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Abstract This paper develops an improved tri-coloured rooted-tree theory for the
order conditions for ERKN methods solving general multi-frequency and multi-
dimensional second-order oscillatory systems. The bottleneck of the original tri-
coloured rooted-tree theory is the existence of numerous redundant trees. In light of
the fact that the sum of the products of the symmetries and the elementary differen-
tials is meaningful, this paper naturally introduces the so-called extended elementary
differential mappings. Then, the new improved tri-coloured rooted tree theory is
established based on a subset of the original tri-coloured rooted-tree set. This new
theory makes all redundant trees disappear, and thus, the order conditions of ERKN
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methods for general multi-frequency and multidimensional second-order oscillatory
systems are reduced greatly. Furthermore, with this new theory, we present some new
ERKN methods of order up to four. Numerical experiments are implemented and the
results show that ERKN methods can be competitive with other existing methods in
the scientific literature, especially when comparatively large stepsizes are used.

Keywords Multi-frequency and multidimensional perturbed oscillators · General
ERKN methods · Order conditions · B-series

Mathematics Subject Classification (2010) 65L05 · 65L06

1 Introduction

In this paper, we pay our attention to the rooted-tree theory and B-series for extended
Runge-Kutta-Nyström (abbr. ERKN) methods solving general multi-frequency and
multidimensional oscillatory second-order initial value problems (abbr. IVPs) of the
form {

y′′(t) + My(t) = f
(
y(t), y ′(t)

)
, t ∈ [t0, T ],

y(t0) = y0, y′(t0) = y′
0,

(1)

where M is a d ×d constant matrix implicitly containing the dominant frequencies of
the system, y ∈ R

d ,and f : Rd × R
d → R

d , with the position y and the velocity y′
as arguments. In the special case where the right-hand side of (1) does not depend on
the velocity y′, (1) reduces to the following special second-order oscillatory system{

y′′(t) + My(t) = f (y(t)) , t ∈ [t0, T ],
y(t0) = y0, y′(t0) = y′

0.
(2)

Furthermore, if M is symmetric and positive semi-definite and f (q) = −∇U(q),
then, with q = y, p = y′, (2) becomes identical to a multi-frequency and
multidimensional oscillatory Hamiltonian system{

p′ = −∇qH(p, q), p(x0) = p0,

q ′ = ∇pH(p, q), q(x0) = q0,
(3)

with the Hamiltonian

H(p, q) = 1

2
pᵀp + 1

2
qᵀMq + U(q), (4)

where U(q) is a smooth potential function. For solving the multi-frequency and
multi-dimensional oscillatory system (3), a large number of studies have been made
(see e.g. [1–3]). The methods for problems (1) and (2) are especially important when
M has large positive eigenvalues as in the case where the wave equations is semi-
discretised in space (see e.g. [4–8]). Such problems arise in a wide range of fields
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such as astronomy, molecular dynamics, classical mechanics, quantum mechanics,
chemistry, biology, and engineering.

ERKNmethods were proposed originally in paper [9, 10] to solve the special oscil-
latory system (2). ERKN methods show their great charming in practical numerical
simulation since they are specially designed to be adapted to the structure of the
underlying oscillatory system and do not depend on the decomposition of the matrix
M . ERKNmethods have been widely investigated and used in numerous applications
in the fields of science and engineering; for example, the idea of ERKN methods
has been extended to two-step hybrid methods (see e.g. [11, 12]), to Falkner-type
methods (see e.g. [13]), to Strömer-Verlet methods (see e.g. [14]), to energy-
preserving methods (see e.g. [7, 15, 16]), and to symplectic and multi-symplectic
methods (see e.g. [4, 17–19]). Meanwhile, the further research of ARKN meth-
ods, including the symplectic conditions and symmetry, has been conducted as well
(see e.g. [20–24]).

In a recent paper [25], ERKN methods were extended to the general oscillatory
system (1), and a tri-coloured tree theory called extended Nyström tree theory (abbr.
EN-T theory) was analysed for the order conditions. Unfortunately, however, the EN-
T theory is not completely satisfactory due to the existence of disastrous redundant
trees. For example, there are seven redundant trees out of 16 trees for third order
ERKNmethods. In practice, in order to gain the order conditions for a specific ERKN
method of order r , one has to draw all graphs first, and then select and delete about
half of the redundant trees. It will be a great waste of time and effort. As a result,
it is not convenient nor efficient for the use of the EN-T theory to achieve the order
conditions for ERKN methods.

Hence, in this paper, we will present an improved theory to eliminate all these
redundant trees. Similarly to what we have done for the special oscillatory system
(2) in [26], the extended elementary differentials are required and will be analysed in
detail.

This paper is organized as follows. We first summarize the ERKN method for the
general oscillatory system (1) in Section 2, and then in Section 3, we illustrate that
the EN-T theory proposed in [25] works weakly. In Section 4, we investigate the set
of improved extended-Nyström trees and show the relations to some other tree sets in
the literature. Section 5 focuses on the B-series associated with the ERKN method
for the general oscillatory system (1), and Section 6 analyses the corresponding order
conditions for the ERKN methods when applied to the general oscillatory system
(1). In Section 7, we derive some ERKN methods of order up to four. The numerical
experiments are made in Section 8. The last section is concerned with conclusions
and discussions.

2 ERKN methods

To begin with, we summarize the following ERKN method using the matrix-
variation-of-constants formula (see [10]) and quadrature formulae.
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Definition 2.1 (See [25]) An s-stage extended Runge-Kutta-Nyström (abbr. ERKN)
method for the numerical integration of the IVP (1) is defined by the following
scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = φ0(c
2
i V )yn + ciφ1(c

2
i V )hy′

n + h2
s∑

j=1

āij (V )f (Yj , Y
′
j ), i = 1, . . . , s,

hY ′
i = −ciV φ1(c

2
i V )yn+ φ0(c

2
i V )hy′

n+ h2
s∑

j=1

aij (V )f (Yj , Y
′
j ), i =1, . . . , s,

yn+1 = φ0(V )yn + φ1(V )hy ′
n + h2

s∑
i=1

b̄i (V )f (Yi, Y
′
i ),

hy′
n+1 = −V φ1(V )yn + φ0(V )hy′

n + h2
s∑

i=1

bi(V )f (Yi, Y
′
i ),

(5)
where φ0(V ), φ1(V ), āij (V ), aij (V ), b̄i (V ), and bi(V ) for i, j = 1, . . . , s are
matrix-valued functions of V = h2M , and are assumed to have the following series
expansions

āij (V ) =
+∞∑
k=0

ā
(2k)
ij

(2k)!V
k, aij (V ) =

+∞∑
k=0

a
(2k)
ij

(2k)!V
k, b̄i(V ) =

+∞∑
k=0

b̄
(2k)
i

(2k)!V
k,

bi(V ) =
+∞∑
k=0

b
(2k)
i

(2k)!V
k, φi(V ) =

+∞∑
k=0

(−1)k

(2k + i)!V
k

with real coefficients ā
(2k)
ij , a(2k)

ij , b̄(2k)
i , b(2k)

i for k = 0, 1, 2, . . ..

