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Abstract In this paper, we consider the split common null point problem in two
Banach spaces. Then, using the generalized resolvents of maximal monotone oper-
ators and the generalized projections, we prove a strong convergence theorem for
finding a solution of the split common null point problem in two Banach spaces. It
seems that such a theorem for generalized resolvents is the first of its kind outside
Hilbert spaces.

Keywords Split common null point problem · Maximal monotone operator · Fixed
point · Generalized projection · Generalized resolvent · Hybrid method · Duality
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1 Introduction

Let H1 and H2 be two real Hilbert spaces. Let D and Q be nonempty, closed and
convex subsets of H1 and H2, respectively. Let T : H1 → H2 be a bounded linear
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operator. Then the split feasibility problem (SFP) [8] is to find z ∈ H1 such that
z ∈ D ∩ T −1Q. There exists several generalizations of the SFP: the multiple set
SFP (MASFP) where the sets D, Q consist of intersections of a finite number of
convex sets [16] (the original reference to MSSFP is [9]), the split common fixed
point problem (SCFPP) [11, 17], and the split common null point problem (SCNPP)
[7]. (SCNPP) is as follows: given set-valued mappings A : H1 → 2H1 and B : H2 →
2H2 , and a bounded linear operators T : H1 → H2, find a point z ∈ H1 such that

z ∈ A−10 ∩ T −1(B−10),

where A−10 and B−10 are sets of null points of A and B, respectively. Defining
U = T ∗(I − PQ)T in the split feasibility problem, where T ∗ is the adjoint operator
of T and PQ is the metric projection of H2 onto Q, we have that U : H1 → H1 is
an inverse strongly monotone operator [3]. Furthermore, if D ∩ T −1Q is nonempty,
then z ∈ D ∩ T −1Q is equivalent to

z = PD(I − λT ∗(I − PQ)T )z, (1.1)

where λ > 0 and PD are the metric projection of H1 onto D. Using such results
regarding nonlinear operators and fixed points, many authors have studied the split
feasibility problem and the split common null point problem; see, for instance, [3, 7,
10, 11, 16, 17, 32]. However, we have not found many results outside Hilbert spaces.
The first extension of SFP to Banach spaces appears in [22]. This algorithm was later
extended to MSSFP in [31]. A very recent contribution for the SFP is [23]. Takahashi
[29] also solves the split common null point problem in Banach spaces. Let E be
a strictly convex and reflexive Banach space and let C be a nonempty, closed and
convex subset of E. Then we know that for any x ∈ E, there exists a unique element
z ∈ C such that ‖x − z‖ ≤ ‖x − y‖ for all y ∈ C. Putting z = PCx, we call such a
mapping PC the metric projection of E onto C. Let E be a uniformly convex Banach
space with a Gâteaux differentiable norm and let A be a maximal monotone operator
of E into 2E∗

. For all x ∈ E and r > 0, we consider the following equation

0 ∈ J (xr − x) + rAxr,

where J is the duality mapping on E. This equation has a unique solution xr . We
define Jr by xr = Jrx. Such Jr, r > 0 are called the metric resolvents of A.
Takahashi [27, 28] extended the result of (1.1) to Banach spaces. Furthermore, by
using the methods of [18, 19, 24] and metric projections, Takahashi [29] proved a
strong convergence theorem for metric resolvents of maximal monotone operators in
two Banach spaces.

In this paper, motivated by Takahashi’s theorem [29], we consider the split com-
mon null point problem with generalized resolvents of maximal monotone operators
in two Banach spaces. Then using the generalized resolvents of maximal monotone
operators and the generalized projections, we prove a strong convergence theorem
for finding a solution of the split null point problem in two Banach spaces. The ques-
tion of how to solve the split common null point problem for generalized resolvents
in two Banach spaces was posed by [14].
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2 Preliminaries

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be the dual space of E.
We denote the value of y∗ ∈ E∗ at x ∈ E by 〈x, y∗〉. When {xn} is a sequence in
E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak
convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ε) = inf

{
1 − ‖x + y‖

2
: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε

}

for every ε with 0 ≤ ε ≤ 2. A Banach space E is said to be uniformly convex if
δ(ε) > 0 for every ε > 0. It is known that a Banach space E is uniformly convex if
and only if for any two sequences {xn} and {yn} in E such that

lim
n→∞ ‖xn‖ = lim

n→∞ ‖yn‖ = 1 and lim
n→∞ ‖xn + yn‖ = 2,

limn→∞ ‖xn − yn‖ = 0 holds. A uniformly convex Banach space is strictly convex
and reflexive. We also know that a uniformly convex Banach space has the Kadec-
Klee property, that is, xn ⇀ u and ‖xn‖ → ‖u‖ imply xn → u; see [12, 20].

