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Abstract Two fully discrete methods are investigated for simulating the distributed-
order sub-diffusion equation in Caputo’s form. The fractional Caputo derivative is
approximated by the Caputo’s BDF1 (called L1 early) and BDF2 (or L1-2 when
it was first introduced) approximations, which are constructed by piecewise lin-
ear and quadratic interpolating polynomials, respectively. It is shown that the first
scheme, using the BDF1 formula, possesses the discrete minimum-maximum princi-
ple and nonnegativity preservation property such that it is stable and convergent in the
maximum norm. The method using the BDF2 formula is shown to be stable and con-
vergent in the discrete H 1 norm by using the discrete energy method. For problems
of distributed order within a certain region, the method is also proven to preserve the
discrete maximum principle and nonnegativity property. Extensive numerical exper-
iments are provided to show the effectiveness of numerical schemes, and to examine
the initial singularity of the solution. The applicability of our numerical algorithms to
a problem with solution which lacks the smoothness near the initial time is examined
by employing a class of power-type nonuniform meshes.
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1 Introduction

We propose two numerical methods for solving distributed-order time-fractional sub-
diffusion equations. Consider a nonnegative function ρ(α) that acts as the weight for
the order of fractional differentiation α ∈ (0, β) ⊆ (0, 1) such that

∫ β

0 ρ(α) dα =
ρ0 > 0 where β � 1 and ρ0 are positive constants. For the sake of simplicity, we
assume that ρ(α) ∈ C([0, β]) and P[g](α) � ρ(α)Dα

t g(t) ∈ C2α([0, β]) uniformly
with respect to t ≥ 0, where Dα

t g(t) is the fractional Caputo derivative of order α,
defined by

Dα
t g(t) = 1

�(1 − α)

∫ t

0

g′(s) ds
(t − s)α

, 0 < α < 1. (1.1)

Consider the following initial-boundary value problem

ρD
[α]
t u = ∂2u

∂x2
+ f (x, t), x ∈ �, 0 < t � T , (1.2)

u(x, t) = ub(x, t), x ∈ ∂�, 0 < t � T , (1.3)

u(x, 0) = ϕ(x), x ∈ �̄ = � ∪ ∂�, (1.4)

where the domain � = (0, L), ∂� is the boundary, and ρD
[α]
t g(t) denotes the dis-

tributed order fractional derivative of g(t) in time t (with respect to the weight ρ)
defined by

ρD
[α]
t g(t) =

∫ β

0
ρ(α)Dα

t g(t) dα =
∫ β

0
P[g](α) dα . (1.5)

Fractional differential equations where the order of differentiation is integrated
over a given range have been considered by Caputo [6], where the distributed-order
derivative is used to describe the stress-strain relation in dielectrics. Lorenzo and
Hartley [24] apply the distributed-order derivative to study the rheological proper-
ties of composite materials. Atanackovic [2] proposed a distributed-order viscoelastic
model for the uniaxial isothermal deformation of a viscoelastic body, and analyzed a
Cauchy problem for distributed-order diffusion-wave equation [3, 4]. The distributed-
order model (1.2) often describes retarding sub-diffusion or ultraslow diffusion [7],
where the mean squared variance grows logarithmically with time. Compared with
single-term or multi-term fractional differential equations, the distributed-order frac-
tional model provides a more flexible and precise tool to describe some real physical
phenomena in disordered, viscoelastic media, and composite materials, see [12].

The solution and mathematical analysis of the problem (1.2) has attracted more
attentions, see [5, 13, 19, 20, 25, 26, 28]. Bagley and Torvik [5] gave some solutions
in series expansion. Kochubei [19] constructed the fundamental solutions of (1.2)
and proved their positivity and subordination property. Meerschaert et al. [28] pro-
vided explicit strong solutions and their stochastic analogues of the problem. Luchko
[25, 26] shown a maximum principle and nonnegativity property of the solution and
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investigated some uniqueness and existence results of solutions to boundary value
problems. By using a functional calculus approach, the well-posedness of a Cauchy
problem was discussed in [13] recently. The asymptotic behaviors of the solution for
t → 0 and t → ∞ were investigated in [20].

There are also some works focused on numerical methods of the distributed-order
differential equations, see [8, 9, 11, 15, 16, 18, 22, 29, 31, 34]. Diethelm and Ford
[8] introduced a general framework for distributed-order ordinary differential equa-
tions by using the quadrature rule, such as the trapezoidal formula, with some suitable
numerical solver for the resulting multi-term fractional equations, while a conver-
gence analysis of the method was discussed in [9]. For a class of distributed-order
fractional ordinary differential equations, Katsikadelis [18] applied the trapezoidal
quadrature rule for the integral (1.5) and use the analogue equation method to solve
the resulting multi-term fractional differential equation. Liao et al. [22] suggested
a Du Fort-Frankel-type explicit scheme for solving a distributed-order subdiffusion
equation by combining the L1 formula of Riemann-Liouville derivative with the mid-
point quadrature of the weighted integral. By using the L1 discrete formula of Caputo
derivative and the fractional centred difference of space-fractional Riesz derivative,
an implicit method was investigated in [34] for the time distributed-order and Riesz
space-fractional diffusions. It shown that the numerical method is convergent in time
with an order of O(τ 1+hα/2), where τ is the time-step size and hα is the spacing of
fractional-order interval. By applying the backward difference formula (BDF) for the
α-order Caputo derivative (1.1) and the mid-point quadrature rule of (1.5), Morgado
and Rebelo [29] developed an implicit difference method for (1.2) with a Lipschitz
nonlinear reaction term. It shown that the method is convergent with an temporal
order of O(τ 1+hα/2). Mashayekhi et al. [31] established a new approximation for
solving distributed-order fractional differential equations by using hybrid functions.
Jin et al. [15] proposed two Galerkin finite element methods based on the Laplace
transform and a convolution quadrature for Riemann-Liouville derivative generated
by the backward Euler method. Optimal convergence rates of the two methods in
the L2 norm were established in terms of the regularity of initial data. The discrete
maximum principle of the finite element approximation for subdiffusion models was
discussed in [16]. To update the time accuracy, Gao et al. [11] devoted to construct
temporally second-order methods for (1.2). They applied the weighted and shifted
Grünwald (WSG) formula of Riemann-Liouville derivative, which was proposed in
[33], to approximate the involved Caputo derivative, and employed the trapezoid and