This ERKN method (5) in Definitions 2.1 can also be represented briefly in
Butcher’s tableau of coefficients [28]

c1 ā11(V ) ā12(V ) · · · ā1s(V ) a11(V ) a12(V ) · · · a1s(V )

c2 ā21(V ) ā22(V ) · · · ā2s(V ) a21(V ) a22(V ) · · · a2s(V )
...

...
...

. . .
...

...
...

. . .
...

cs ās1(V ) ās2(V ) · · · āss(V ) as1(V ) as2(V ) · · · ass(V )

b̄1(V ) b̄2(V ) · · · b̄s(V ) b1(V ) b2(V ) · · · bs(V )

(6)

In essence, ERKN methods incorporate the particular structure of the oscillatory
system (1) into both the internal stages and the updates. Throughout this paper, we
call methods for the general oscillatory system (1) as general methods, and standard
methods for the special case (2).

3 The failure and the reduction of the EN-T theory

The EN-T theory for general ERKN methods was presented in the recent paper [25]
in which some tri-coloured trees are supplemented to the classical Nyström trees
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Table 1 Two EN-Ts which have the same elementary differentials F(τ )(y, y′)

EN-Ts ρ γ �i α F

4 4 c2i
∑

j a
(0)
ij 3 f

(2)
yy′ (−My,f )

4 8 ci

∑
j ā

(0)
ij 3 f

(2)
yy′ (−My,f )

(abbr. N-Ts). The idea of the EN-T theory comes from the fact that the numbers of the
N-Ts and of the elementary differentials are completely different. The paper [25] tries
to eliminate the difference and then to make one elementary differential corresponds
to one tree uniquely. Unfortunately, however, the paper [25] cannot succeed in this
point at all. For example, the two different trees shown in Table 1 have the same
elementary differentials F(τ )(y, y′).

Moreover, the great limitation of the EN-T theory is the existence of great number
of redundant trees that cause trouble in applications. For example, in Table 2 (left),
there are seven EN-Ts but five of them are redundant since their order ρ(τ), density
γ (τ), weight �i(τ), and the consequent order conditions can be implied by others
for the general ERKN methods (5).

Here, it should be pointed out that one tree one elementary differential is not
necessary. In other words, one tree may correspond to a set of elementary differ-
entials. For example, just as shown in Table 2, the sum of the products of the
symmetries α(τ) and the elementary differentials F(τ )(y, y′) is meaningful. In fact,
we have

f (1)
y y′ + f

(1)
y′ (−My) = D1

hf
(
φ0(h

2M)y + φ1(h
2M)hy′, φ0(h

2M)y′ − hMφ1(h
2M)y

)
,

Table 2 Some EN-Ts and the redundance

EN-Ts ρ γ �i α F EN-Ts ρ γ �i α F

2 2 ci 1 f (1)
y y′ 2 2 ci 1 f (1)

y y′

2 2 ci 1 f
(1)
y′ (−My) +f

(1)
y′ (−My)

3 3 c2i 1 f (2)
yy

(
y′, y′) 3 3 c2i 1 f (2)

yy

(
y′, y′)

3 3 c2i 2 f
(2)
yy′

(−My, y′) +2f (2)
yy′

(−My, y′)
3 3 c2i 1 f

(2)
y′y′ (−My,−My) +f

(2)
y′y′ (−My,−My)

3 3 c2i 1 f (1)
y (−My) +f (1)

y (−My)

3 3 c2i 1 f
(1)
y′

(−My′) +f
(1)
y′

(−My′)
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namely, f (1)
y y′ + f

(1)
y′ (−My) is the first-order derivative of function f with respect

to h, at h = 0, where the function f is evaluated at point (ŷ, ŷ
′
) with

ŷ = φ0(h
2M)y + φ1(h

2M)hy′, (7)

ŷ
′ = φ0(h

2M)y′ − hMφ1(h
2M)y. (8)

Thus, in Table 2, we can choose these two bi-coloured trees to represent the sums
respectively and omit all trees with meagre vertices. In this way, we can get rid of
redundance as shown in Table 2 (right).

On the other hand, although almost all tri-coloured trees are redundant, there
indeed exist tri-coloured trees which are absolutely necessary in the research of order
conditions for the general ERKN methods (5). For example, the fifth tree which is
tri-coloured in the fifth line in the table 2 in [25] undoubtedly works in the order
conditions. In a word, the theory for the general ERKN methods (5) is exactly a
tri-coloured tree theory but it is on the basis of the subset of the EN-T set.

It is natural that this paper starts from the N-th derivative of the function

f
(m+n)

ymy′n
∣∣∣
(ŷ,ŷ

′
)
with respect to h, at h = 0. For details about multivariate Taylor series

expansions and some related knowledge, readers are referred to [26, 27]. In what
follows, we will denote this derivative as DN

h f
(m+n)

ymy′n .

Remark 3.1 The dimension of the matrix DN
h f

(m+n)

ymy′n is d ×dm+n . If z is a dm+n ×1

matrix, the dimension of DN
h f

(m+n)

ymy′n z is d × 1.

Remark 3.2 If the matrix M is null,

DN
h f

(m+n)

ymy′n z = f
(m+n+N)

ym+Ny′n

⎛
⎝y′, · · · , y′︸ ︷︷ ︸

N fold

, z

⎞
⎠ ,

where f
(m+n+N)

ym+Ny′n is evaluated at the point (y, y′), and (·, · · · , ·) is the Kronecker
inner product (see [26]).

Remark 3.3 In the special case (2) where the function f is independent of y′,
DN

h f
(m+n)

ymy′n z is exactly DN
h f (m)z in [26].

In the end of this section, we give the following first three results of DN
h f

(m+n)

ymy′n z,
which work significantly in the understanding of the extended elementary differen-
tials (see Definition 4.2 in Section 4).

D1
hf

(m+n)

ymy′n z=f
(m+n+1)
ym+1y′n

(
y′, z

) + f
(m+n+1)
ymy′n+1 (−My, z) ,

D2
hf

(m+n)

ymy′n z=f
(m+n+2)
ym+2y′n

(
y′, y′, z

) +f
(m+n+1)
ym+1y′n (−My, z) + 2f (m+n+2)

ym+1y′n+1

(
y′,−My, z

)
+f

(m+n+2)
ymy′n+2 (−My, −My, z) + f

(m+n+1)
ymy′n+1

(−My′, z
)
,
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D3
hf

(m+n)

ymy′n z = f
(m+n+3)
ym+3y′n

(
y′, y′, y′, z

) + 3f (m+n+3)
ym+2y′n+1

(
y′, y′, −My, z

)
+3f (m+n+3)

ym+1y′n+2

(
y′, −My, −My, z

)
+f

(m+n+3)
ymy′n+3 (−My, −My, −My, z) + 3f (m+n+2)

ym+2y′n
(
y′, −My, z

)
+3f (m+n+2)

ym+1y′n+1 (−My, −My, z)

+3f (m+n+2)
ym+1y′n+1

(
y′, −My′, z

) + 3f (m+n+2)
ymy′n+2

(−My, −My′, z
)

+f
(m+n+1)
ym+1y′n

(−My′, z
) + f

(m+n+1)
ymy′n+1

(
(−M)2y, z

)
.

