BBT . Equation (37) can be equivalently rewritten as{

(λ − 1)u = (I − 1
α
BT Ã−1B)A−1BT v,

BA−1BT v = λ(βI + 1
α
BBT )v.

(38)

If λ = 1 holds true, then from the first equation of (38), we can easily get
(I − 1

α
BT Ã−1B)A−1BT v = 0. When v = 0, equation (38) is always true for

the case of λ = 1. Hence, there are m linearly independent eigenvectors

(
ul

0

)

(l = 1, 2, · · · , m) corresponding to the eigenvalue 1, where ul (l = 1, 2, · · · , m)

are arbitrary linearly independent vectors. When v �= 0, and if I − 1
α
BT Ã−1B is

nonsingular, then it must be λ �= 1. This contradicts to the assumption λ = 1; if
I − 1

α
BT Ã−1B is singular and there exists v �= 0 which satisfies the second equa-

tion of (38) and (I − 1
α
BT Ã−1B)A−1BT v = 0, then there will be i (1 ≤ i ≤ n)

linearly independent eigenvectors

(
u2

l

v2
l

)
(1 ≤ l ≤ i) corresponding to the eigen-

value 1, where u2
l (1 ≤ l ≤ i) are arbitrary vectors and v2

l �= 0 (1 ≤ l ≤ i) satisfy
(I − 1

α
BT Ã−1B)A−1BT v2

l = 0 and BA−1BT v2
l = (βI + 1

α
BBT )v2

l .
Next, we consider the case λ �= 1. If v = 0, then it follows from the first equation

of (38) that u = 0, a contradiction. Hence, v �= 0. If I − 1
α
BT Ã−1B is nonsingular

and there exists v �= 0 which satisfies the second equation of (38), then there are k
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(1 ≤ k ≤ n) linearly independent eigenvectors

(
u1

l

v1
l

)
(1 ≤ l ≤ k) corresponding to

the eigenvalues λ �= 1, and the forms of u1
l (1 ≤ l ≤ k) are:

u1
l = (I − 1

α
BT Ã−1B)A−1BT

λ − 1
v1
l . (39)

If I − 1
α
BT Ã−1B is singular and there exists v �= 0 which satisfies the second

equation of (38), there are j (1 ≤ j ≤ n) linearly independent eigenvectors

(
u3

l

v3
l

)

(1 ≤ l ≤ j) corresponding to the eigenvalues λ �= 1. Here, v3
l �= 0 (1 ≤ l ≤ j)

satisfy BA−1BT v3
l = λ(βI+ 1

α
BBT )v3

l and the forms of u3
l (1 ≤ l ≤ j) satisfy (39).

In the sequel, we show that the m + k eigenvectors are linearly independent when
the matrix I − 1

α
BT Ã−1B is nonsingular. Let c(1) = [c(1)

1 , c
(1)
2 , · · · , c

(1)
m ] and c(2) =

[c(2)
1 , c

(2)
2 , · · · , c

(2)
k ] be two vectors with 0 ≤ k ≤ n. Then, we need to show that

(
u1 · · · um

0 · · · 0

) ⎛
⎜⎝

c
(1)
1
...

c
(1)
m

⎞
⎟⎠ +

(
u1

1 · · · u1
k

v1
1 · · · v1

k

) ⎛
⎜⎝

c
(2)
1
...

c
(2)
k

⎞
⎟⎠ =

⎛
⎜⎝

0
...

0

⎞
⎟⎠ (40)

holds if and only if the vectors c(1) and c(2) both are zero vectors. Recalling that in
(40), the first matrix arises from the case λl = 1 (l = 1, 2, · · · , m) in 1), and the
second matrix from the case λl �= 1 (l = 1, 2, · · · , k) in 2). Multiplying both sides
of (40) from left with P−1

GVDPSSA leads to

(
u1 · · · um

0 · · · 0

)⎛
⎜⎝

c
(1)
1
...

c
(1)
m

⎞
⎟⎠ +

(
u1

1 · · · u1
k

v1
1 · · · v1

k

)⎛
⎜⎝

λ1c
(2)
1

...

λkc
(2)
k

⎞
⎟⎠ =

⎛
⎜⎝

0
...

0

⎞
⎟⎠ . (41)

Then, by subtracting (40) from (41), it holds that

(
u1

1 · · · u1
k

v1
1 · · · v1

k

)⎛
⎜⎝

(λ1 − 1)c
(2)
1

...

(λk − 1)c
(2)
k

⎞
⎟⎠ =

⎛
⎜⎝

0
...

0

⎞
⎟⎠ .