Simpson formulas of the integral (1.5). Note that, a sufficient condition ∂ku
∂tk

(x, 0) = 0
(k = 0, 1, 2, 3, 4) was imposed in [11] for second-order convergence because of the
application of WSG approximation.

The main contribution of this work consists of the following two aspects. At
first, the distributed-order Caputo derivative (1.5) is approximated by combining
the Caputo’s BDF1 (so-called L1) formula of Caputo derivative (1.1) with the mid-
point quadrature of the ρ-weighted integral. We call the resulting method CBDF1
method and prove that it preserves the discrete minimum-maximum principle and
nonnegative-preserving property (Theorem 3.3), which are basic principles of the
continuous model [25, 26]. If the solution is smooth, the temporal accuracy is
shown to be of order O(τ 2−β |ln τ |−1), see Theorem 3.5. Secondly, we present a
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new interpretation of the L1-2 formula [10], called Caputo’s BDF2 here, of Caputo
derivative and apply it to approximate the fractional derivative (1.1). The resulting
method, denoted by CBDF2, is shown to be stable and convergent by the H 1 dis-
crete energy analysis, see Theorems 4.6 and 4.7. More interestingly, if 0 < β � 1/3,
we find that the CBDF2 method also preserves the minimum-maximum principle
and nonnegative property such that the second-order accuracy will be recovered for
smooth solution, see Theorems 4.12 and 4.13.

For simplicity of presentation, only one-dimensional problem is considered
because the two- and three-dimensional extensions of our approaches and numeri-
cal analysis are straightforward. The rest of this paper is arranged as follows. Two
numerical Caputo derivatives and some preliminary lemmas are presented in the next
section. The CBDF1 scheme is proposed in Section 3, where the maximum norm
stability and convergence are achieved by using the maximum principle. Section 4
witnesses the construction and discrete energy analysis of the CBDF2 method. Also,
the maximum principle is applied to improve the error estimate for 0 < β � 1

3 .
Numerical examples are included in Section 5, and some remarks including two open
problems are presented in the concluding section.

2 Numerical Caputo derivative and some preliminary lemmas

For a positive integer N , let the time-step size τ = T/N , tn = nτ , 0 � n � N ,
and t

n+ 1
2

= (n + 1
2 )τ . The domain [0, T ] is covered by {tn| 0 � n � N}. Given any

discrete time function wτ = {wn| 0 � n � N}, denote wn− 1
2 = (wn + wn−1

)
/2 and

δtw
n− 1

2 = 1
τ

(
wn − wn−1

)
.

2.1 Discrete Caputo derivative

The Caputo’s BDF1 (L1) approximation of the fractional Caputo derivative Dα
t g(tn)

in the time interval∪n
k=1[tk−1, tk] can be obtained by applying the linear interpolating

polynomial �1,kg(t) of g(t) in each small interval [tk−1, tk](1 � k � n), that is,

Dα
t g(tn) ≈ Dα

B1g
n = 1

�(1 − α)

n∑

k=1

∫ tk

tk−1

(
�1,kg(s)

)′ ds
(tn − s)α

=
n∑

k=1

a
(α)
n−k

(
δtg

k− 1
2
)
,

(2.1)
where gk = g(tk) for 0 � k � n, and the coefficient a(α)

k defined by

a
(α)
k = τ 1−α

�(2 − α)

[
(k + 1)1−α − k1−α

]
, k ≥ 0. (2.2)

This most popular approximation (2.1) was originally studied for the sub-diffusion
model in [27] provided that the solution is sufficiently smooth, and was discussed
in [17] for more general cases. Without the forcing term, the scheme analyzed in
previous two studies is equivalent to the discontinuous Galerkin scheme developed
in [32].
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To construct high-order approximation of the derivative Dα
t g(tn), we also define

b
(α)
k = τ 1−α

�(2 − α)

[
(k + 1)2−α − k2−α

2 − α
− (k + 1)1−α + k1−α

2

]

, k ≥ 0. (2.3)

The following lemmas states some properties of a
(α)
k , b

(α)
k , and the relationship

between them.

Lemma 2.1 The positive coefficient a(α)
k defined by (2.2) fulfils

a
(α)
k−1 >

τ t−α
k

�(1 − α)
> a

(α)
k , a

(α)
k−1 − a

(α)
k > a

(α)
k − a

(α)
k+1, k ≥ 1 .

Proof The decreasing property of function x−α yields

a
(α)
k−1 =

∫ tk

tk−1

s−α ds

�(1 − α)
>

τ t−α
k

�(1 − α)
> a

(α)
k , k ≥ 1.

Lemma 2.2 in [22] shows that a(α)
k is concave and completes the proof.

Lemma 2.2 The positive coefficient b(α)
k defined by (2.3) fulfils b

(α)
k−1 > b

(α)
k , k ≥ 1.