The duality mapping J from E into 2E∗
is defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}
for every x ∈ E. Let U = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.1)

exists. In the case, E is called smooth. We know that E is smooth if and only if
J is a single-valued mapping of E into E∗. The norm of E is said to be Fréchet
differentiable if for each x ∈ U , the limit (2.1) is attained uniformly for y ∈ U .
The norm of E is said to be uniformly smooth if the limit (2.1) is attained uniformly
for x, y ∈ U . The classical Lp spaces for 1 < p < ∞ are uniformly convex and
uniformly smooth. We also know that E is reflexive if and only if J is surjective,
and E is strictly convex if and only if J is one-to-one. Therefore, if E is a smooth,
strictly convex and reflexive Banach space, then J is a single-valued bijection and in
this case, the inverse mapping J−1 coincides with the duality mapping J∗ on E∗. For
more details, see [12, 13, 20, 25, 26]. We know the following result:

Lemma 1 ([25]) Let E be a smooth Banach space and let J be the duality mapping
on E. Then, 〈x − y, Jx − Jy〉 ≥ 0 for all x, y ∈ E. Furthermore, if E is strictly
convex and 〈x − y, Jx − Jy〉 = 0, then x = y.

Let E be a smooth Banach space and let J be the duality mapping on E. Define a
function φ : E × E → R by

φE(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2, ∀x, y ∈ E. (2.2)
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In the case of no misunderstanding, φE is denoted by φ. Observe that, in a Hilbert
space H , φ(x, y) = ‖x − y‖2 for all x, y ∈ H . Furthermore, we know that for each
x, y, z, w ∈ E,

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2; (2.3)

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, J z − Jy〉; (2.4)

2〈x − y, J z − Jw〉 = φ(x, w) + φ(y, z) − φ(x, z) − φ(y, w). (2.5)

If E is additionally assumed to be strictly convex, then

φ(x, y) = 0 if and only if x = y. (2.6)

The following lemma was proved by Kamimura and Takahashi [15].

Lemma 2 ([15]) LetE be a uniformly convex and smooth Banach space and let {yn},
{zn} be two sequences of E. If φ(yn, zn) → 0 and either {yn} or {zn} is bounded,
then yn − zn → 0.

Let C be a nonempty, closed and convex subset of a smooth, strictly convex, and
reflexive Banach space E. Then we know that for any x ∈ E, there exists a unique
element z ∈ C such that

φ(z, x) = min
y∈C

φ(y, x).

The mapping �C : E → C defined by z = �Cx is called the generalized projection
of E onto C. For example, see [1, 2, 15].

Lemma 3 ([1, 2, 15]) LetE be a smooth, strictly convex, and reflexive Banach space.
Let C be a nonempty, closed, and convex subset of E and let x1 ∈ E and z ∈ C.
Then, the following conditions are equivalent:

(1) z = �Cx1;
(2) 〈z − y, Jx1 − Jz〉 ≥ 0, ∀y ∈ C.

Let E be a Banach space and let A be a mapping of E into 2E∗
. The effective

domain of A is denoted by dom(A), that is, dom(A) = {x ∈ E : Ax = ∅}. A
multi-valued mapping A on E is said to be monotone if 〈x − y, u∗ − v∗〉 ≥ 0 for all
x, y ∈ dom(A), u∗ ∈ Ax, and v∗ ∈ Ay. A monotone operator A on E is said to be
maximal if its graph is not properly contained in the graph of any other monotone
operator on E. The following theorem is due to [6, 21]; see also [26, Theorem 3.5.4].

Theorem 4 ([6, 21]) Let E be a uniformly convex and smooth Banach space and let
J be the duality mapping of E into E∗. Let A be a monotone operator of E into 2E∗

.

Then A is maximal if and only if for any r > 0,

R(J + rA) = E∗,

where R(J + rA) is the range of J + rA.
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Let E be a uniformly convex Banach space with a Gâteaux differentiable norm
and let A be a maximal monotone operator of E into 2E∗

. For all x ∈ E and r > 0,
we consider the following equation

Jx ∈ Jxr + rAxr .