Since the eigenvalues λl �= 1 and

(
u1

l

v1
l

)
(1 ≤ l ≤ k) are linearly independent,

we infer that c
(2)
l = 0 (l = 1, 2, · · · , k). Because of the linear independence of ul

(l = 1, 2, · · · , m), it follows that c
(1)
l = 0 (l = 1, 2, · · · , m). Therefore, the m + k

eigenvectors are linearly independent.
Finally, we verify the m + i + j eigenvectors are linearly independent when

the matrix I − 1
α
BT Ã−1B is singular. Let c(1) = [c(1)

1 , c
(1)
2 , · · · , c

(1)
m ], c(2) =
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[c(2)
1 , c

(2)
2 , · · · , c

(2)
i ], and c(3) = [c(3)

1 , c
(3)
2 , · · · , c

(3)
j ] be three vectors with 0 ≤ i, j ≤

n, and

(
u1 · · · um

0 · · · 0

)
⎛
⎜⎜⎝

c
(1)
1
.
.
.

c
(1)
m

⎞
⎟⎟⎠ +

(
u2

1 · · · u2
i

v2
1 · · · v2

i

)
⎛
⎜⎜⎝

c
(2)
1
.
.
.

c
(2)
i

⎞
⎟⎟⎠ +

(
u3

1 · · · u3
j

v3
1 · · · v3

j

)⎛
⎜⎜⎝

c
(3)
1
.
.
.

c
(3)
j

⎞
⎟⎟⎠ =

⎛
⎜⎝

0
.
.
.
0

⎞
⎟⎠ .(42)

It is necessary for us to prove that (42) holds if and only the vectors c(1), c(2), and c(3)

are all zero vectors, where the first matrix consists of the eigenvectors corresponding
to the eigenvalue 1 for the case 1), and the second and the third matrices consist
of those for the case 3). Premultiplying (42) with P−1

GVDPSSA and going through the
same algebraic operations as before, we also obtain

(
u3

1 · · · u3
j

v3
1 · · · v3

j

)⎛
⎜⎜⎝

(λ1 − 1)c
(3)
1

...

(λj − 1)c
(3)
j

⎞
⎟⎟⎠ =

⎛
⎜⎝

0
...

0

⎞
⎟⎠ .

Inasmuch as λl �= 1 and

(
u3

l

v3
l

)
(1 ≤ l ≤ j) are linearly independent, it must

necessarily that c
(3)
l = 0 (l = 1, 2, · · · , j). As the vectors v2

l (l = 1, 2, · · · , i) are

also linearly independent, we have c
(2)
l = 0 (l = 1, 2, · · · , i). Thus, (42) can be

simplified to

(
u1 · · · um

0 · · · 0

)⎛
⎜⎝

c
(1)
1
...

c
(1)
m

⎞
⎟⎠ =

⎛
⎜⎝

0
...

0

⎞
⎟⎠ .

Since ul (l = 1, 2, · · · , m) are linearly independent, we have c
(1)
l = 0 (l =

1, 2, · · · , m). As a result, it holds that the m + i + j eigenvectors are linearly
independent.

The GMRES method will terminate when the degree of the minimum polynomial
is attained [39]. In particular, the degree of the minimum polynomial is equal to the
dimension of the corresponding Krylov subspace [38]. Next theorem provides some
analysis to the dimension of the Krylov subspace K(P−1

GVDPSSA, b).

Theorem 3.4 Let the GVDPSS preconditioner be defined as in (10), then the degree
of minimal polynomial of preconditioned matrix P−1

GV DPSSA is at most n + 1. Thus,
the dimension of the Krylov subspace K(P−1

GV DPSSA, b) is at most n + 1. In partic-
ular, if the matrix K2 has k (1 ≤ k ≤ n) distinct eigenvalues μi (1 ≤ i ≤ k), of

respective multiplicity δi with
k∑

i=1
δi = n, then the dimension of the Krylov subspace

K(P−1
GV DPSSA, b) is at most k + 1.
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Proof According to the form of the preconditioned matrix P−1
GVDPSSA in (26), it is

evident that the characteristic polynomial of the preconditioned matrix P−1
GVDPSSA is

X (x) = (x − 1)m
n∏

i=1

(x − μi),

where μi (i = 1, 2, · · · , n) are the eigenvalues of the matrix K2. Let p(x) = (x −
1)

n∏
i=1

(x − μi). Hence,

p(P−1
GV DPSSA) = (P−1

GV DPSSA − I )

n∏
i=1

(P−1
GV DPSSA − μiI)

=

⎛
⎜⎜⎝

0 K1

n∏
i=1

(K2 − μiIn)

0 (K2 − In)
n∏

i=1
(K2 − μiIn)

⎞
⎟⎟⎠ .

Inasmuch as μi (i = 1, 2, · · · , n) are the eigenvalues of the matrix K2, we have
n∏

i=1
(K2−μiIn) = 0 and therefore p(P−1

GV DPSSA) = 0, which implies that the degree

of the minimal polynomial of the preconditioned matrix P−1
GVDPSSA is at most n + 1.

In addition, if the matrix K2 has k (1 ≤ k ≤ n) distinct eigenvalues μi (1 ≤
i ≤ k), of respective multiplicity δi with

k∑
i=1

δi = n, we rewrite the characteristic

polynomial X (P−1
GVDPSSA) as

(P−1
GV DPSSA − I )m−1

k∏
i=1

(P−1
GV DPSSA − μiI)δi−1

× (P−1
GV DPSSA − I )

k∏
i=1

(P−1
GV DPSSA − μiI).

Let ϒ = (P−1
GV DPSSA − I )

k∏
i=1

(P−1
GV DPSSA − μiI), then

ϒ =

⎛
⎜⎜⎜⎝

0 K1

k∏
i=1

(K2 − μiIn)

0 (K2 − In)
k∏

i=1
(K2 − μiIn)

⎞
⎟⎟⎟⎠ .