Proof Note that τb
(α)
k−1 represents numerical error of the trapezoidal formula for the

convex function s1−α/�(2 − α) in the cell [tk−1, tk] and there exists ξk ∈ (tk−1, tk)

(k ≥ 1) such that

b
(α)
k−1 = 1

τ

∫ tk

tk−1

s1−α ds

�(2 − α)
− t1−α

k + t1−α
k−1

2�(2 − α)
= ατξ−1−α

k

12�(1 − α)
>

ατ t−1−α
k

12�(1 − α)
> b

(α)
k > 0,

where the decreasing property of function x−1−α has been used. The proof is
completed.

Lemma 2.3 For a
(α)
k and b

(α)
k defined by (2.2) and (2.3), respectively, b(α)

k < 1
2a

(α)
k

for k ≥ 0.

Proof The proof of Lemma 3 in [1] implies that

1

2
< χα(λ) � (λ + 1)2−α − λ2−α − (2 − α)λ1−α

(2 − α)
[
(λ + 1)1−α − λ1−α

] � 1

2 − α
, ∀ λ ≥ 0.

It is easy to check that

(k + 1)2−α − k2−α

2 − α
− (k + 1)1−α + k1−α

2
=
(
χα(k) − 1

2

) [
(k + 1)1−α − k1−α

]
, k ≥ 0.

We apply the definition (2.2) and (2.3) to get

b
(α)
k =

(
χα(k) − 1

2

)
a

(α)
k � α

2(2 − α)
a

(α)
k <

1

2
a

(α)
k , k ≥ 0,

which ensures the lemma.
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As done in [10], the Caputo’s BDF2 approximation Dα
B2g

n is constructed as fol-
lows. In each cell [tk−1, tk] (2 � k � n), the quadratic interpolating polynomial
�2,kg(t) (2 � k � n) of three points (tk−2, g(tk−2)), (tk−1, g(tk−1)), and (tk, g(tk))

is used and the linear interpolating polynomial �1,1g(t) is applied in the first small
cell [0, t1]. Thus, we have

Dα
B2g

n = 1

�(1 − α)

[∫ t1

t0

(
�1,1g(s)

)′ ds
(tn − s)α

+
n∑

k=2

∫ tk

tk−1

(
�2,kg(s)

)′ ds
(tn − s)α

]

=
n∑

k=1

a
(α)
n−k

(
δtg

k− 1
2
)+

n∑

k=2

b
(α)
n−k

(
δtg

k− 1
2 − δtg

k− 3
2
)
, n ≥ 1. (2.4)

Here and hereafter, the sums are always set to zero if the upper summation index is
less than the lower one. Note that, if α = 1, a

(α)
0 = 1, a

(α)
k = 0 (k ≥ 1), b

(α)
0 = 1

2

and b
(α)
k = 0 (k ≥ 1). Thus, the discrete formula reduces into the well-known BDF2

approximation of g′(t), limα→1Dα
B2g

n = 3
2 δtg

n− 1
2 − 1

2 δtg
n− 3

2 , n ≥ 2. This is
why we call (2.4) a Caputo’s BDF2 formula. The consistency of the fractional BDF2
formula is stated in the following lemma.

Lemma 2.4 [10] Suppose that 0 < α < 1 and g(t) ∈ C3[t0, tn]. For the Caputo’s
BDF2 formula Dα

B2g
n defined by (2.4), it holds that

∣
∣Dα

t g(t1) − Dα
B2g

1
∣
∣ � τ 2−α

2�(3 − α)
max

t0�t�t1

∣
∣g′′(t)

∣
∣ ,

∣
∣Dα

t g(tn) − Dα
B2g

n
∣
∣ � (tn − t1)

−1−ατ 3

12�(1 − α)
max

t0�t�t1

∣
∣g′′(t)

∣
∣+ 2τ 3−α

3�(3 − α)
max

t0�t�tn

∣
∣g′′′(t)

∣
∣ , n ≥ 2.

Hereafter, any subscripted C, such as Cg , Cρ , CPg , and CPu , denotes a generic
positive constant, not necessarily the same at different occurrences, which is always
dependent on the solution and the given data but independent of the grid parameters
τ , hα and h.

2.2 Numerical approximation for distributed-order derivatives

For a positive integer Nα , let hα = β/Nα and α
�− 1

2
= (� − 1

2 )hα , 1 � � � Nα . We

define the following coefficients

ak ≡ hα

Nα∑

�=1

a
(α

�− 1
2
)

k ρ(α
�− 1

2
) , bk ≡ hα

Nα∑

�=1

b
(α

�− 1
2
)

k ρ(α
�− 1

2
) , k ≥ 0, (2.5)

where a
(α

�− 1
2
)

k and b
(α

�− 1
2
)

k are defined by (2.2) and (2.3), respectively. According to
Lemmas 2.1–2.3, one can get the following three lemmas.
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Lemma 2.5 The positive coefficient ak defined by (2.5) fulfils

ak−1 > τ

Nα∑

�=1

hαρ(α
�− 1

2
)

�(1 − α
�− 1

2
)
t
−α

�− 1
2

k > ak, ak−1 − ak > ak − ak+1, k ≥ 1 .

Lemma 2.6 The positive coefficient bk defined by (2.5) satisfies bk−1 > bk , k ≥ 1.

Lemma 2.7 For the coefficients ak and bk defined by (2.5), bk < 1
2ak for k ≥ 0.