This equation has a unique solution xr . In fact, it is obvious from Theorem 4 that
there exists a solution xr of Jx ∈ Jxr + rAxr . Assume that Jx ∈ Ju + rAu and
Jx ∈ Jv + rAv. Then there exist w1 ∈ Au and w2 ∈ Av such that Jx = Ju + rw1
and Jx = Jv + rw2. So, we have that

0 = 〈u − v, Jx − Jx〉
= 〈u − v, Ju + rw1 − (J v + rw2)〉
= 〈u − v, Ju − Jv + rw1 − rw2〉
= 〈u − v, Ju − Jv〉 + 〈u − v, rw1 − rw2〉
= φ(u, v) + φ(v, u) + r〈u − v,w1 − w2〉
≥ φ(u, v) + φ(v, u)

and hence 0 = φ(u, v) = φ(v, u). Since E is strictly convex, we have u = v. We
define Jr by xr = Jrx. Such Jr, r > 0 are called the generalized resolvents of A.
The set of null points of A is defined by A−10 = {z ∈ E : 0 ∈ Az}. We know that
A−10 is closed and convex; see [26].

3 Main result

In this section, using the generalized resolvents of maximal monotone operators and
the generalized projections, we prove a strong convergence theorem for finding a
solution of the split common null point problem in two Banach spaces. The following
lemma was proved by Hojo and Takahashi [14].

Lemma 5 ([14]) Let E and F be uniformly convex and smooth Banach spaces and
let JE and JF be the duality mappings on E and F , respectively. Let A and B be
maximal monotone operators of E into 2E∗

and F into 2F ∗
such that A−10 = ∅

and B−10 = ∅, respectively. Let Jλ and Qμ be the generalized resolvents of A for
λ > 0 and B for μ > 0, respectively. Let T : E → F be a bounded linear operator
such that T = 0 and let T ∗ be the adjoint operator of T . Suppose that A−10 ∩
T −1(B−10) = ∅. Let λ,μ, r > 0 and z ∈ E. Then the following are equivalent:

(i) z = JλJ
−1
E

(
JEz − rT ∗(JF T z − JF QμT z)

)
;

(ii) z ∈ A−10 ∩ T −1(B−10).

Using the idea of (i) in Lemma 5, we can prove the following theorem which
solves the split common null point problem for generalized resolvents of maximal
monotone operators in two Banach spaces. Such a problem was posed by [14].
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Theorem 6 Let E and F be uniformly convex and uniformly smooth Banach spaces
and let JE and JF be the duality mappings on E and F , respectively. Let A and B

be maximal monotone operators of E into 2E∗
and F into 2F ∗

such that A−10 = ∅
and B−10 = ∅, respectively. Let Jλ and Qμ be the generalized resolvents of A

for λ > 0 and B for μ > 0, respectively. Let T : E → F be a bounded linear
operator such that T = 0 and let T ∗ be the adjoint operator of T . Suppose that
A−10 ∩ T −1(B−10) = ∅. Let x1 ∈ E and let {xn} be a sequence generated by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

zn = J−1
E

(
JExn − rnT

∗(JF T xn − JF QμnT xn)
)
,

yn = Jλnzn,

Cn = {z ∈ E : 2〈xn − z, JExn − JEzn〉 ≥ rnφF (T xn, QμnT xn)},
Dn = {z ∈ E : 〈yn − z, JEzn − JEyn〉 ≥ 0},
Qn = {z ∈ E : 〈xn − z, JEx1 − JExn〉 ≥ 0},
xn+1 = �Cn∩Dn∩Qnx1, ∀n ∈ N,

where {λn}, {μn} ⊂ (0, ∞) and a, b ∈ R satisfy the following inequalities

0 < a ≤ rn ≤ 1

‖T ‖2 and 0 < b ≤ λn, μn ∀n ∈ N.

Then the sequence {xn} converges strongly to a point z0 ∈ A−10∩T −1(B−10), where
z0 = �A−10∩T −1(B−10)x1.