Since
k∏

i=1
(K2 − μiIn) = 0, it is not difficult to verify that ϒ is a zero matrix.

This means that the dimension of the Krylov subspace K(P−1
GVDPSSA, b) is at

most k + 1.
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Remark 3.2 From Theorem 3.4 and the results in [38], we are easy to see that the
Krylov subspace method such as the GMRES method is applied to a preconditioned
matrix P−1

GVDPSSA, it will converge to the exact solution of the nonsymmetric saddle
point problem (1) in n + 1 or fewer iterations. Even in some special case (K2 has
few distinct eigenvalues), it will terminate in few iterations. This reveals the excellent
acceleration effect of the GVDPSS preconditioner, which will be confirmed in the
section of numerical experiments.

If the matrix A in (1) is symmetric positive definite, we analyze the behavior of
P−1

GVDPSSA in the following theorems.

Theorem 3.5 Let λ be an eigenvalue of the matrix P−1
GV DPSSA and (x∗, y∗)∗ be the

corresponding eigenvector. Then x �= 0 and λ either is λ = 1 or λ = βb2+ 1
α
c2

a2
with

a2 = x∗(βI + 1

α
BT B)A(βI + 1

α
BT B)x, b2 = x∗BT Bx, c2 = x∗(BT B)2x.

Furthermore, if β → 0+ and α → α0(0 < α0 < +∞), then either is λ = 1 or

α0

λmax(A)
≤ λ ≤ α0

λmin(A)
,

where λmin(A) and λmax(A) are the minimum and maximum eigenvalues of A,

respectively. In particular, if β → 0+ and α → (BT Bx)∗A(BT Bx)

(BT Bx)∗(BT Bx)
, then λ → 1; and

the eigenvalues of P−1
GV DPSSA are clustering around (1, 0) and (0, 0) as β → +∞.

Proof Let (x∗, y∗)∗ be the eigenvector of the matrix P−1
GVDPSSA corresponding to the

eigenvalue λ. Thus, we have

A
(

x

y

)
= λPGV DPSS

(
x

y

)
,

which can be written as{
Ax + BT y = λAx + λ

α
ABT y,

−Bx = −λBx + λβy,

i.e., {
(λ − 1)Ax + ( λ

α
A − I )BT y = 0,

(λ − 1)Bx = λβy.
(43)

Premultiplying the second equation of (43) with BT yields

(λ − 1)BT Bx = λβBT y. (44)

Solving BT y from (44) and substituting it into the first equation of (43) give

λβ(λ − 1)Ax +
(

λ

α
A − I

)
(λ − 1)BT Bx = 0. (45)
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We observe that x �= 0. Otherwise, the second equation of (43) together with the
fact that β > 0 implies y = 0 or λ = 0, a contradiction. Without loss of generality,
we assume that x has been normalized so that ‖x‖2 = 1. We find after some easy
algebraic manipulations

λ2A

(
βI + 1

α
BT B

)
x − λ

(
A

(
βI + 1

α
BT B

)
+ BT B

)
x + BT Bx = 0. (46)

Premultiplying the (46) with x∗(βI + 1
α
BT B) yields

a2λ
2 −

(
a2 + βb2 + 1

α
c2

)
λ + βb2 + 1

α
c2 = 0. (47)

By straightforwardly solving (47), we immediately obtain that the roots of (47) are
λ = 1 and

λ = βb2 + 1
α
c2

a2
= βb2 + 1

α
c2

β2x∗Ax + β
α
(x∗BT BAx + x∗ABT Bx) + 1

α2 x∗BT BABT Bx
. (48)

If Bx = 0, then it follows from the second equation of (43) that y = 0. Substituting
y = 0 into the first equation of (43) results in (λ−1)Ax = 0, and it is clear that λ = 1
by Ax �= 0. Therefore, if β → 0+ and α → α0 (0 < α0 < +∞), then λ = 1 or

λ →
1
α0

c2

1
α2

0
x∗BT BABT Bx

= α0
(BT Bx)∗(BT Bx)

(BT Bx)∗A(BT Bx)
= α0

z∗z
z∗Az

, (49)

where z = BT Bx. Since A is symmetric positive definite, λmin(A) ≤ z∗Az
z∗z ≤

λmax(A), which implies that
α0

λmax(A)
≤ λ ≤ α0

λmin(A)
.

Moreover, if β → 0+ and α → (BT Bx)∗A(BT Bx)

(BT Bx)∗(BT Bx)
, from (49), it is not difficult to see

that λ → 1. If β → +∞, then it follows (48) and x∗Ax > 0 that λ → 0. This proof
is completed.

Theorem 3.6 Let A ∈ R
m×m be symmetric positive definite, B ∈ R

n×m be of full
row rank, and α, β be two positive constants. We suppose that sp(BBT ) ⊆ [δ1, δn]
and sp(BA−1BT ) ⊆ [τ1, τn], where sp(T ) denotes the spectrum of the matrix T .
Then the preconditioned matrix P−1

GV DPSSA has eigenvalue 1 with algebraic multi-
plicity at least m, and the remaining eigenvalues are real and located in the positive
interval [

ατ1

αβ + δn

,
ατn

αβ + δ1

]
. (50)

Proof By Theorem 3.1, we see that the preconditioned matrix P−1
GVDPSSA has eigen-

value 1 with algebraic multiplicity at least m, and the remaining eigenvalues are the
same as those of the matrix (βI + 1

α
BBT )−1BA−1BT . Since the matrix A is sym-

metric positive definite and B has full row rank, it is easy to observe that BBT
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and BA−1BT are symmetric positive definite, then it holds that δn ≥ δ1 > 0 and
τn ≥ τ1 > 0, which yields that

sp

(
βI + 1

α
BBT

)
⊆

[
αβ + δ1

α
,
αβ + δn

α

]
.