For simplcity of presentation, we define

dm(tk) �
Nα∑

�=1

hαρ(α
�− 1

2
)

�(m − α
�− 1

2
)
t
−α

�− 1
2

k , m ≥ 1, k ≥ 1. (2.6)

In error analysis, it is necessary to evaluate dm(tk) in detail. Now, we establish two
inequalities as follows. Note that the positive function q(x) = ∫ 10 x−α dα is decreas-
ing for x > 0 such that q(x) � q( 12 ) = 1

ln 2 � 2
ln 2 if x ≥ 1

2 . If x � 1
2 ,

q(x) = x−1−1
ln(x−1)

� x−1

ln(x−1)
. We get

q(x) �
max
(
x−1, 2

)

ln
(
max
(
x−1, 2

)) ≡ μ(x)

lnμ(x)
, x > 0, (2.7)

where μ(x) � max
(
x−1, 2

)
here and hereafter. On the other hand, q(x) =

1−x

x ln(x−1)
≥ x−1

2 ln(x−1)
if x � 1

2 . If x ≥ 1
2 , q(x) = x−1

∫ 1
0 x1−α dα ≥ x−1

∫ 1
0 2

α−1 dα =
x−1

2 ln 2 . Thus,

q(x) ≥ x−1

2 lnμ(x)
, x > 0. (2.8)

It is easy to check that t−β−1
ln(t−1)

= βq(tβ). Then, the inequalities (2.7)–(2.8) yield

βt−β

2 lnμ(tβ)
� t−β − 1

ln(t−1)
� βμ(tβ)

lnμ(tβ)
, t > 0. (2.9)

Lemma 2.8 Let ρ(α) ∈ C([0, β]). For the coefficients ak and dm(tk) defined by
(2.5)–(2.6),

(a)
Cρβ

2tβk lnμ(t
β
k )

� dm(tk) �
Cρβμ(t

β
k )

lnμ(t
β
k )

, m ≥ 1, k ≥ 1;

(b)
τ

ak−1
� Cρβ−1t

β
k lnμ(t

β
k ), k ≥ 1;

(c)
n∑

k=ν+1

an−k � Cρβtn−νμ(t
β
n−ν)

lnμ(t
β
n−ν)

, 0 � ν � n − 1.
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Proof From the definition (2.6), one has

dm(tk) ∼
∫ β

0

ρ(α)t−α
k

�(m − α)
dα = ρ(θ)

�(m − θ)

∫ β

0
t−α
k dα = ρ(θ)

�(m − θ)

t
−β
k − 1

ln(t−1
k )

, 0 < θ < 1.

Thus, the inequalities (a) follow from (2.9). Lemma 2.5 and the first inequality of
(a) yields the inequality (b), that is, τ

ak−1
< 1

d1(tk)
� Cρβ−1t

β
k lnμ(t

β
k ). From the

definitions (2.2) and (2.5), one applies the second inequality of (a) to get

n∑

k=ν+1

an−k =
Nα∑

�=1

hαρ(α
�− 1

2
)t
1−α

�− 1
2

n−ν

�(2 − α
�− 1

2
)

= tn−νd2(tn−ν) �
Cρβtn−νμ(t

β
n−ν)

lnμ(t
β
n−ν)

.

Thus, the inequality (c) is verified and the proof is completed.

Now, we combine the second-order midpoint formula for the weighted inte-
gral with the two interpolation-type formulas Dα

B1g
n and Dα

B2g
n defined above to

construct two numerical formulas to approximate the distributed-order fractional
derivative ρD

[α]
t g(tn). The first formula is a distributed-order BDF1 approximation,

ρD[α]
B1g

n = hα

Nα∑

�=1

ρ(α
�− 1

2
)D

α
�− 1

2
B1 gn =

n∑

k=1

an−k

(
δtg

k− 1
2
)
, n ≥ 1. (2.10)

Note that, if g(t) ∈ C2([0, tn]), the BDF1 formula (2.1) is consistent of order
O(τ 2−α), see [35],

∣
∣Dα

t g(tn) − Dα
B1g

n
∣
∣ � τ 2−α

2�(3 − α)
max

t0�t�tn

∣
∣g′′(t)

∣
∣ .

Thus, one applies Lemma 2.8 (a) with τ � 2−1/β to get

∣
∣
∣ρD

[α]
t g(tn) − ρD[α]

B1g
n
∣
∣
∣ �

Nα∑

�=1

hαρ(α
�− 1

2
)

∣
∣
∣
∣D

α
�− 1

2
t g(tn) − D

α
�− 1

2
B1 gn

∣
∣
∣
∣+ CPg h

2
α

� max
t0�t�tn

∣
∣g′′(t)

∣
∣ τ 2

Nα∑

�=1

hαρ(α
�− 1

2
)τ

−α
�− 1

2

2�(3 − α
�− 1

2
)

+ CPg h
2
α

� max
t0�t�tn

∣
∣g′′(t)

∣
∣ τ 2 d3(τ ) + CPg h

2
α � Cρτ 2−β |ln τ |−1 max

t0�t�tn

∣
∣g′′(t)

∣
∣+ CPg h

2
α .

Thus, we have the following lemma.

Lemma 2.9 Let g(t) ∈ C2([0, tn]), ρ(α) ∈ C([0, β]) and P[g](α) ∈ C2α[0, β]. Then
∣
∣
∣ρD

[α]
t g(tn) − ρD[α]

B1g
n
∣
∣
∣ � Cρτ 2−β |ln τ |−1 max

t0�t�tn

∣
∣g′′(t)

∣
∣+ CPgh

2
α .
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By applying the Caputo’s BDF2 approximation Dα
B2g

n defined in (2.4), we have

the following numerical formula to approximate the derivative ρD
[α]
t g(tn),

ρD[α]
B2g

n = hα

Nα∑

�=1

ρ(α
�− 1

2
)D

α
�− 1

2
B2 gn =

n∑

k=1

an−k

(
δtg

k− 1
2
)+

n∑

k=2

bn−k

(
δtg

k− 1
2 −δtg

k− 3
2
)
,

(2.11)
where n ≥ 1. In the analysis of distributed-order BDF2 formula, denote

ϒ(t) � βμ(tβ)

t lnμ(tβ)
, t > 0 . (2.12)

We have the following estimate for the distributed-order BDF2 formula (2.11).