Proof It is obvious that Cn ∩ Dn ∩ Qn is closed and convex for all n ∈ N. To show
that A−10 ∩ T −1(B−10) ⊂ Cn for all n ∈ N, let us show that

2〈xn − z, JExn − JEzn〉 ≥ rnφF (T xn, QμnT xn)

for all z ∈ T −1(B−10) and n ∈ N. In fact, we have that for all z ∈ T −1(B−10) and
n ∈ N,

2〈xn − z, JExn − JEzn〉
= 2〈xn − z, rnT

∗(JF T xn − JF QμnT xn)〉
= 2rn〈T xn − T z, JF T xn − JF QμnT xn〉
= 2rn〈T xn − QμnT xn + QμnT xn − T z, JF T xn − JF QμnT xn〉
= 2rn〈T xn − QμnT xn, JF T xn − JF QμnT xn〉

+2rn〈QμnT xn − T z, JF T xn − JF QμnT xn〉
≥ 2rn〈T xn − QμnT xn, JF T xn − JF QμnT xn〉
= rn

(
φF (T xn, QμnT xn) + φF (QμnT xn, T xn)

)
≥ rnφF (T xn, QμnT xn). (3.1)

Then, we have that A−10 ∩ T −1(B−10) ⊂ Cn for all n ∈ N. Next, to show that
A−10∩ T −1(B−10) ⊂ Dn for all n ∈ N, let us show that 〈yn − z, JEzn − JEyn〉 ≥ 0
for all z ∈ A−10 and n ∈ N. In fact, we have that for all z ∈ A−10 and n ∈ N,

〈yn − z, JEzn − JEyn〉 = 〈Jλnzn − z, JEzn − JEJλnzn〉 ≥ 0. (3.2)

Then, we have that A−10 ∩ T −1(B−10) ⊂ Dn for all n ∈ N. We shall show that
A−10 ∩ T −1(B−10) ⊂ Qn for all n ∈ N. Since 〈x1 − z, JEx1 − JEx1〉 ≥ 0 for all
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z ∈ E, it is obvious that A−10 ∩ T −1(B−10) ⊂ Q1 = E. Suppose that, for some
k ∈ N, A−10 ∩ T −1(B−10) ⊂ Qk . Then, A−10 ∩ T −1(B−10) ⊂ Ck ∩ Dk ∩ Qk .
From xk+1 = �Ck∩Dk∩Qk

x1, we have that

〈xk+1 − z, JEx1 − JExk+1〉 ≥ 0, ∀z ∈ Ck ∩ Dk ∩ Qk.

Since A−10 ∩ T −1(B−10) ⊂ Ck ∩ Dk ∩ Qk , we have that

〈xk+1 − z, JEx1 − JExk+1〉 ≥ 0, ∀z ∈ A−10 ∩ T −1(B−10).

Then, we get that A−10∩T −1(B−10) ⊂ Qk+1. By mathematical induction, we have
that A−10 ∩ T −1(B−10) ⊂ Qn for all n ∈ N. Thus, we have that

A−10 ∩ T −1(B−10) ⊂ Cn ∩ Dn ∩ Qn

for all n ∈ N. This implies that {xn} is well defined.
Since A−10 ∩ T −1(B−10) is a nonempty, closed and convex subset of E, there

exists z0 ∈ A−10 ∩ T −1(B−10) such that z0 = �A−10∩T −1(B−10)x1. We have from
xn+1 = �Cn∩Dn∩Qnx1 that

φE(xn+1, x1) ≤ φE(y, x1), ∀y ∈ Cn ∩ Dn ∩ Qn.

Since z0 ∈ A−10 ∩ T −1(B−10) ⊂ Cn ∩ Dn ∩ Qn, we have that

φE(xn+1, x1) ≤ φE(z0, x1). (3.3)

This means that {xn} is bounded.
Next, we show that limn→∞ φE(xn+1, xn) = 0. From xn+1 = �Cn∩Dn∩Qnx1, we

have that xn+1 ∈ Qn and hence

2〈xn − xn+1, JEx1 − JExn〉 ≥ 0.

From this, we have that

2〈xn − x1 + x1 − xn+1, JEx1 − JExn〉 ≥ 0.

This implies that

2〈x1 − xn+1, JEx1 − JExn〉 ≥ 2〈x1 − xn, JEx1 − JExn〉
and hence

φE(x1, xn) + φE(xn+1, x1) − φE(xn+1, xn) ≥ φE(x1, xn) + φE(xn, x1).