Inasmuch as βI + 1
α
BBT is symmetric positive definite for α > 0 and β > 0, we

obtain

sp

((
βI + 1

α
BBT

)−1
)

⊆
[

α

αβ + δn

,
α

αβ + δ1

]

and

sp

((
βI + 1

α
BBT

)−1

BA−1BT

)
⊆

[
ατ1

αβ + δn

,
ατn

αβ + δ1

]
,

which proves the desired bound (50).

4 Implementation aspects about PGVDPSS

In what follows, we will elaborate on specific implementation issues. At each step
of the GVDPSS iteration or applying the GVDPSS preconditioner PGVDPSS with a
Krylov subspace method, we need to solve a linear system with PGVDPSS as the coef-
ficient matrix. Besides, the matrix PGVDPSS involves the parameters α and β, which
may affect the convergence of both GVDPSS iteration and GVDPSS preconditioner.
Therefore, to implement the GVDPSS iteration or the GVDPSS preconditioner
efficiently, two aspects need to be considered.

The first one is to choose the parameters α and β such that all the eigenval-
ues of the preconditioned matrix P−1

GVDPSSA are clustering around (1, 0), which is a
desirable property for Krylov subspace acceleration and can result in favorable con-
vergence rates. Therefore, we need to research the optimal parameters, while this is a
difficult task for us now. The second one is how to solve the linear system of the form(

A 1
α
ABT

−B βI

)
z = r, (51)

where z = (zT
1 , zT

2 )T , r = (rT
1 , rT

2 )T with z1, r1 ∈ R
m and z2, r2 ∈ R

n. It follows
from the decomposition of P−1

GVDPSS in (15) that(
z1
z2

)
=

(
I − 1

α
BT

0 I

) (
I 0
0 Ã−1

)(
I 0
B I

) (
A−1 0

0 I

)(
r1
r2

)
. (52)

Then, the following algorithmic version of the GVDPSS iteration method can be
derived.

Algorithm 4.1 For a given vector r = (rT
1 , rT

2 )T , we can compute the vector z =
(zT

1 , zT
2 )T in (51) from the following steps:

(i) Solve At1 = r1.
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(ii) Solve (βI + 1
α
BBT )z2 = Bt1 + r2.

(iii) Compute z1 = t1 − 1
α
BT z2.

Remark 4.1 From Algorithm 4.1, the main costs at each iteration for computing (51)
are solving two sub-linear systems with coefficient matrices A and βI + 1

α
BBT ,

respectively. According to Section 1, we see that A is positive definite and βI +
1
α
BBT is symmetric positive definite for α, β > 0. Therefore, we can solve the

system with the coefficient matrix A by the GMRES method inexactly or by the
sparse LU factorization [21, 44] exactly, and the system with the coefficient matrix
βI + 1

α
BBT can be efficiently solved by the CG method inexactly or the Cholesky

factorization exactly. In actual implementations, the inexact solvers can be used to
reduce the cost of each iteration, but they will also lead to somewhat slower conver-
gence [44]. Thus, we solve these two sub-linear systems exactly by the sparse LU
factorization and the Cholesky factorization, respectively, in this paper.

5 Numerical experiments

In this section, we carry out some numerical examples to illustrate the effectiveness
and show the advantages of the GVDPSS preconditioned GMRES method over the
DPSS, RDPSS, SL, NRHSS, and VDPSS preconditioned GMRES methods from the
point of view of both the number of iterations (denoted by IT) and the total comput-
ing times (in seconds, denoted by CPU). All numerical procedures are performed in
Matlab 6.5 on a personal computer with Intel® Pentium® CPU G3240T 2.70 GHz,
2.0-G memory, and Windows 7 operating system.

Example 5.1 Consider the saddle point problem structured as (1) with the following
coefficient sub-matrices [34]:

A =
(

I ⊗ T + T ⊗ I 0
0 I ⊗ T + T ⊗ I

)
∈ R

2p2×2p2
, B =

(
I ⊗ F

F ⊗ I

)
∈ R

2p2×p2
,

T = v

h2
.tridiag(−1, 2, −1) + 1

2h
.tridiag(−1, 0, 1) ∈ R

p×p, F = 1

h
.tridiag(−1, 1, 0) ∈ R

p×p,

with ⊗ being the Kronecker product and h = 1
p+1 the discretization mesh size.