4 The set of improved extended-Nyström trees

In the study of order conditions for second order differential equations, there are
four theory systems listed in Table 3, where the abbreviation “SSEN-T” comes from
the expression of simplified special extended Nyström-tree [26], and here the word
“compact” should be interpreted as that any order condition derived by a tree from
the underlining rooted tree set cannot be obtained by others from the same rooted
tree set.

The first two theory systems are much famous in the numerical analysis for ODEs,
where the second is the special case of the first one. The rooted tree sets in these two
theory systems are all bi-coloured tree sets with the white vertex and the black vertex.
The last two theory systems are constructed on tri-coloured rooted tree sets by adding
the meagre vertex to the graph of bi-coloured trees. Similarly, the last system is the
special case of the third.

Moreover, when the matrix M is null, the third theory is identity to the first theory,
and the fourth is the second. In a word, the last two theory systems are the exten-
sions of the first two theory systems respectively. However, the extension of the first
theory system is not satisfied yet, since the last section in this paper states that the
third theory system is not compact. In order to make the extension better, a com-
pact theory will be built to replace the third one, by introducing a completely new
tri-coloured rooted tree set and six mappings on it. In this section, we will define
the new tree set and study the relationships with the N-T set, the EN-T set and the
SSEN-T set.

Table 3 Four theory systems for second order differential equations

IVPs Methods Trees (graphs) Compact (T/F)

1 y′′ = f
(
y, y′) General RKN methods N-Ts T

2 y′′ = f (y) Standard RKN methods SN-Ts T

3 y′′ + My = f
(
y, y′) General ERKN methods EN-Ts F

4 y′′ + My = f (y) Standard ERKN methods SSEN-Ts T
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4.1 The IEN-T set and the related mappings

In this subsection, we will recursively define a new set named the improved extended-
Nyström tree set and define six mappings on it.

Definition 4.1 The improved extended-Nyström tree (abbr. IEN-T) set is recursively
defined as follows:

(a) , belong to the IEN-T set.
(b) If τ belongs to the IEN-T set, then the graph obtained by grafting the root

of tree τ to a new black fat node and then to a new meagre node, · · · (p
times), and then to a new black fat node and then last to a new white node,
denoted by W+B+(b+B+)p(τ ) (see Table 4), belongs to the IEN-T set for
∀p = 0, 1, 2, . . ..

(c) If τ belongs to the IEN-T set, then the graph obtained by grafting the root of
tree τ to a new black fat node and then to a new meagre node, · · · (p times),
then last to a new white node, denoted byW+(b+B+)p(τ ) (see Table 4) belongs
to the IEN-T set for ∀p = 0, 1, 2, . . ..

(d) If τ1, · · · , τμ belong to the IEN-T set, then τ1 ×· · ·× τμ belongs to the IEN-T
set, where “×’” is the merging product [28].

Each tree τ in the IEN-T set can be denoted by

τ := τ∗ × · · · × τ∗︸ ︷︷ ︸
N−fold

× (
W+B+(b+B+)p1(τ1)

) × · · · × (
W+B+(b+B+)pm(τm)

)

× (
W+(b+B+)q1(τm+1)

) × · · · × (
W+(b+B+)qn(τm+n)

)
, (9)

where τ∗ = . Figure 1 gives the mode of the trees in the IEN-T set.
From Definition 4.1, the following rules for forming a tree τ in the IEN-T set can

be obtained straightforwardly:

(i) The root of a tree is always a fat white vertex.
(ii) A white vertex has fat black children, or white children, or meagre children.
(iii) A fat black vertex has at most one child which can be white or meagre child.
(iv) A meagre vertex must have one fat black vertex as its child and must have a

white vertex as its descendant.

Table 4 Tree W+B+(b+B+)p(τ ) (left) and tree W+(b+B+)p(τ ) (right) in Definition 4.1
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Fig. 1 The mode of the trees in the IEN-T set

Definition 4.2 The order ρ(τ), the extended elementary differentialF(τ )(y, y′), the
symmetry α(τ), the weight �i(τ), the density γ (τ), and the sign S(τ) on the IEN-T
set are recursively defined as follows.

1. ρ( ) = 1, F( ) = f , α( ) = 1, �i( ) = 1, γ ( ) = 1 and S( ) = 1.
2. For τ ∈ IEN-T denoted by (9),

• ρ(τ) = 1 + N +
m∑

i=1

(1 + 2pi + ρ(τi)) +
n∑

i=1

(2qi + ρ(τm+i )),

• F(τ ) = DN
h f

(m+n)

ymy′n ((−M)p1F(τ1), · · · , (−M)pm+nF(τm+n)),
where pm+i = qi , i = 1, · · · , n, and (·, · · · , ·) is the Kronecker inner
product (see [26]),

• α(τ) = (ρ(τ) − 1)! · 1

N ! ·
m∏

i=1

(
α(τi)

(1 + 2pi + ρ(τi))!
)

·
n∏

i=1

(
α(τm+i )

(2qi + ρ(τm+i ))!
)

· 1

J1! . . . JI ! ,
where J1, · · · , JI count the same branches,

• �i(τ) = cN
i ·

m∏
k=1

⎛
⎝ s∑

j=1

ā
(2pk)
ij �j (τk)

⎞
⎠ ·

n∏
k=1

⎛
⎝ s∑

j=1

a
(2qk)
ij �j (τm+k)

⎞
⎠,

• γ (τ) = ρ(τ) ·
m∏

i=1

(
(1 + 2pi + ρ(τi))!γ (τi)

(2pi)!ρ(τi)!
)

·
n∏

i=1

(
(2qi + ρ(τm+i ))!γ (τm+i )

(2qi)!ρ(τm+i )!
)
,

• S(τ) =
m∏

i=1

(
(−1)pi S(τi)

) ·
n∏

i=1

(
(−1)qi S(τm+i )

)
,

where
0∑

k=1
= 0 and

0∏
k=1

= 1.
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Definition 4.3 The set IEN-Tm is defined as

IEN-Tm = {τ : ρ(τ) = m, τ ∈ IEN-T} .

Remark 4.1 The order ρ(τ) is the number of the tree τ ’s vertices.

Remark 4.2 The extended elementary differential F(τ ) is a product of (−M)p (p
is the number of meagre vertices between a white vertex and the next coming white
vertex), and DN

h f
(n+m)

ymy′n (N is the number of end vertices from the white vertex, m

is the number of the non-ending black vertices from the white vertex, and n is the
number of the meagre vertices from the white vertex). We will see that the extended
elementary differential is not only one function but a weighted sum of the traditional
elementary differential.

Remark 4.3 One IEN-T corresponds to one extended elementary differential F(τ ).

Remark 4.4 The symmetry α(τ) is the number of possible different monotonic
labeling of τ .

Remark 4.5 The weight �i(τ) is a sum over the indices of all white vertices
and of all end vertices. The general term of the sum is a product of ā

(2p)
ij for

W+B+(b+B+)p(τ ), of a
(2p)
ij for W+(b+B+)p(τ ) (p is the number of the meagre ver-

tices between the white vertices i and j ) and of cm
i (m is the number of end vertices

from the white vertex i).

Remark 4.6 One IEN-T corresponds to one weight �i(τ) .