Then, we have that

φE(xn+1, x1) ≥ φE(xn+1, xn) + φE(xn, x1). (3.4)

Therefore, {φE(xn, x1)} is bounded and nondecreasing. Then, there exists the limit
of {φE(xn, x1)}. Using (3.4), we also have that

lim
n→∞ φE(xn+1, xn) = 0. (3.5)

We get from Lemma 2 that

lim
n→∞ ‖xn+1 − xn‖ = 0. (3.6)
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Using limn→∞ ‖xn+1 − xn‖ = 0, let us show that limn→∞ ‖T xn − QμnT xn‖ = 0.
We have from xn+1 ∈ Cn that

2〈xn − xn+1, JExn − JEzn〉 ≥ rnφF (T xn, QμnT xn). (3.7)

Furthermore, we claim that {JExn − JEzn} is bounded. That {JExn − JEzn} is
bounded is proved as follows. We first have that ‖JExn − JEzn‖ = ‖rnT ∗(JF T xn −
JF QμnT xn)‖. Furthermore, we have that

‖JF T xn‖ = ‖T xn‖ ≤ ‖T ‖‖xn‖.
We also have that, for z ∈ T −1(B−10),

(‖T z‖ − ‖QμnT xn‖)2 ≤ φF (T z, QμnT xn)

≤ φF (T z, T xn) ≤ (‖T z‖ + ‖T xn‖)2
≤ ‖T ‖2(‖z‖ + ‖xn‖)2.

Using this, we have that

‖QμnT xn‖ ≤ ‖T ‖(‖z‖ + ‖xn‖) + ‖T z‖ ≤ ‖T ‖(‖z‖ + ‖xn‖) + ‖T ‖‖z‖.
Then, we have that

‖JF QμnT xn‖ = ‖QμnT xn‖ ≤ ‖T ‖(2‖z‖ + ‖xn‖).
Hence, we have that

‖JExn − JEzn‖ = ‖rnT ∗(JF T xn − JF QμnT xn)‖
≤ 1

‖T ‖2 ‖T ‖ (‖JF T xn‖ + ‖JF QμnT xn)‖
)

≤ 1

‖T ‖2 ‖T ‖ (‖T ‖‖xn‖ + ‖T ‖(2‖z‖ + ‖xn‖)
)

≤ 2(‖xn‖ + ‖z‖).
This implies that {JExn − JEzn} is bounded. Since {JExn − JEzn} is bounded and
rn ≥ a > 0, we have from (3.6) and (3.7) that

lim
n→∞ φF (T xn, QμnT xn) = 0.

Therefore, we get from Lemma 2 that

lim
n→∞ ‖T xn − QμnT xn‖ = 0. (3.8)

Furthermore, since F is uniformly smooth, we have from (3.8) that

lim
n→∞ ‖JF T xn − JF QμnT xn‖ = 0. (3.9)

Since ‖JExn − JEzn‖ = ‖rnT ∗(JF T xn − JF QμnT xn)‖ and {rn} is bounded, we get
from (3.9) that

lim
n→∞ ‖JExn − JEzn‖ = 0. (3.10)

Since E∗ is uniformly smooth, we have from (3.10) that

lim
n→∞ ‖xn − zn‖ = 0. (3.11)
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We also have from xn+1 ∈ Dn that

2〈yn − xn+1, JEzn − JEyn〉 ≥ 0

and hence

2〈yn − zn + zn − xn + xn − xn+1, JEzn − JEyn〉 ≥ 0.

This implies that

2〈zn − xn + xn − xn+1, JEzn − JEyn〉 ≥ 2〈zn − yn, JEzn − JEyn〉
and hence

2〈zn − xn + xn − xn+1, JEzn − JEyn〉 ≥ φE(zn, yn) + φE(yn, zn).

Since {JEzn − JEyn} is bounded, we have from (3.6) and (3.11) that

lim
n→∞ φE(zn, yn) = 0.

Using Lemma 2 and yn = Jλnzn, we have that

lim
n→∞ ‖zn − Jλnzn‖ = 0. (3.12)

Since E is uniformly smooth, we have from (3.12) that

lim
n→∞ ‖JEzn − JEJλnzn‖ = 0. (3.13)

Since {xn} is bounded, there exists a subsequence {xni
} of {xn} converging weakly

tow. We have from limn→∞ ‖xn−zn‖ = 0 that {zni
} converges weakly tow. We also

have from (3.12) that {Jλni
zni

} converges weakly to w. Since Jλn is the generalized
resolvent of A, we have that

JEzn − JEJλnzn

λn

∈ AJλnzn, ∀n ∈ N.