In actual computations, we choose the right-hand side vector b so that the exact
solution of the nonsymmetric saddle point problem (1) is (1, 1, · · · , 1)T ∈ R

m+n.
Besides, all computations for the DPSS, RDPSS, SL, VDPSS, and GVDPSS precon-
ditioned GMRES methods are started from initial vector x(0) = (x(0)T , y(0)T )T =
(0, 0, · · · , 0)T and terminated if the current iterations satisfy

RES = ‖b − Ax(k)‖2

‖b − Ax(0)‖2
< 10−6, (53)

or the maximum prescribed number of iterations kmax = 500 is exceeded.
For this example, the parameters of the GVDPSS preconditioner are chosen as

α ∈ [0.001, 1000] and β ∈ [0.001, 1000000], and the matrix Q in the SL pre-
conditioner is chosen as Q = diag(A). We recall that PVDPSS is a special case of
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Table 1 Numerical results for the GVDPSS preconditioned GMRES method with v = 1 and p = 24

β 100,000 10,000 1000 100 10 1 0.1 0.01 0.001

α = 1000 IT 1 6 8 9 11 13 22 26 26

CPU 1.7139 4.4648 6.0329 5.3799 6.8712 7.7596 13.3736 14.9744 15.4604

α = 100 IT 1 6 8 9 12 20 24 24 24

CPU 1.6613 4.3202 5.3107 5.7943 7.5440 12.1440 15.2225 15.1507 16.7059

α = 10 IT 1 6 8 10 17 21 22 22 22

CPU 1.8516 4.2822 5.6013 6.5757 10.0541 13.0361 12.8947 12.4641 12.1600

α = 1 IT 1 6 8 13 17 17 17 17 17

CPU 2.0067 4.4885 5.6859 8.8107 10.8194 9.9767 10.1627 9.9926 9.9731

α = 0.1 IT 1 6 10 12 13 13 13 13 13

CPU 2.2942 4.5533 6.4616 7.4698 7.9501 8.6732 8.1504 8.0137 9.2277

α = 0.01 IT 1 5 7 7 7 7 7 7 7

CPU 2.0165 4.4085 5.1948 4.9949 5.2139 5.0206 4.8460 5.5540 4.7615

α = 0.001 IT 1 2 4 4 4 4 4 4 4

CPU 1.9044 2.7293 3.8888 3.5226 3.3572 3.6689 3.5159 3.7762 4.1576

PGVDPSS when α = β. We use “DPSS”, “RDPSS”, “SL”, “VDPSS,” and “GVDPSS”
to denote the GMRES method with the DPSS, RDPSS, SL, VDPSS, and GVDPSS
preconditioners, respectively.

In Tables 1, 2 and 3, we list the results of the GVDPSS preconditioned GMRES
method in terms of IT and CPU for saddle point problems with v = 1, v = 0.1,
and v = 0.01, respectively, for p = 24. To further confirm the effectiveness of the

Table 2 Numerical results for the GVDPSS preconditioned GMRES method with v = 0.1 and p = 24

β 100,000 10,000 1000 100 10 1 0.1 0.01 0.001

α = 1000 IT 11 14 17 18 18 23 31 32 30

CPU 7.8485 9.5388 13.9622 14.6132 14.6561 17.4538 21.9757 23.6766 22.2521

α = 100 IT 11 14 17 18 19 26 28 26 26

CPU 9.5310 11.7241 14.1449 13.4458 13.1775 21.0852 19.3895 20.9695 20.7821

α = 10 IT 11 14 16 17 23 26 27 26 26

CPU 9.5004 11.9236 13.1705 15.1589 18.5401 20.5643 21.2656 20.2722 20.0981

α = 1 IT 11 14 15 20 23 23 22 22 22

CPU 9.5402 11.6114 12.5356 15.8989 18.3681 16.9818 16.4073 16.8074 16.4695

α = 0.1 IT 11 13 16 20 20 20 20 20 20

CPU 9.5217 11.0436 9.4993 11.7432 11.4953 11.6866 11.4748 11.4523 11.7257

α = 0.01 IT 10 11 14 13 14 14 14 14 14

CPU 6.3085 7.0634 8.3966 7.6749 8.5599 8.4482 8.1955 8.2760 8.2875

α = 0.001 IT 6 9 9 9 9 9 9 9 9

CPU 4.2292 5.8238 5.7442 5.7969 6.0181 5.7448 5.8025 5.8968 5.7026
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Table 3 Numerical results for the GVDPSS preconditioned GMRES method with v = 0.01 and p = 24

β 1,000,000 100,000 1000 100 10 1 0.1 0.01 0.001

α = 1000 IT 14 84 113 118 116 75 51 48 45

CPU 8.5736 46.3976 60.3448 63.7857 62.4106 40.1047 31.8685 29.1744 25.5613

α = 100 IT 14 84 111 102 62 43 40 37 36

CPU 8.5005 44.5203 59.0186 55.0031 33.5885 23.6799 23.4273 21.6468 20.9897

α = 10 IT 14 84 95 56 36 37 35 33 33

CPU 8.6677 44.6429 50.7588 31.7057 19.8900 20.7095 19.7924 18.4853 18.5156

α = 1 IT 14 82 54 31 34 34 33 33 33

CPU 8.5974 44.0950 29.9970 17.8284 19.1303 19.0409 18.4896 18.2374 18.7299

α = 0.1 IT 14 47 24 27 28 28 27 26 26

CPU 8.4448 29.3747 13.8424 15.5976 15.7023 15.6775 15.3890 14.6626 14.5597

α = 0.01 IT 11 18 20 22 21 20 20 20 20

CPU 7.0144 10.9576 11.7384 12.6556 11.9811 11.6172 11.4191 11.4749 11.5607

α = 0.001 IT 8 14 14 14 12 14 14 14 14

CPU 6.9666 8.4969 8.2909 8.5329 7.4792 9.0658 8.4597 8.5450 8.4449

GVDPSS preconditioned GMRES method, numerical results of the RDPSS, SL, and
GVDPSS preconditioned GMRES methods with respect to IT, CPU, and RES for
saddle point problems with a fixed β = 100000 and different values of α for v = 0.1
are reported in Table 4.