Remark 4.7 The density γ (τ) is a product of the density of a tree by overlooking
the differences between vertices and of 1

(2p)! (p is the number of the meagre vertices
between two white vertices).

Remark 4.8 The sign S(τ) is 1 if the number of the meagre vertices is even, and −1
if the number of the meagre vertices is odd.

Table 5 presents the corresponding mappings: the order ρ, the sign S, the density
γ , the weight �i , the symmetry α, and the extended elementary differential F for
each τ in the IEN-T set of order up to four.

4.2 The IEN-T set and the N-T set

In this subsection, we can see that with the disappearance of meagre vertices the
IEN-T set is exactly the N-T set. In fact, in this case, each tree τ in the IEN-T set
has the mode shown in Fig. 2, and the rules to form the tree set are straightforwardly
reduced to:

(i) The root of a tree is always a fat white vertex.



Numer Algor (2017) 75:909–935 919

Table 5 IEN-Ts and mappings of order up to four and the corresponding elementary differentials on the
N-T set

No. IEN-Ts ρ S γ �i α F F on the N-T set

1 1 1 1 1 1 f f

2 2 1 2 ci 1 D1
hf f ′

yy′

3 2 1 2
∑

j a
(0)
ij 1 f

(1)
y′ f f ′

y′f

4 3 1 3 c2i 1 D2
hf f ′′

yy(y′, y′)

5 3 1 3 ci

∑
j a

(0)
ij 1 D1

hf y′f f ′′
yy′ (y′, f )

6 3 1 3
∑

j,k a
(0)
ij a

(0)
ik 1 f y′y′ (f ,f ) f ′′

y′y′ (f, f )

7 3 1 6
∑

j ā
(0)
ij 1 f (1)

y f f ′
yf

8 3 1 6
∑

j a
(0)
ij cj 1 f

(1)
y′ D1

hf f ′
y′fyy′

9 3 1 6
∑

j,k a
(0)
ij a

(0)
jk 1 f

(1)
y′ f

(1)
y′ f f ′

y′f ′
y′f

10 4 1 4 c3i 1 D3
hf f

(3)
yyy(y′, y′, y′)

11 4 1 4 c2i
∑

j a
(0)
ij 3 D2

hf
(1)
y′ f f

(3)
y′yy

(f, y′, y′)

12 4 1 4 ci

∑
j,k a

(0)
ij a

(0)
ik 3 D1

hf
(2)
y′y′ (f ,f ) f

(3)
yy′y′ (y′, f, f )

13 4 1 4
∑

j,k,l a
(0)
ij a

(0)
ik a

(0)
il 1 f

(3)
y′y′y′ (f ,f ,f ) f

(3)
y′y′y′ (f, f, f )

14 4 1 8 ci

∑
j ā

(0)
ij 3 D1

hf (1)
y f f ′′

yy(y′, f )

15 4 1 8
∑

j,k ā
(0)
ij a

(0)
ik 3 f

(2)
yy′ (f ,f ) f ′′

yy′ (f, f )

16 4 1 8 ci

∑
j,k a

(0)
ij a

(0)
jk 3 D1

hf
(1)
y′ f y′f f ′′

yy′ (y′, fy′f )

17 4 1 8
∑

j,k,l a
(0)
ij a

(0)
ik a

(0)
kl 3 f

(2)
y′y′ (f ,f

(1)
y′ f ) f ′′

y′y′ (fy′f, f )

18 4 1 8 ci

∑
j a

(0)
ij cj 3 D1

hf
(1)
y′ D1

hf f ′′
yy′ (fyy′, y′)

19 4 1 8
∑

j,k a
(0)
ij a

(0)
ik ck 3 f

(2)
y′y′ (f ,D1

hf ) f ′′
y′y′ (fyy′, f )

20 4 1 24
∑

j ā
(0)
ij cj 1 f (1)

y D1
hf f ′

yf ′
yy′

21 4 1 24
∑

j,k ā
(0)
ij a

(0)
jk 1 f (1)

y f
(1)
y′ f f ′

yf ′
y′f

22 4 1 24
∑

j,k a
(0)
ij ā

(0)
jk 1 f

(1)
y′ f (1)

y f f ′
y′f ′

yf
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Table 5 (continued)

No. IEN-Ts ρ S γ �i α F F on the N-T set

23 4 1 24
∑

j,k a
(0)
ij a

(0)
jk ck 1 f

(1)
y′ f

(1)
y′ D1

hf f ′
y′f ′

y′f ′
yy′

24 4 1 24
∑

j,k,l a
(0)
ij a

(0)
jk a

(0)
kl 1 f

(1)
y′ f

(1)
y′ f

(1)
y′ f f ′

y′f ′
y′f ′

y′f

25 4 −1 12
∑

j a
(2)
ij 1 f

(1)
y′ (−M)f –

26 4 1 12
∑

j a
(0)
ij c2j 1 f

(1)
y′ D2

hf f ′
y′f ′′

yy(y′, y′)

27 4 1 12
∑

j,k a
(0)
ij cj a

(0)
jk 2 f

(1)
y′ D1

hf
(1)
y′ f f ′

y′f ′′
yy′ (y′, f )

28 4 1 12
∑

j,k,l a
(0)
ij a

(0)
jk a

(0)
j l 1 f

(1)
y′ f

(2)
y′y′ (f ,f ) f ′

y′f ′′
y′y′ (f, f )

(ii) A white vertex has fat black children or white children.
(iii) A fat black vertex has at most one child which must be white.

In this case, from Remark 4.1 to Remark 4.7, the order ρ(τ), the symmetry α(τ)

and the density γ (τ) are exactly the same as the ones on the N-T set respectively. If
M is null, the weight �i(τ) and the extended elementary differential F(τ )(y, y′) on
the IEN-T set are exactly the same as the ones on the N-T set respectively, too. In fact,
from Definition 4.2, with the disappearing of meagre vertices, these two mappings
are recursively defined respectively, for τ denoted by Fig. 2, as follows:

�i(τ) = cN
i ·

m∏
k=1

⎛
⎝ s∑

j=1

āij�j (τk)

⎞
⎠ ·

n∏
k=1

⎛
⎝ s∑

j=1

aij�j (τm+k)

⎞
⎠ ,

F(τ ) = DN
h f

(m+n)

ymy′n (F(τ1), · · · ,F(τm+n)) .

Fig. 2 The mode of the trees with meagre vertices disappearing
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Table 6 Tri-coloured Trees which are appended to the set N-T5 to form the set IEN-T5

Clearly, the IEN-T set is really an extension of the N-T set (see, Table 14.3 on
p.292 in [28]). It can also be seen from Tables 5 and 6 that one 4th-order tree and six
5th-order trees are appended to the N-T set to form the IEN-T set. All these special
and new appended trees have a meagre vertex (or some vertices) which correspond
to nothing in the N-T set. In fact, the weights �i in Table 6 are all functions of ā

(2k)
ij

and a
(2k)
ij , the functions of higher-order derivatives of āij (V ) and aij (V ) with respect

to h.