From the monotonicity of A, it follows that

0 ≤
〈
s − Jλni

zni
, t∗ − JEzni

− JEJλni
zni

λni

〉

for all (s, t∗) ∈ A. Since ‖JEzni
− JEJλni

zni
‖ → 0 and 0 < b ≤ λni

, we have that
0 ≤ 〈s − w, t∗ − 0〉 for all (s, t∗) ∈ A. Since A is maximal monotone, we have that
w ∈ A−10. Furthermore, since T is bounded and linear, we also have that {T xni

}
converges weakly to T w. From (3.8), we have that {Qμni

T xni
} converges weakly to

T w. Since Qμn is the generalized resolvent of B, we have that

JF T xn − JF QμnT xn

μn

∈ BQμnT xn, ∀n ∈ N.

From the monotonicity of B, it follows that

0 ≤
〈
u − Qμni

T xni
, v∗ − JF T xni

− JF Qμni
T xni

μni

〉
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for all (u, v∗) ∈ B. From ‖JF T xni
− JF Qμni

T xni
‖ → 0 and 0 < b ≤ μni

, we have
that 0 ≤ 〈u − T w, v∗ − 0〉 for all (u, v∗) ∈ B. Since B is maximal monotone, we
have that T w ∈ B−10. Therefore, w ∈ A−10 ∩ T −1(B−10).

Using z0 = �A−10∩T −1(B−10)x1, w ∈ A−10 ∩ T −1(B−10) and (3.3), we have that

φE(z0, x1) ≤ φE(w, x1)

= ‖w‖2 − 2〈w, JEx1〉 + ‖x1‖2
≤ lim inf

i→∞
(‖xni

‖2 − 2〈xni
, JEx1〉 + ‖x1‖2

)
= lim inf

i→∞ φE(xni
, x1)

≤ lim sup
i→∞

φE(xni
, x1) ≤ φE(z0, x1).

From the definition of �A−10∩T −1(B−10)x1, we get that z0 = w and

lim
i→∞ φE(xni

, x1) = φE(w, x1) = φE(z0, x1).

So, we have that limi→∞ ‖xni
‖ = ‖z0‖. From the Kadec-Klee property of E, we

have that xni
→ z0. Therefore, we have xn → z0. This completes the proof.

4 Applications and a numerical example

In this section, using Theorem 6, we get new strong convergence theorems in Banach
spaces. Let E be a Banach space and let f be a proper, lower semicontinuous,
and convex function of E into (−∞, ∞]. The subdifferential ∂f of f is defined as
follows:

∂f (x) = {z∗ ∈ E∗ : f (x) + 〈y − x, z∗〉 ≤ f (y), ∀y ∈ E}

for all x ∈ E. From Rockafellar [21], we know that ∂f is a maximal monotone
operator. Let C be a nonempty, closed, and convex subset of E and let iC be the
indicator function of C, i.e.,

iC(x) =
{
0, x ∈ C,

∞, x /∈ C.

Then iC is a proper, lower semicontinuous and convex function on E and then the
subdifferential ∂iC of iC is a maximal monotone operator. Thus we can define the
generalized resolvent Jλ of ∂iC for λ > 0, i.e.,

Jλx = (J + λ∂iC)−1Jx
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for all x ∈ E. We have that for any x ∈ E and u ∈ C,

u = Jλx ⇐⇒ Jx ∈ Ju + λ∂iCu

⇐⇒ 1

λ
(Jx − Ju) ∈ ∂iCu

⇐⇒ iCy ≥ 〈y − u,
1

λ
(Jx − Ju)〉 + iCu, ∀y ∈ E

⇐⇒ 0 ≥ 〈y − u,
1

λ
(Jx − Ju)〉, ∀y ∈ C

⇐⇒ 〈y − u, Jx − Ju〉 ≤ 0, ∀v ∈ C

⇐⇒ u = �Cx. (4.1)

Using Theorem 6, we prove a strong convergence theorem for finding minimizers of
convex functions in two Banach spaces.