In order to compare effects of the DPSS, VDPSS, and GVDPSS preconditioned
GMRES methods in terms of the parameter α, we plot the IT of the three precon-
ditioned GMRES methods with α from 0.01 to 1 with step size 0.01 in Fig. 1. We
consider v = 1, β = 10, 000, v = 0.1, β = 100, 000 and v = 0.01, β = 1, 000, 000,
respectively, in this figure. Figures 2, 3 and 4 depict the eigenvalue distributions of

Table 4 Numerical results for the three preconditioned GMRES methods with v = 0.1

Case 16 × 16 24 × 24 32 × 32

α 1 0.1 0.01 1 0.1 0.01 1 0.1 0.01

RDPSS IT 19 16 13 22 20 14 26 21 16

CPU 1.9083 1.1624 0.9795 12.6164 11.3498 8.2667 73.1306 60.5860 49.3416

RES 8.82e-07 8.94e-07 9.35e-07 9.24e-07 9.46e-07 9.65e-07 8.26e-07 8.53e-07 8.11e-07

SL IT 20 21 19 26 26 25 31 31 29

CPU 1.5590 1.5521 1.3713 15.8169 15.0121 13.8840 86.7787 89.9106 86.6060

RES 5.89e-07 7.46e-07 3.01e-07 6.31e-07 3.77e-07 6.70e-07 3.23e-07 2.70e-07 4.07e-07

GVDPSS IT 11 10 9 11 11 10 11 11 10

CPU 0.8840 0.7686 0.7203 7.6650 6.8658 6.8242 34.3038 34.3429 31.7524

RES 5.50e-07 9.46e-07 9.95e-07 6.70e-07 5.86e-07 6.22e-07 7.32e-07 6.44e-07 6.83e-07
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Fig. 1 Convergence curve of algorithms with varying α for p = 24

the original matrix A and the three preconditioned matrices for v = 0.1 with differ-
ent values of α (α = 100, α = 1, and α = 0.01), and we adopt β = 100, 000 in
the GVDPSS preconditioner. For more investigations, the eigenvalue distributions of
P−1

VDPSSA and P−1
GVDPSSA with different values of α and β for v = 0.1 and p = 24 are

displayed in Fig. 5. Additionally, we compare the eigenvalue distribution of P−1
VDPSSA

for α = 1 with that of P−1
GVDPSSA for α = 1 and different values of β in Fig. 6.

From these tables and figures, we have the following observations:

• As observed in Tables 1, 2 and 3, the GVDPSS preconditioned GMRES method
with the proper parameter β outperforms the VDPSS preconditioned GMRES
method as it requires less IT and CPU times. This indicates that α = β is not the
best choice. In addition, we can see that when α becomes small or β becomes
large, the convergence rate of the GVDPSS preconditioned GMRES method
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Fig. 2 The eigenvalue distribution of the four preconditioners for A when p = 24 and α = 100 with
v = 0.1
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Fig. 3 The eigenvalue distribution of the four preconditioners for A when p = 24 and α = 1 with v = 0.1

gradually becomes faster. By making use of Theorem 3.2, it holds that when the
α becomes small or the β becomes large, the eigenvalues of the GVDPSS pre-
conditioned matrix tend to clustered around two points (0, 0) and (1, 0), which
means that the number of distinct eigenvalues of the GVDPSS preconditioned
matrix is small, and it follows from Theorem 3.4 that the GVDPSS precondi-
tioned GMRES method will terminate within a small number of steps and the
rate of convergence will be rapid.

• By comparing the results in Table 4, it can be seen that the three preconditioned
GMRES methods succeed in producing high-quality approximate solutions in
all cases, while the GVDPSS preconditioned GMRES method outperforms the
RDPSS and SL preconditioned GMRES methods in terms of IT and CPU times.
Besides, numerical results in Table 4 show that the GVDPSS preconditioner with
proper β is not sensitive to α and p.

• From Fig. 1, as we expected for Example 5.1, we see that the GVDPSS pre-
conditioned GMRES method returns better numerical results than the other two
methods. Another observation which can be posed here is that the GVDPSS pre-
conditioner is not sensitive to the value of the parameter α, in the sense that the
iteration count does not change dramatically. Hence, there may exist a fairly wide
range of values of α that produce similar fast convergence results.

• Figures 2, 3 and 4 show that the eigenvalue distributions of the GVDPSS precon-
ditioned matrix are well-clustered and clustered more closely than those of other
three preconditioned matrices (without preconditioning situation can be regarded
as a unit preconditioner).
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Fig. 4 The eigenvalue distribution of the four preconditioners for A when p = 24 and α = 0.01 with
v = 0.1

• As seen from Fig. 5, the eigenvalues of P−1
GVDPSSA are more clustered than those

of P−1
VDPSSA. This indicates that the GVDPSS preconditioner outperforms the

VDPSS preconditioner, which is congruous with the results of Table 2.