4.3 The IEN-T set and the EN-T set

First of all, it should be pointed out that there are just five mappings defined on the
EN-T set in the paper [25] while six mappings on the IEN-T set in this paper. In
the paper [25], the authors introduced the signed density γ̃ (τ ), but in this paper, we
replace γ̃ (τ ) by the product of the two mappings, the density γ (τ) and the sign S(τ).

The IEN-T set is a subset of the EN-T set, once one overlooks the (extended)
elementary differential F(τ ) on them.

4.4 The IEN-T set and the SSEN-T set

From the rules of the IEN-T set and of the SSEN-T set (see [26]), if the function f

in the system is independent of y′, the IEN-T set is exactly the SSEN-T set.

5 B-series for the general ERKN method

In Section 4, we have presented the IEN-T set and on which six mappings are defined.
With all these preliminaries, motivated by the concept of B-series, we will give a
totally different approach from the one described in [25] to deriving the theory of
order conditions for the general ERKN method.

The main results of the theory of B-series have their origins in the profound paper
[29] of Butcher in 1972 and then be introduced by Hairer and Wanner [30] in 1974.
In what follows, we present the following two elementary theorems.

Theorem 5.1 With Definition 4.2, f (y(t + h), y′(t + h)) is a B-series

f (y(t + h), y′(t + h)) =
∑

τ∈IEN-T

hρ(τ)−1

(ρ(τ) − 1)!α(τ)F(τ )(y, y′).
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Proof First, we expand f (y(t + h), y ′(t + h)) at point (ŷ, ŷ
′
), with the denotations

(7) and (8).

f (y(t +h), y′(t +h)) =
∑

m≥0,n≥0

1

(m + n)! f
(m+n)

ymy′n
∣∣∣
(ŷ,ŷ′)

(
y(t + h) − ŷ

)⊗m ⊗(
y′(t + h) − ŷ

′)⊗n
,

(10)

where the second term f
(m+n)

ymy′n
∣∣∣
(ŷ,ŷ′)

in this series is the matrix-valued function of h.

Definition 4.2 ensures that f (y(t +h), y ′(t +h)) is a B-series. In fact, if f (y(t +
h), y ′(t +h)) is a B-series, from the matrix-variation-of-constants formula with μ =
1, (see [25]), and from the properties of the φ-functions (see e.g. [2]), we have

y(t + h) − ŷ = h2
∫ 1

0
(1 − z)φ1((1 − z)2V )f (y(t + hz), y′(t + hz))dz

=
∑

τ∈IEN-T

∫ 1

0
(1 − z)φ1((1 − z)2V )

zρ(τ)−1

(ρ(τ ) − 1)!dz ·
(
hρ(τ)+1α(τ)F(τ )(y, y′)

)
=

∑
τ∈IEN-T

φρ(τ)+1(V ) · hρ(τ)+1α(τ)F(τ )(y, y′)

=
∑

τ∈IEN-T

∑
p≥0

(−1)pV p

(ρ(τ) + 1 + 2p)!h
ρ(τ)+1α(τ)F(τ )(y, y′),

(11)

and

y′(t + h) − ŷ
′ =

∑
τ∈IEN-T

∑
q≥0

(−1)qV q

(ρ(τ) + 2q)!h
ρ(τ)α(τ )F(τ )(y, y′). (12)

Taking the Taylor series of f
(m+n)

ymy′n
∣∣∣
(ŷ,ŷ′)

at h = 0, and from (11) and (12), the

equation (10) becomes

f (y(t + h), y′(t + h)) =
∑

N,n,m

∑
τ∈IEN-T

hs

N !(m + n)!D
N
h f

(n+m)

ymy′n

×
(

(−M)p1α(τ1)F(τ1)(y)

(ρ(τ1) + 1 + 2p1)! , . . . ,
(−M)pmα(τm)F(τm)(y)

(ρ(τm) + 1 + 2pm)! ,

(−M)q1α(τm+1)F(τm+1)(y)

(ρ(τm+1) + 2q1)! , . . . ,
(−M)qnα(τm+n)F(τm+n)(y)

(ρ(τm+n) + 2qn)!
)

,

(13)

where s = N +
m∑

k=1
(2pk + ρ(τk) + 1) +

n∑
k=1

(2qk + ρ(τm+k)). By Definition 4.2, the

proof is complete.

Theorem 5.2 Given a general ERKN method (5), by Definition 4.2, each f (Yi, Y
′
i )

is a series of the form

f (Yi, Y
′
i ) =

∑
τ∈IEN-T

hρ(τ)−1

ρ(τ)! ai (τ ),
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where ai (τ ) = �i(τ) · γ (τ) · S(τ) · α(τ) · F(τ )(yn, y
′
n).

Proof Similarly to the proof of Theorem 5.1, we expand f (Yi, Y
′
i ) at (ỹ, ỹ′)

for the general ERKN method (5), where ỹ = φ0(c
2
i V )yn + φ1(c

2
i V )cihy′

n

and ỹ′ = φ0(c
2
i V )y′

n − cihMφ1(c
2
i V )yn and obtain the Taylor series expansion

as follows:

f (Yi , Y
′
i ) =

∑
m,n≥0

1

(m + n)! f
(m+n)

ymy′n
∣∣∣
ỹ,ỹ′

⎛
⎝h2

∑
j

āij (V )f (Yj , Y
′
j )

⎞
⎠

⊗m

⊗
⎛
⎝h

∑
j

aij (V )f (Yj , Y
′
j )

⎞
⎠

⊗n

,

(14)

where the second term f
(m+n)

ymy′n
∣∣∣
ỹ,ỹ′ is the function of cih. Then, the Taylor series

expansion of f
(m+n)

ymy′n
∣∣∣
(ŷ,ŷ′)

at h = 0 is given by

f
(m+n)

ymy′n
∣∣∣
(ŷ,ŷ′)

=
∑
N≥0

cN
i

m! h
NDN

h f
(m+n)

ymy′n . (15)

Definition 4.2 ensures that each f (Yi, Y
′
i ) for i = 1, . . . , s is a B-series. In fact,

the third and fourth terms in the equation (14) are given by

h2
∑
j

āij (V )f (Yj , Y
′
j ) =

∑
τ∈IEN-T

∑
p≥0

∑
j

ā
(2p)
ij

ρ(τ )!
V p

(2p)!h
ρ(τ)+1aj (τ ),

(16)

and

h
∑
j

aij (V )f (Yj , Y
′
j ) =

∑
τ∈IEN-T

∑
q≥0

∑
j

a
(2q)
ij

ρ(τ )!
V q

(2q)!h
ρ(τ)aj (τ ).