Lemma 2.10 Let g(t) ∈ C3([0, tn]), ρ(α) ∈ C([0, β]) and P[g](α) ∈ C2α([0, β]).
Then
∣
∣
∣R1
∣
∣
∣ � Cρτ 2−β |ln τ |−1 max

t0�t�t1

∣
∣g′′(t)

∣
∣+ CPgh

2
α ,

∣
∣Rn
∣
∣ � Cρϒ(tn−1)τ

3 max
t0�t�t1

∣
∣g′′(t)

∣
∣+ Cρτ 3−β |ln τ |−1 max

t0�t�tn

∣
∣g′′′(t)

∣
∣+ CPgh

2
α, n ≥ 2,

where Rn = ρD
[α]
t g(tn) − ρD[α]

B2g
n, n ≥ 1, and ϒ(tn−1) is defined by (2.12).

Proof Applying and Lemma 2.8 (a) with τ � 2−1/β , one has

∣
∣
∣R1
∣
∣
∣ � max

t0�t�t1

∣
∣g′′(t)

∣
∣ τ 2

Nα∑

�=1

hαρ(α
�− 1

2
)τ

−α
�− 1

2

2�(3 − α
�− 1

2
)

+ CPgh
2
α

� τ 2d3(τ ) max
t0�t�t1

∣
∣g′′(t)

∣
∣+ CPgh

2
α � Cρτ 2−β |ln τ |−1 max

t0�t�t1

∣
∣g′′(t)

∣
∣+ CPgh

2
α .

Now, consider the case of n ≥ 2. Applying Lemma 2.8 with τ � 2−1/β , we have

K11 = τ 3

12

Nα∑

�=1

hαρ(α
�− 1

2
)t

−1−α
�− 1

2
n−1

�(1 − α
�− 1

2
)

� τ 3
d1(tn−1)

tn−1
� Cρϒ(tn−1)τ

3 ,

K12 = 2τ 3

3

Nα∑

�=1

hαρ(α
�− 1

2
)τ

−α
�− 1

2

�(3 − α
�− 1

2
)

� τ 3d3(τ ) � Cρτ 3−β |ln τ |−1 .

Then from Lemma 2.4, we obtain
∣
∣Rn
∣
∣ � max

t0�t�t1

∣
∣g′′(t)

∣
∣K11 + max

t0�t�tn

∣
∣g′′′(t)

∣
∣K12 + CPgh

2
α

� Cρϒ(tn−1)τ
3 max

t0�t�t1

∣
∣g′′(t)

∣
∣+ Cρτ 3−β |ln τ |−1 max

t0�t�tn

∣
∣g′′′(t)

∣
∣+ CPgh

2
α .

It completes the proof.
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3 The scheme using CBDF1 approximation

Let h = L/M for a positive integer M and xi = ih, 0 � i � M. Let the discrete
grid �̄h = {xi | 0 � i � M}, �h = �̄h ∩ � and the boundary ∂�h = �̄h ∩ ∂�.

Given grid function vh = {vi | xi ∈ �̄h

}
, we denote δxvi− 1

2
= (vi − vi−1)/h and

δ2xvi = (δxvi+ 1
2

− δxvi− 1
2

)
/h.

Let un
i be the numerical approximation of the solution Un

i = u(xi, tn). As done in
[29], one has the fractional backward Euler methods for solving (1.2)–(1.4),

ρD[α]
B1u

n
i = δ2xu

n
i + f n

i , xi ∈ �h, 1 � n � N, (3.1)

un
i = ub(xi, tn), xi ∈ ∂�h, 1 � n � N; u0i = ϕ(xi), xi ∈ �̄h. (3.2)

where ρD[α]
B1u

n
i is defined by (2.10). For simplicity, we call it the CBDF1 method.

3.1 The minimum-maximum principle

Let Vh = {vh

∣
∣ vh vanishes on ∂�h

}
be the space of grid functions. For any grid

function vh ∈ Vh, we introduce
∥
∥v
∥
∥∞ = maxxi∈�h

∣
∣vi

∣
∣.

Lemma 3.1 Assume the function wh ∈ Vh satisfies Lhwi ≡ dwi − δ2xwi = ξi for
xi ∈ �h, where the constant d > 0. Then it hold that

min
{
0, min

xj ∈�h

ξj /d
}
� wi � max

{
0, max

xj ∈�h

ξj /d
}
, xi ∈ �h.

Proof This proof is standard, see [30].

Lemma 3.2 Let
{
ω

(n)
l | 0 � l � n−1, n ≥ 1

}
be a time-level-dependent sequence of

positive numbers with the decreasing property, that is, ω(n)
l−1 ≥ ω

(n)
l for 1 � l � n−1,

n ≥ 2. Assume that the grid function vn
h ∈ Vh, 0 � n � N , satisfies

n∑

k=1

ω
(n)
n−k(δtv

k− 1
2

i ) − δ2xv
n
i = ξn

i , xi ∈ �h, 1 � n � N, (3.3)

v0i = φi, xi ∈ �̄h, (3.4)

Then it hold that, for k ≥ 1,

min
{
0, min

xj ∈�h

φj +τ min
xj ∈�h
1�l�k

ξ l
j

ω
(l)
l−1

}
� vk

i � max
{
0, max

xj ∈�h

φj +τ max
xj ∈�h
1�l�k

ξ l
j

ω
(l)
l−1

}
, xi ∈ �h.

(3.5)

Proof For simplicity, denote

Ek
min = min

{
0, min

xj ∈�h

φj +τ min
xj ∈�h
1�l�k

ξ l
j

ω
(l)
l−1

}
, Ek

max = max
{
0, max

xj ∈�h

φj +τ max
xj ∈�h
1�l�k

ξ l
j

ω
(l)
l−1

}
, k ≥ 1,
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such that

E1
min ≥ E2

min ≥ · · · ≥ En
min, E1

max � E2
max � · · · � En

max .