• From Fig. 6, we observe that P−1
GVDPSSA with large β has much denser spec-

trum distribution. These observations imply that the GVDPSS preconditioner
with proper β leads to much better performance than the VDPSS preconditioner
for the GMRES method and it can act as an efficient preconditioner for saddle
point problems.

Example 5.2 Consider the saddle point problem structured as (1) with the following
coefficient sub-matrices [10]:

A =
(

I ⊗ T + T ⊗ I 0
0 I ⊗ T + T ⊗ I

)
∈ R

2p2×2p2
, B =

(
I ⊗ F

F ⊗ I

)
∈ R

2p2×p2
,

T = v

h2
.tridiag(−1, 2, −1) ∈ R

p×p, F = 1

h
.tridiag(−1, 1, 0) ∈ R

p×p,

with ⊗ being the Kronecker product and h = 1
p+1 the discretization mesh size.

We compare the numerical results of the GVDPSS preconditioned GMRES
method (denoted by “GVDPSS”) with the NRHSS (denoted by “NRHSS”) and
VDPSS (denoted by “VDPSS”) preconditioned GMRES methods by the initial vector
x(0) = (x(0)T , y(0)T )T = (0, 0, · · · , 0)T .

In actual computations, we set the right-hand side vector b = Aem+n, where
em+n = (1, 1, · · · , 1)T ∈ R

m+n and we adopt the parameters α ∈ [0.001, 1000] and
β ∈ [0.001, 1000000]. All iteration processes are terminated if the current iterations
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Fig. 5 The eigenvalue distributions of the VDPSS and GVDPSS preconditioned matrices for v = 0.1
with various α and β

x(k) satisfy (53) or the maximum prescribed number of iterations kmax = 500 is
exceeded. It is worthy noting that PNRHSS is a special case of PGVDPSS when α = 1.

In Tables 5, 6 and 7, we list the numerical results with respect to IT and CPU for
the GVDPSS preconditioned GMRES method for Example 5.2 with v = 1, v = 0.1,
and v = 0.01, respectively, when p = 24. From these tables, we can conclude some
observations as follows. Firstly, the GVDPSS preconditioned GMRES method with
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Fig. 6 The eigenvalue distributions of the VDPSS and GVDPSS preconditioned matrices for v = 0.01
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Table 5 Numerical results for the GVDPSS preconditioned GMRES method with v = 1 and p = 24

β 100,000 10,000 1000 100 10 1 0.1 0.01 0.001

α = 1000 IT 12 13 14 15 14 16 24 28 27

CPU 7.8113 8.4007 8.1109 8.8716 8.5020 9.5757 13.7557 15.8431 15.2452

α = 100 IT 12 13 14 15 18 26 29 27 27

CPU 7.8435 8.2147 8.5684 9.1540 10.9894 14.9365 16.4701 15.1272 15.2587

α = 10 IT 12 14 14 18 28 32 31 29 29

CPU 8.2468 8.5649 8.8351 10.7273 15.9699 17.8846 17.4011 16.7404 16.2354

α = 1 IT 12 14 17 25 29 29 29 29 28

CPU 7.5519 8.5873 10.3029 14.2757 16.5848 16.3031 16.1276 16.2411 15.7956

α = 0.1 IT 12 14 21 26 24 24 24 24 24

CPU 8.0219 8.4633 12.2779 15.0582 13.7599 13.5899 13.6441 13.7281 13.5843

α = 0.01 IT 12 17 19 19 19 19 19 19 19

CPU 7.5776 10.1996 11.0534 11.1025 10.9963 11.0147 10.9751 11.0856 11.0754

α = 0.001 IT 12 13 13 13 13 13 13 13 13

CPU 7.5614 8.0011 7.9526 7.8986 7.9967 8.1247 7.9495 7.6570 7.9414

proper parameters α and β leads to much better numerical results than the VDPSS
and NRHSS preconditioned GMRES methods as it requires less IT and CPU times.
Secondly, the GVDPSS preconditioned GMRES method performs better when α

becomes small and β becomes large. Thirdly, α = β and α = 1 are not the best
choices for the GVDPSS preconditioner.

Table 6 Numerical results for the GVDPSS preconditioned GMRES method with v = 0.1 and p = 24

β 100,000 10,000 1000 100 10 1 0.1 0.01 0.001

α = 1000 IT 10 11 11 13 13 18 27 31 30

CPU 6.2198 6.7252 7.2278 7.2796 7.8076 10.2314 15.3845 17.2536 16.4706

α = 100 IT 10 11 12 13 16 25 28 27 27

CPU 6.3001 6.6917 7.2623 8.4718 10.7242 14.4231 15.3297 15.2308 15.1403

α = 10 IT 10 11 12 16 24 28 27 27 27

CPU 6.7175 6.8016 7.3179 9.6184 13.2259 16.5776 14.9875 15.1276 14.6431

α = 1 IT 10 11 14 22 26 26 26 26 26

CPU 6.4230 6.7906 8.4277 12.5615 14.8577 14.7954 14.5233 14.5359 14.9377

α = 0.1 IT 10 12 18 22 23 23 23 23 23

CPU 6.2812 7.3956 10.3204 12.8282 13.2038 12.9612 13.2454 13.0651 13.0898

α = 0.01 IT 10 13 17 17 17 17 17 17 17

CPU 6.3552 7.7748 9.7804 10.0527 9.8993 9.8578 9.7422 9.8262 10.0192

α = 0.001 IT 10 11 11 11 11 11 11 11 11

CPU 6.2891 6.9392 7.2923 6.8321 6.8480 6.7845 6.8787 6.7585 6.8782
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Table 7 Numerical results for the GVDPSS preconditioned GMRES method with v = 0.01 and p = 24