(17)

We then obtain

f (Yi , Y
′
i ) =

∑
N,n,m

∑
τ∈IEN-T

cN
i hs

N !(n + m)!D
N
h f

(m+n)

ymy′n

⎛
⎜⎜⎜⎝
∑
j

ā
(2p1)
ij

ρ(τ1)!
Mp1

(2p1)!aj (τ1),. . . ,

∑
j

ā
(2pm)
ij

ρ(τm)!
Mpm

(2pm)!aj (τm),

∑
j

a
(2q1)
ij

ρ(τm+1)!
Mq1

(2q1)!aj (τm+1), . . . ,

∑
j

a
(2qn)
ij

ρ(τm+n)!
Mqn

(2qn)!aj (τm+n)

⎞
⎟⎟⎟⎠ , (18)

where s = N +
m∑

k=1
(2pk + ρ(τk) + 1) +

n∑
k=1

(2qk + ρ(τm+k)). By Definition 4.2, we

complete the proof.
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6 The order conditions for the general ERKN method

Theorem 6.1 The scheme (5) for the general multi-frequency and multidimensional
oscillatory second-order initial value problems (1) has order r if and only if the
following conditions

s∑
i=1

b̄i (V )S(τ)γ (τ )�i(τ ) = ρ(τ)!φρ(τ)+1+O(hr−ρ(τ)), ∀τ ∈ IEN-Tm, m ≤ r−1,

(19)
s∑

i=1

bi(V )S(τ)γ (τ )�i(τ ) = ρ(τ)!φρ(τ) + O(hr−ρ(τ)+1), ∀τ ∈ IEN-Tm, m ≤ r,

(20)
are satisfied.

Proof It follows from the matrix-variation-of-constants formula, Theorem 5.1 and
Theorem 5.2 that

yn+1 = φ0(V )yn+hφ1(V )y′
n+

∑
τ∈IEN-T

hρ(τ)+1

ρ(τ)!
s∑

i=1

b̄i (V )�i(τ )S(τ)γ (τ )α(τ)F(τ )(yn, y
′
n), (21)

y(t + h) = φ0(V )y + hφ1(V )y′ +
∑

τ∈IEN-T
hρ(τ)+1α(τ)F(τ )(y, y)

∫ 1

0
(1 − z)

× zρ(τ)−1

(ρ(τ ) − 1)!φ1((1 − z)V ) dz. (22)

Comparing the equations (21) with (22) and using the properties of the φ-functions,
we obtain the first result of Theorem 6.1. Likewise, we can get the second result of
this theorem.

Theorem 6.1 in this paper and the theorem 4.1 in [25] share the same expression.
However, it should be noticed that there exist redundant order conditions in [25].
While any order condition in this paper cannot be replaced by others provided the
entries āij (V ), aij (V ), bi(V ), and b̄i (V ) in the general ERKN method (5) are inde-
pendent. Obviously, the disappearing of redundant order conditions can make the
construction of high-order general ERKN methods (5) much clearer and simpler.

It is easy to see that Theorem 6.1 implies the order conditions for the standard
ERKN methods in [10, 26] once the right-hand side function f does not depend on
y ′. It is noted that, if the matrixM is null, Theorem 6.1 reduces to that for the classical
general RKN method when applied to y′′ = f (y, y′), since the IEN-T set is exactly
the N-T set in this special case.

7 The construction of general ERKN methods

In this section, using Theorem 6.1, we present some general ERKN methods (5) of
order up to four. The approach to constructing newmethods in this section is different
from that described in [25].
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7.1 Second-order general ERKN methods

From Theorem 6.1 and the three IEN-Ts with order no more than two which are listed
in Table 5, for an s-stage general ERKN method (5) expressed in the Butcher tableau
(6), we have the second-order conditions as follows:

s∑
i=1

b̄i (V ) = φ2(V ) + O(h),

s∑
i=1

bi(V ) = φ1(V ) + O(h2),

s∑
i=1

bi(V )ci = φ2(V ) + O(h),

s∑
i=1

bi(V )a
(0)
ij = φ2(V ) + O(h).

Comparing the coefficients of h0 and h, we obtain four equations:

s∑
i=1

b̄
(0)
i = 1

2
,

s∑
i=1

b
(0)
i = 1,

s∑
i=1

b
(0)
i ci = 1

2
,

s∑
i=1

b
(0)
i a

(0)
ij = 1

2
.

It can be observed that all these equations are exactly the second-order conditions for
the following general RKN method

Yi = yn + cihy′
n + h2

s∑
j=1

ā
(0)
ij

(
f (Yj , Y

′
j ) − MYj

)
, i = 1, · · · , s,

Y ′
i = y′

n + h

s∑
j=1

a
(0)
ij

(
f (Yj , Y

′
j ) − MYj

)
, i = 1, · · · , s,

yn+1 = yn + hy′
n + h2

s∑
i=1

b̄
(0)
i

(
f (Yi, Y

′
i ) − MYi

)
,

y′
n+1 = y′

n + h

s∑
i=1

b
(0)
i

(
f (Yi, Y

′
i ) − MYi

)
, (23)

when applied to the initial value problems (1), with the Butcher tableau

c1 ā
(0)
11 ā

(0)
12 · · · ā

(0)
1s a

(0)
11 a

(0)
12 · · · a

(0)
1s

c2 ā
(0)
21 ā

(0)
22 · · · ā

(0)
2s a

(0)
21 a

(0)
22 · · · a

(0)
2s

...
...

...
. . .

...
...

...
. . .

...

cs ā
(0)
s1 ā

(0)
s2 · · · ā

(0)
s,s a

(0)
s1 a

(0)
s2 · · · a

(0)
s,s

b̄
(0)
1 b̄

(0)
2 · · · b̄

(0)
s b

(0)
1 b

(0)
2 · · · b

(0)
s

. (24)

This means that we can easily solve
(
ci, ā

(0)
ij , a

(0)
ij , b̄

(0)
i , b

(0)
i

)
in terms of a classical

general RKN method. For example, from the explicit 2 stage 2nd-order general RKN
method with the Buthcher tableau

0
2
3 0 2

3
1
4

3
4

1
4

1
4

, (25)
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we can yield the 2 stage 2nd-order explicit general ERKN methods. Two examples
are given below.

Example 1 The first 2 stage 2nd-order explicit general ERKN method (5) has its
Butcher tableau

0
2
3 0 2

3I
1
4I

3
4I

1
4I

1
4I

. (26)

Example 2: The Butcher tableau of the second one is

0
2
3 0 2

3φ0(
4
9V )

1
4φ1(V ) 3

4φ1(
1
9V ) 1

4φ0(V ) 1
4φ0(

1
9V )

. (27)

7.2 Third-order general ERKN methods

From Theorem 6.1 and 9 trees in the set of IEN-Tm, (m ≤ 3) in Table 5, for an s-
stage general ERKN method (5) expressed in the Butcher tableau (6), we have the
third-order conditions as follows:

s∑
i=1

b̄i (V ) = φ2(V ) + O(h2),

s∑
i=1

b̄i (V )ci = φ3(V ) + O(h),

s∑
i=1

s∑
j=1

b̄i (V )a
(0)
ij = φ3(V ) + O(h),

s∑
i=1

bi(V ) = φ1(V ) + O(h3),

s∑
i=1

bi(V )ci = φ2(V ) + O(h2),

s∑
i=1

s∑
j=1

bi(V )a
(0)
ij = φ2(V ) + O(h2),

s∑
i=1

bi(V )c2i = 2φ3(V ) + O(h),

s∑
i=1

s∑
j=1

bi(V )cia
(0)
ij = 2φ3(V ) + O(h),

s∑
i=1

s∑
j=1

s∑
k=1

bi(V )a
(0)
ij a

(0)
ik = 2φ3(V ) + O(h),

s∑
i=1

bi(V )ā
(0)
ij = φ3(V ) + O(h),

s∑
i=1

s∑
j=1

bi(V )a
(0)
ij cj = φ3(V ) + O(h),

s∑
i=1

s∑
j=1

s∑
k=1

bi(V )a
(0)
ij a

(0)
jk = φ3(V ) + O(h).
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Comparing the coefficients of the power of h, we obtain 13 equations, where 12
equations are exactly the third-order conditions for the classical general RKNmethod
(23) with the Butcher tableau (24)

s∑
i=1

b̄
(0)
i γ (τ )�i(τ ) = 1

ρ(τ) + 1
, ∀τ ∈ N-Tm, m ≤ 2, (28)

s∑
i=1

b
(0)
i γ (τ )�i(τ ) = 1, ∀τ ∈ N-Tm, m ≤ 3, (29)

together with the last equation
s∑

i=1
b̄

(2)
i = − 1

3 . We can solve
(
ci, ā

(0)
ij , a

(0)
ij , b̄

(0)
i , b

(0)
i

)
from the equations (28) and (29) via a classical general RKN method. We then can
solve b