Take n = 1, the difference (3.3) reads

ω
(1)
0

τ
v1 − δ2xv

1
i = ω

(1)
0

τ
v0 + ξ1i , xi ∈ �h.

Then Lemma 3.1 implies (3.5) for k = 1. Assuming that (3.5) holds for 1 � k � n−1
(n ≥ 1),

Ek
min � vk

i � Ek
max , xi ∈ �h, 1 � k � n − 1 .

It is easy to check that

�n
i ≡ 1

ω
(n)
0

n−1∑

l=1

(
ω

(n)
n−l−1 − ω

(n)
n−l

)
vl
i + ω

(n)
n−1

ω
(n)
0

(
v0i + τ

ω
(n)
n−1

ξn
i

)

≥ 1

ω
(n)
0

n−1∑

l=1

(
ω

(n)
n−l−1 − ω

(n)
n−l

)
El

min + ω
(n)
n−1

ω
(n)
0

En
min ≥ En

min ,

�n
i � 1

ω
(n)
0

n−1∑

l=1

(
ω

(n)
n−l−1 − ω

(n)
n−l

)
El

max + ω
(n)
n−1

ω
(n)
0

En
max � En

max .

We write the difference (3.3) as

ω
(n)
0

τ
vn
i − δ2xv

n
i = ω

(n)
0

τ
�n

i , xi ∈ �h .

It follows from Lemma 3.1 that

En
min � min

{
0, min

xj ∈�h

�n
j

}
� vn

i � max
{
0, max

xj ∈�h

�n
j

}
� En

max , xi ∈ �h .

Thus, (3.5) holds for k = n. The principle of mathematical induction completes the
proof.

Theorem 3.3 Let the grid function vn
h ∈ Vh, 0 � n � N , satisfies

ρD[α]
B1v

n
i = δ2xv

n
i + ξn

i , xi ∈ �h, 1 � n � N,

v0i = φi, xi ∈ �̄h.

Then it hold that, for k ≥ 1,

min
{
0, min

xj ∈�h

φj+τ min
xj ∈�h
1�l�k

ξ l
j

al−1

}
� vk

i � max
{
0, max

xj ∈�h

φj+τ max
xj ∈�h
1�l�k

ξ l
j

al−1

}
, xi ∈ �h.

Proof According to Lemma 2.5, the coefficient al is positive and decreasing. We
complete the proof by taking ω

(n)
l = al (0 � l � n − 1) in Lemma 3.2.



856 Numer Algor (2017) 75:845–878

3.2 Stability and convergence

If the boundary data ub(x, t) = 0, Theorem 3.3 implies that the discrete solution un
h

of the CBDF1 scheme (3.1)–(3.2) satisfies

∥
∥un
∥
∥∞ �

∥
∥u0
∥
∥∞ + max

1���n

τ

a�−1

∥
∥f (·, t�)

∥
∥∞ , n ≥ 1.

Furthermore, if u0(x) ≥ 0 and f (x, t) ≥ 0, Theorem 3.3 implies the nonnegativity
of the discrete solution, that is, un

i ≥ 0 for xi ∈ �h, n ≥ 1.

Theorem 3.4 The CBDF1 scheme (3.1)–(3.2) is nonnegative-preserving and stable
in the maximum norm.

The error function en
h = Un

h − un
h ∈ Vh satisfies the error system

ρD[α]
B1e

n
i = δ2xe

n
i + (R1)

n
i , xi ∈ �h, 1 � n � N,

e0i = 0, xi ∈ �̄h .

According to Lemma 2.9, one has
∥
∥(R1)

k
∥
∥∞ � CPu(τ

2−β |ln τ |−1+h2α +h2), k ≥ 1.
Thus, we apply Theorem 3.3 and Lemma 2.8 (b) to find

∥
∥en
∥
∥∞ � τ max

1�k�n

∥
∥(R1)

k
∥
∥∞

ak−1
� CPu max

1�k�n
β−1t

β
k lnμ(t

β
k )(τ 2−β |ln τ |−1+h2α+h2) .

(3.6)

Theorem 3.5 Let ρ(α) ∈ C([0, β]), P[u](α) ∈ C2α([0, β]) and u(x, t) ∈ C4,2x,t (�̄ ×
[0, T ]) be a smooth solution of the subdiffusion problem (1.2)–(1.4). The numerical
solution of the CBDF1 scheme (3.1)–(3.2) is convergent in the maximum norm in the
sense of (3.6).

We remark that, the error estimate (3.6) suggest that the first-level solution u1h of
the CBDF1 scheme (3.1)–(3.2) is second-order accurate in time, that is,

∥
∥
∥U1 − u1

∥
∥
∥∞ � CPu

(
τ 2 + τβ |ln τ | (h2α + h2)

)
, (3.7)

which has been verified by numerical tests for smooth solution, see Fig. 2 in
Section 5. Nonetheless, the distributed-order diffusion operator has only limited
smoothing property [15]. Actually, for single-term fractional Caputo derivative,
the Caputo’s BDF1 formula (2.1) is first-order accurate, see Lemma 3.2 in [14],∣
∣Dα

t g(tn) − Dα
B1g

n
∣
∣ � Cgt

−1
n τ if g′(t) = O(tα−1). If β = 1, the CBDF1 scheme

(3.1)–(3.2) maintains first-order temporal accuracy for practical solutions of the
subdiffusion problem (1.2)–(1.3) with smooth initial data. In this case, the proof
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of Lemma 2.9 gives
∥
∥(R1)

k
∥
∥∞ � CPu(t

−1
k τ + h2α + h2), k ≥ 1. Then, the

minimum-maximum Theorem 3.3 implies the first-order convergence in time,
∥
∥en
∥
∥∞ � CPu max

1�k�n
ln
(
max(t−1

k , 2)
)
τ + CPu(h

2
α + h2) ,

which coincides with the temporal error estimate of convolution quadrature approxi-
mation generated by the backward Euler method, see Theorem 5.2 in [15].