β 1,000,000 100,000 1000 100 10 1 0.1 0.01 0.001

α = 1000 IT 7 8 11 11 13 20 32 35 35

CPU 4.9020 5.4415 6.9786 7.2044 7.4657 11.1181 18.6025 21.5749 20.6574

α = 100 IT 7 8 11 12 16 26 29 29 28

CPU 4.9292 5.6570 6.8543 6.6029 9.5870 15.7063 17.1597 16.9284 15.9577

α = 10 IT 7 8 11 13 20 25 25 25 25

CPU 5.0905 5.2178 6.9554 7.9754 11.9678 15.0015 14.2441 14.3654 14.3516

α = 1 IT 7 8 12 18 22 22 23 23 23

CPU 4.7306 5.4082 7.8123 10.7065 12.8895 12.9706 13.6678 13.8716 13.9612

α = 0.1 IT 7 8 14 18 21 21 21 21 21

CPU 4.8779 5.5336 9.2694 10.6375 12.8437 13.8898 12.5921 12.9033 13.0654

α = 0.01 IT 6 8 15 16 16 16 16 16 16

CPU 4.4867 5.3750 9.0118 9.9970 10.8318 10.4923 10.7385 10.6914 10.3992

α = 0.001 IT 6 8 12 12 12 12 12 12 12

CPU 4.3447 5.2097 7.9352 8.1859 8.1304 8.0022 8.1526 8.0052 8.2025

To further confirm the superiority of the GVDPSS preconditioned GMRES
method to the NRHSS and VDPSS preconditioned GMRES methods, we plot the
IT of the three preconditioned GMRES methods with α from 0.01 to 1 with step
size 0.01 in Fig. 7. We set v = 1, β = 10, 000, v = 0.1, β = 100, 000 and
v = 0.01, β = 1, 000, 000, respectively, in this figure. From this figure, we note
that the three preconditioned GMRES methods converge while the GVDPSS precon-
ditioned GMRES method converges faster. Furthermore, it can be observed that the
VDPSS preconditioner is more sensitive to the parameter α than the GVDPSS and
NRHSS preconditioners.

In order to better investigate the performance of the NRHSS, VDPSS, and
GVDPSS preconditioned GMRES methods, in Fig. 8, we plot the eigenvalue distri-
butions of the NRHSS, VDPSS, and GVDPSS preconditioned matrices with varied
parameters α = 1, 0.1, and 0.01 when v = 0.01 and p = 24. Here, “NRHSS”
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Fig. 7 Convergence curve of algorithms with varying α for p = 24
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Fig. 8 The eigenvalue distributions of the three preconditioned matrices for v = 0.01 with various α

and β

denotes the NRHSS preconditioned matrix, and the VDPSS and GVDPSS ones are
denoted by “VDPSS” and “GVDPSS,” respectively. By observation, we clearly find
that the eigenvalue distributions of the GVDPSS preconditioned matrix with proper
parameter β are more clustered than those of the other two preconditioned matrices.
These observations imply that the GVDPSS preconditioned GMRES method per-
forms much better than the NRHSS and VDPSS preconditioned GMRES methods.
These facts are further confirmed by the numerical results listed in Table 7.

6 Conclusions

In this paper, we establish a generalized variant of the deteriorated PSS (GVDPSS)
preconditioner for nonsymmetric saddle point problems. This new preconditioner is
based on the VDPSS preconditioner [44], and it may result in more rapid convergence
rate with suitable choices of the parameters α and β. In addition, the proposed precon-
ditioner includes the VDPSS and NRHSS preconditioners exhibited in [44] and [40],
respectively, as special cases. The convergence analyses of the GVDPSS iteration
method for solving nonsymmetric saddle point problems are presented. Meanwhile,
the distribution of eigenvalues, the forms of the eigenvectors, and the upper bounds
on the degree of the minimum polynomial of the preconditioned matrix are analyzed
in detail. Numerical experiments worked out in Section 5 (Tables 1, 2, 3, 4, 5, 6 and
7 and Figs. 1, 2, 3, 4, 5, 6, 7 and 8) reveal that the GVDPSS preconditioned GMRES
method with suitable parameters has great superiority compared with DPSS, RDPSS,
SL, NRHSS, and VDPSS preconditioned GMRES methods in terms of the iterations
and CPU times, and illustrate that the GVDPSS preconditioned GMRES method is a
very efficient method for solving the nonsymmetric saddle point problems.
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However, we should mention that this new preconditioner involved two parameters
α and β. How to choose the optimal parameters for the GVDPSS preconditioner is a
very practical and interesting problem that needs to be further in-depth studied.
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