(2)
i from the last equation. In such kind of approach, we complete the construc-

tion of the general ERKN methods of order three. For example, from the explicit 3
stage 3rd-order general RKN method with the Buthcher tableau

0
1
2 0 1

2
1 1 0 −1 2

1
6

2
6 0 1

6
4
6

1
6

(30)

we can construct the 3 stage 3rd-order explicit general ERKN methods straightfor-
wardly. The three examples are listed below.

Example 3 The first 3 stage 3rd-order explicit general ERKNmethod (5) is expressed
in the Butcher tableau

0
1
2 0 1

2I

1 I 0 −I 2I
1
6I

2
6I 0 1

6 (I − 9
20V ) 4

6 (I − 3
20V ) 1

6 (I + 1
20V )

. (31)

Example 4 The Butcher tableau of the second 3 stage 3rd-order explicit general
ERKN method (5) is given by

0
1
2 0 1

2I

1 I 0 −I 2I
1
6 (I − 1

6V ) 2
6 (I − 1

24V ) 0 1
6 (I − 1

2V ) 4
6 (I − 1

8V ) 1
6I

. (32)

Example 5 The third 3 stage 3rd-order explicit general ERKN method (5) is denoted
by the Butcher tableau

0
1
2 0 1

2φ0(
1
4V )

1 φ1(V ) 0 −φ0(V ) 2φ0(
1
4V )

1
6φ1(V ) 2

6φ1(
1
4V ) 0 1

6φ0(V ) 4
6φ0(

1
4V ) 1

6I

. (33)
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7.3 Fourth-order general ERKN methods

From Theorem 6.1 and Table 5, comparing the coefficients of the power of h

of (19) and (20), for an s-stage general ERKN method (5) with the coefficient(
āij (V ), aij (V ), b̄i(V ), bi(V )

)
displayed in the Butcher tableau (6), we can obtain

41 fourth-order conditions, in which 36 conditions are listed as follows:
s∑

i=1

b̄
(0)
i γ (τ )�i(τ ) = 1

ρ(τ) + 1
, ∀τ ∈ N-Tm, m ≤ 3, (34)

s∑
i=1

b
(0)
i γ (τ )�i(τ ) = 1, ∀τ ∈ N-Tm, m ≤ 4, (35)

and the other five conditions are given below
s∑

i=1

s∑
j=1

b
(0)
i a

(2)
ij = − 1

12
,

s∑
i=1

b
(2)
i = −1

3
,

s∑
i=1

b
(2)
i ci = − 1

12
,

s∑
i=1

s∑
j=1

b
(2)
i a

(0)
ij = − 1

12
,

s∑
i=1

b̄
(2)
i = − 1

12
. (36)

For each specific classical general RKN method of order 4, we can solve(
ci, ā

(0)
ij , a

(0)
ij , b̄

(0)
i , b

(0)
i

)
from (34) and (35), since these 36 conditions are exactly

the order conditions for the classical general RKN method (23) with the Butcher

tableau (24). Then, we can solve
(
a

(2)
ij , b̄

(2)
i , b

(2)
i

)
from conditions (36). In this way,

we construct the general ERKN methods (5) of order 4.
In what follows, we will gain explicit 4 stage 4th-order general ERKN methods

from the following explicit 4 stage 4th-order classical general RKNmethod (23) with
the Butcher tableau

0
1
2

1
8

1
2

1
2

1
8 0 0 1

2
1 0 0 1

2 0 0 1
1
6

1
6

1
6 0 1

6
2
6

2
6

1
6

. (37)

Some general ERKN methods of order four constructed in this approach are shown
below.

Example 6 The Butcher tableau of the first explicit 4 stage 4th-order general ERKN
method (5) is given by

0
1
2

1
8 I 1

2 I
1
2

1
8 I 0 0 1

2 I

1 0 0 1
2 I 0 0 I − 1

4V
1
6 (I − 1

12V ) 1
6 (I − 1

12V ) 1
6 (I − 1

12V ) 0 1
6 (I − 1

2V ) 2
6 (I − 1

8V ) 2
6 (I − 1

8V ) 1
6 I

.

(38)
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Example 7 The second explicit 4 stage 4th-order general ERKNmethod is expressed
in the Butcher tableau

0
1
2

1
8 I 1

2 (I − 1
8V )

1
2

1
8 I 0 0 1

2 I

1 0 0 1
2 I 0 0 I − 1

8V
1
6 (I − 1

6V ) 1
6 (I − 1

24V ) 1
6 (I − 1

24V ) 0 1
6 (I − 1

2V ) 2
6 (I − 1

8V ) 2
6 (I − 1

8V ) 1
6 I

.

(39)

Example 8 The third explicit 4 stage 4th-order general ERKN method (5) has the
Butcher tableau as follows:

0
1
2

1
8φ1(

1
4V ) 1

2φ0(
1
4V )

1
2

1
8φ1(

1
4V ) 0 0 1

2I

1 0 0 1
2φ1(

1
4V ) 0 0 φ0(

1
4V )

1
6φ1(V ) 1

6φ1(
1
4V ) 1

6φ1(
1
4V ) 0 1

6φ0(V ) 2
6φ0(

1
4V ) 2

6φ0(
1
4V ) 1

6I

. (40)

7.4 An effective approach to constructing the general ERKN methods

In the paper [25], in order to construct fourth-order general ERKN methods for the
systems (1), the authors first considered all 62 graphs of the EN-Ts (see Tables 1 and
2 in [25]), and then selected and deleted 34 redundant trees. Finally, they obtained
28 non-redundant EN-Ts (see Tables 3 and 4 in [25]). With these 28 EN-Ts, the
authors in [25] achieved special fourth-order conditions, and then the authors derived
an fourth-order ERKN method under two auxiliary simplifying assumptions.

Obviously, as shown in paper [25], more than half of the time and effort spent on
drawing the redundant trees. In a word, the process described in paper [25] is difficult
to follow since the number of the redundant trees in the EN-T set is much huge.