Theorem 7 Let E and F be uniformly convex and uniformly smooth Banach spaces
and let JE and JF be the duality mappings on E and F , respectively. Let f and g be
proper, lower semicontinuous, and convex functions of E into (−∞, ∞] and F into
(−∞, ∞] such that (∂f )−10 = ∅ and (∂g)−10 = ∅, respectively. Let T : E → F be
a bounded linear operator such that T = 0 and let T ∗ be the adjoint operator of T .
Suppose that (∂f )−10 ∩ T −1((∂g)−10) = ∅. Let x1 ∈ E and let {xn} be a sequence
generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tn = argminy∈F {g(y) + 1
2μn

‖y‖2 − 1
μn

〈y, JF T xn〉},
zn = J−1

E

(
JExn − rnT

∗(JF T xn − JF tn)
)
,

yn = argminx∈E{f (x) + 1
2λn

‖x‖2 − 1
λn

〈x, JEzn〉},
Cn = {z ∈ E : 2〈xn − z, JExn − JEzn〉 ≥ rnφF (T xn, tn)},
Dn = {z ∈ E : 〈yn − z, JEzn − JEyn〉 ≥ 0},
Qn = {z ∈ E : 〈xn − z, JEx1 − JExn〉 ≥ 0},
xn+1 = �Cn∩Dn∩Qnx1, ∀n ∈ N,

where {rn}, {λn}, {μn} ⊂ (0, ∞) and a, b ∈ R satisfy the following inequalities

0 < a ≤ rn ≤ 1

‖T ‖2 and 0 < b ≤ λn, μn, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point w1 ∈ (∂f )−10∩T −1((∂g)−10),
where w1 = �(∂f )−10∩T −1((∂g)−10)x1.

Proof We know from [5] that

tn = argmin
y∈F

{g(y) + 1

2μn

‖y‖2 − 1

μn

〈y, JF T xn〉}
is equivalent to

0 ∈ (∂g)tn + 1

μn

JF tn − 1

μn

JF T xn.
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From this, we have JF T xn ∈ JF tn + μn(∂g)tn, i.e., tn = QμnT xn.

Similarly, we have that

yn = argmin
x∈E

{f (x) + 1

2λn

‖x‖2 − 1

λn

〈x, JEzn〉}
is equivalent to yn = Jλnzn. Using Theorem 6, we get the conclusion.

Using (4.1) and Theorem 7, we obtain the following result for the split feasibility
problem in two Banach spaces.

Theorem 8 Let E and F be uniformly convex and uniformly smooth Banach spaces
and let JE and JF be the duality mappings on E and F , respectively. Let C and D

be nonempty, closed and convex subsets of E and F , respectively. Let T : E → F be
a bounded linear operator such that T = 0 and let T ∗ be the adjoint operator of T .
Suppose that C ∩ T −1D = ∅. Let x1 ∈ E and let {xn} be a sequence generated by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

zn = J−1
E

(
JExn − rnT

∗(JF T xn − JF �DT xn)
)
,

yn = �Czn,

Cn = {z ∈ E : 2〈xn − z, JExn − JEzn〉 ≥ rnφF (T xn, �DT xn)},
Dn = {z ∈ E : 〈yn − z, JEzn − JEyn〉 ≥ 0},
Qn = {z ∈ E : 〈xn − z, JEx1 − JExn〉 ≥ 0},
xn+1 = �Cn∩Dn∩Qnx1, ∀n ∈ N,

where {rn} ⊂ (0, ∞) and a ∈ R satisfy the following inequalities

0 < a ≤ rn ≤ 1

‖T ‖2 , ∀n ∈ N.

Then the sequence {xn} converges strongly to a point w1 ∈ C ∩ T −1D, where w1 =
�C∩T −1Dx1.

A numerical example Let us give a numerical example which supports our theorem.
Let E = F = R, C = [2, 4] ⊂ E and D = [2, 6] ⊂ F in Theorem 8. Take a bouded
linear operator T : E → F by y = T x = 2x for all x ∈ E and rn = 1

8 for all n ∈ N.
Then we have C ∩ T −1D = [2, 3]. For x1 = 5, we have

z1 = 4, y1 = 4, C1 = (−∞, 4], D1 = R, Q1 = R.

Then we have x2 = �C1∩D1∩Q1x1 = 4. For x2 = 4, we have

z2 = 3.5, y2 = 3.5, C2 = (−∞, 3.5], D2 = R, Q2 = (−∞, 4].
Then we have x3 = �C2∩D2∩Q2x1 = 3.5. Furthermore, for x3 = 3.5, we have

z3 = 3.25, y3 = 3.25, C3 = (−∞, 3.25], D3 = R, Q3 = (−∞, 3.5].
Then we have x4 = �C3∩D3∩Q3x1 = 3.25. Simiarly, we have x5 = 3.125. By such a
method, we have xn → 3, where 3 = �C∩T −1Dx1.
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