4 The scheme using CBDF2 approximation

By applying the distributed-order BDF2 approximation (2.11), we construct the
following CBDF2 method for approximating the problem (1.2)–(1.4),

ρD[α]
B2u

n
i = δ2xu

n
i + f n

i , xi ∈ �h, 1 � n � N, (4.1)

un
i = ub(xi, tn), xi ∈ ∂�h, 1 � n � N; u0i = ϕ(xi), xi ∈ �̄h. (4.2)

4.1 Stability

For two grid functions vh, wh, define the discrete inner product 〈v,w〉 =
h
∑M

i=1 viwi and
∥
∥v
∥
∥ = √ 〈v, v〉 . For any grid function vh ∈ Vh, introduce

∥
∥δxv
∥
∥ =

√
h
∑M

i=1 |δxvi− 1
2
|2 and

∥
∥δ2xv
∥
∥ =

√
h
∑M−1

i=1 |δ2xvi |2 . For any vh ∈ Vh,

we have
〈
v,−δ2xv

〉 = ∥∥δxv
∥
∥2 and

∥
∥v
∥
∥ � L√

6

∥
∥δxv
∥
∥ . (4.3)

We present the following lemmas, which are necessary in the discrete energy
analysis.

Lemma 4.1 [23] Let {ωl | l ≥ 0} be a sequence of real numbers with the properties,

ωl ≥ 0, ωl−1 ≥ ωl, ωl+1 − 2ωl + ωl−1 ≥ 0.

Then for any positive integer n, and real vector (V1, V2, · · · , Vn) with n real entries,

n∑

k=1

Vk

(
k∑

l=1

ωk−lVl

)

≥ 0.

Lemma 4.2 Let {ωk | k ≥ 0} be a positive and decreasing sequence of real numbers.
Then for any positive integer n, and real vector (V1, V2, · · · , Vn) with n real entries,

2
n∑

k=�

Vk

k∑

l=�

ωk−l(Vl − Vl−1) ≥
n∑

k=�

ωn−kV
2
k −

n∑

k=�

ωn−kV
2
�−1 , n ≥ � ≥ 1.
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Proof Applying the inequality 2ab ≥ −a2 − b2, it is not difficult to get

2Vk

k∑

l=�

ωk−l (Vl − Vl−1) = 2Vk

[

ω0Vk −
k−1∑

l=�

(ωk−l−1 − ωk−l )Vl − ωk−�V�−1

]

≥ 2ω0V
2
k −

k−1∑

l=�

(ωk−l−1 − ωk−l )(V
2
l + V 2

k ) − ωk−�(V
2
�−1 + V 2

k )

≥ ω0V
2
k −

k−1∑

l=�

(ωk−l−1 − ωk−l )V
2
l − ωk−�V

2
�−1 =

k∑

l=�

ωk−lV
2
l −

(k−1)∑

l=�

ω(k−1)−lV
2
l − ωk−�V

2
�−1.

Summing the inequality from k = � to n, one has

2
n∑

k=�

Vk

k∑

l=�

ωk−l (Vl −Vl−1) ≥
n∑

k=�

ωn−kV
2
k −

n∑

k=�

ωk−�V
2
�−1 =

n∑

k=�

ωn−kV
2
k −

n∑

k=�

ωn−kV
2
�−1.

It completes the proof.

Lemma 4.3 Let un
h ∈ Vh, 1 � n � N , solves the CBDF2 method (4.1)–(4.2) with

ub(x, t) = 0 and f (x, t) = 0. Then it holds that

∥
∥δxu

n
∥
∥2 � τ

n∑

k=2

bn−k

∥
∥δtu

1
2
∥
∥2+∥∥δxϕ

∥
∥2 � τ

a20

n∑

k=2

bn−k

∥
∥δ2xϕ

∥
∥2+∥∥δxϕ

∥
∥2 , n ≥ 1.

Proof Taking the inner product of the difference (4.1) by 2τδtu
n− 1

2
i , one applies the

first discrete Green’s formula to find

2τ
〈
ρD[α]

B2u
n, δtu

n− 1
2
〉+∥∥δxu

n
∥
∥2−∥∥δxu

n−1
∥
∥2+τ 2

∥
∥δt δxu

n− 1
2
∥
∥2 = 0, 1 � n � N,

(4.4)
where the equality 2An(An − An−1) = (An)2 − (An−1)2 + (An − An−1)2 has been
used. Summing (4.4) for the index n from 1 to k and replacing k with n, one has

2τ
n∑

k=1

〈
ρD[α]

B2u
k, δtu

k− 1
2
〉+ ∥∥δxu

n
∥
∥2 �

∥
∥δxϕ

∥
∥2, n ≥ 1. (4.5)

Lemma 2.5 shows that al ≥ 0, al−1 ≥ al and al+1 − 2al + al−1 ≥ 0 for l ≥ 1. Thus,

taking ωl = al and Vl = δtu
l− 1

2
i in Lemma 4.1, it is not difficult to get

Kn
21 � 2τ

n∑

k=1

〈 k∑

l=1

ak−l

(
δtu

l− 1
2
)
, δtu

k− 1
2

〉
≥ 0.