However, in this paper, these 28 trees can be directly obtained since 27 of them
are exactly the classical N-Ts as shown in Section 4.2. In this way, it becomes quite
easy to get the fourth-order conditions for the general ERKN method (5). Then using
the expansions of these order conditions with respect to the power of h, we can check
that some are exactly the order conditions for the classical general RKNmethod (23).
This approach to constructing the general ERKN integrators is very effective and
efficient in practice as shown in the previous subsections where second-, third- and
fourth-order general ERKN methods are constructed as examples.

8 Numerical experiments

In this section, some numerical experiments are implemented to illustrate that the
general ERKN methods (5) are competitive in comparison with the others in the lit-
erature. The criterion used in the numerical comparisons is the base-10 logarithm of
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the maximum global error (log10 ‖MGE‖) versus the base-2 logarithm of the step-
sizes (log2(h)). The following 11 methods are used to solve the general system (1)
for the comparison:

• RKN2: The 2 stage 2nd-order general RKN method (25).
• ERKN2a: The first 2 stage 2nd-order general ERKN method (26) given in

Section 7 of this paper.
• ERKN2b: The second 2 stage 2nd-order general ERKN method (27) given in

Section 7 of this paper.
• RKN3: The 3 stage 3rd-order general RKN method (30).
• ERKN3a: The first 3 stage 3rd-order general ERKN method (31) given in

Section 7 of this paper.
• ERKN3b: The second 3 stage 3rd-order general ERKN method (32) given in

Section 7 of this paper.
• ERKN3c: The third 3 stage 3rd-order general ERKN method (33) given in

Section 7 of this paper.
• RKN4: The 4 stage 4th-order general RKN method (37).
• ERKN4a: The first 4 stage 4th-order general ERKN method (38) given in

Section 7 of this paper.
• ERKN4b: The second 4 stage 4th-order general ERKN method (39) given in

Section 7 of this paper.
• ERKN4c: The third 4 stage 4th-order general ERKN method (40) given in

Section 7 of this paper.

Problem 1 We consider the damped equation

my′′ + by′ + ky = 0,

as one of the test problems. When the damping constant b is small, we would expect
the system to still oscillate, but with decreasing amplitude as its energy is converted
to heat. In this numerical test, the problem is integrated on the interval [0, 300] with
m = 1, b = 0.01, k = 3 and the initial conditions

(
y(0), y′(0)

) = (1, 0). The
analytic solution to the problem is given by

y(t) = e− 0.01
2 t

(
cos

(√
12 − 0.012

2
t

)
+ 0.01√

12 − 0.012
sin

(√
12 − 0.012

2
t

))
.

The numerical results are displayed in Fig. 3, where the small stepsizes for the
methods are h = 1

2j for j = 3, . . . , 8 and the big stepsizes are h = j
8 for

j = 2, . . . , 6.

Problem 2 We consider the initial value problem

y′′(t)+
(

13 −12
−12 13

)
y(t) = 12ε

5

(
3 2

−2 −3

)
y′(t)+ε2

( 36
5 sin(t) + 24 sin(5t)

− 24
5 sin(t) − 36 sin(5t)

)
,
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ERKN4b

ERKN4c

Fig. 3 Problem 1 integrated on [0, 300]

with the initial values y(0) = (ε, ε)ᵀ and y′(0) = (−4, 6)ᵀ. The analytic solution is
given by

y(t) =
(

sin(t) − sin(5t) + ε cos(t)
sin(t) + sin(5t) + ε cos(5t)

)
.

In the numerical experiment, we choose the parameter value ε = 10−3 and integrate
this problem on the interval [0, 300]. The numerical results are displayed in Fig. 4.
The small stepsizes are h = 1

2j for j = 3, . . . , 8 and the big stepsizes are h = j
8 for
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ERKN3c

RKN4

ERKN4a

ERKN4b

ERKN4c

Fig. 4 Problem 2 integrated on [0, 300]
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j = 2, . . . , 6. In this numerical test with the big stepsizes, the classical general RKN
methods (RKN2, RKN3 and RKN4) give disappointed numerical results. Thus, we
do not depict the corresponding points in Fig. 4.

Problem 3 Consider the damped wave equation with periodic conditions (wave
propagation in a medium, see e.g. Weinberger [31])

⎧⎨
⎩

∂2u

∂t2
+ δ

∂u

∂t
= ∂2u

∂x2
− f (u), −1 < x < 1, t > 0,

u(−1, t) = u(1, t),

where f (u) = − sin u,the damped sine Gordon equation, and δ = 1. A semi-
discretization in the spatial variable by second-order symmetric differences leads to
the following system of second-order ODEs in time

Ü + MU = F(U, U̇), 0 < t ≤ tend ,

where U(t) = (u1(t), · · · , uN(t))ᵀ with ui(t) ≈ u(xi, t), i = 1, . . . , N,

M = 1

�x2

⎛
⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

⎞
⎟⎟⎟⎟⎟⎠ ,

�x = 2/N , xi = −1 + i�x and F(U, U̇) = (f (u1) − δu̇1, · · · , f (uN) − δu̇N )ᵀ.
Following the paper [32], we take the initial conditions as

U(0) = (π, · · · , π)ᵀ , Ut (0) =√
N

(
0.01 + sin

(
2π

N

)
, · · · , 0.01+sin

(
2πN

N

))T
,

with N = 64 and integrate the problem on the interval [0, 300] with small stepsizes
h = 1

2j for j = 5, . . . , 8 and with big stepsizes h = j
128 for j = 5, 6, 8, 10. The

numerical results are displayed in Fig. 5. In this numerical test for the big stepsizes,
the classical general RKNmethods (RKN2, RKN3 and RKN4) all behave badly, with
enormous errors.

It can be observed from Figs. 3, 4 and 5 that

• The general ERKN methods perform more efficiently than the classical general
RKN methods.

• The higher order general ERKN methods are more efficient than the lower ones.
• As the stepsize decreases, the difference among the general ERKN methods of

the same order becomes negligible.
• The general ERKN methods behave perfectly for the large stepsizes.
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Fig. 5 Problem 3 integrated on [0, 300]

9 Conclusions and discussions

As stated above, in this paper, we have established an improved theory for the order
conditions for the general ERKN methods designed specially for solving multi-
frequency oscillatory system (1). The original tri-coloured tree theory and the order
conditions for the general ERKN methods presented in the paper [25] are not satis-
fied yet due to the existence of enormous number of redundant trees. This paper has
succeeded in the simplification by defining the IEN-T set and on which some special
mappings (especially the extended elementary differential mapping) are introduced.

This simplification of the order conditions for the general ERKN methods when
applied to the oscillatory system (1) is of great importance. The new tri-coloured
tree theory and the B-series theory for the general ERKN methods solving the gen-
eral system (1) reduce to those for standard ERKN methods solving special system
(2), where the right-hand side vector-valued function f does not depend on y′
(see [10, 26]).

This successful simplification makes the construction of the general ERKN meth-
ods much simpler and more efficient for the system (1). In light of the reduced tree
theory analysed in this paper, almost one half of algebraic conditions in the paper [25]
can be reduced. Furthermore, in this paper, from the relation between the theories of
order conditions for the general RKN method and for the general ERKN method, we
propose a simple approach to constructing the new integrators. The numerical results
show that the general ERKN methods are more suitable for long-term integration
with a large stepsize in comparison with the RKN methods in the literature.
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