Lemma 2.6 states that {bk | k ≥ 0} is a positive and decreasing sequence of real

numbers. Taking � = 2, ωl = bl and Vl = δtu
l− 1

2
i in Lemma 4.2, we can get

Kn
22 � 2τ

n∑

k=2

〈 k∑

l=2

bk−l

(
δtu

l− 1
2 −δtu

l− 3
2
)
, δtu

k− 1
2

〉
≥ τ

n∑

k=2

bn−k

∥
∥δtu

k− 1
2
∥
∥2−τ

n∑

k=2

bn−k

∥
∥δtu

1
2
∥
∥2.
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Thus applying the definition (2.11), we have

2τ
n∑

k=1

〈
ρD[α]

B2u
k, δtu

k− 1
2
〉 =

2∑

�=1

Kn
2� ≥ τ

n∑

k=2

bn−k

∥
∥δtu

k− 1
2
∥
∥2 − τ

n∑

k=2

bn−k

∥
∥δtu

1
2
∥
∥2 .

(4.6)
Inserting the estimate (4.6) into (4.5), one gets

τ

n∑

k=2

bn−k

∥
∥δtu

k− 1
2
∥
∥2 + ∥∥δxu

n
∥
∥2 � τ

n∑

k=2

bn−k

∥
∥δtu

1
2
∥
∥2 + ∥∥δxϕ

∥
∥2 , n ≥ 1. (4.7)

Recalling ρD[α]
B2u

1 = a0(δtu
1
2 ) and taking the inner product of (4.1) with n = 1 by

−2τδt δ
2
xu

1
2
i , one applies the first discrete Green’s formula to get

∥
∥δ2xu

1
∥
∥ �

∥
∥δ2xϕ

∥
∥.

Thus, the (4.1) of n = 1 gives
∥
∥δtu

1
2
∥
∥ = a−1

0

∥
∥δ2xu

1
∥
∥ � a−1

0

∥
∥δ2xϕ

∥
∥ . Inserting it into

(4.7), we obtain the claimed estimate and complete the proof.

To prove the stability with respect to the external force, we need the following
lemma.

Lemma 4.4 For any ε > 0, real sequences
{
wk | k ≥ � − 1 ≥ 0

}
and{

f k | k ≥ � ≥ 1
}
,

2τ
k∑

l=�

f l(δtw
l− 1

2 ) � 1

ε

[

(w�−1)2 + τ

k−1∑

l=�

(wl)2 + (wk)2

]

+ε

[

(f �)2 + τ

k−1∑

l=�

(
δtf

l+ 1
2
)2 + (f k)2

]

.

Proof For k ≥ � ≥ 1,

2τ
k∑

l=�

f l(δtw
l− 1

2 ) = −2w�−1f � − 2τ
k−1∑

l=�

wl
(
δtf

l+ 1
2
)+ 2wkf k .

Thus, the inequality 2ab � 1

ε
a2 + εb2 yields the claimed result.

For the simplicity of presentation, given grid function vn
h , we denote further

∥
∥vn
∥
∥

�
�

√√
√
√∥∥v2

∥
∥2 + τ

n−1∑

l=2

∥
∥δtv

l+ 1
2
∥
∥2 + ∥∥vn

∥
∥2 , n ≥ 2. (4.8)

Lemma 4.5 Let the grid function vn
h ∈ Vh, 0 � n � N , satisfies

ρD[α]
B2v

n
i = δ2xv

n
i + ξn

i , xi ∈ �h, 1 � n � N, (4.9)

v0i = 0, xi ∈ �̄h . (4.10)
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Then it holds that

∥
∥δxv

1
∥
∥2 � τ

a0

∥
∥ξ1
∥
∥2,

∥
∥δxv

n
∥
∥2 � exp(tn)

(
5τ

a20

n∑

k=2

an−k

∥
∥ξ1
∥
∥2 + 2L2

3

∥
∥ξn
∥
∥2

�

)

, n ≥ 2,

where
∥
∥ξn
∥
∥

�
is defined by (4.8).

Proof Taking the inner product of (4.9) with n = 1 by τδtv
1
2
i , one has

a0τ
∥
∥δtv

1
2
∥
∥2 + ∥∥δxv

1
∥
∥2 � τ

〈
ξ1, δt v

1
2
〉
� τ
∥
∥δtv

1
2
∥
∥
∥
∥ξ1
∥
∥ ,

where the zero-valued data (4.10) and the Cauchy-Schwarz inequality has been used.
Then

∥
∥δtv

1
2
∥
∥ � 1

a0

∥
∥ξ1
∥
∥, a0τ

∥
∥δtv

1
2
∥
∥2 + ∥∥δxv

1
∥
∥2 � τ

a0

∥
∥ξ1
∥
∥2 . (4.11)

It yields the claimed estimate of n = 1. Consider the case of n ≥ 2. Taking the inner

product of the (4.9) by 2τδtv
n− 1

2
i , one applies the first discrete Green’s formula to get

2τ
〈
ρD[α]

B2v
n, δtv

n− 1
2
〉+ ∥∥δxv

n
∥
∥2 − ∥∥δxv

n−1
∥
∥2 + τ 2

∥
∥δt δxv

n− 1
2
∥
∥2 = 2τ

〈
ξn, δtv

n− 1
2
〉
.

Summing it for the index n from 2 to k and replacing k with n, one has

2τ
n∑

k=2

〈
ρD[α]

B2v
k, δtv

k− 1
2
〉+ ∥∥δxv

n
∥
∥2 − ∥∥δxv

1
∥
∥2 � 2τ

n∑

k=2

〈
ξk, δtv

k− 1
2
〉
, n ≥ 2.

(4.12)
As done in the proof of Lemma 4.3, we have

2τ
n∑

k=2

〈 k∑

l=1

ak−l

(
δt v

l− 1
2
)
, δt v

k− 1
2

〉
≥ −2a0τ

∥
∥δt v

1
2
∥
∥2,

2τ
n∑

k=2

〈 k∑

l=2

bk−l

(
δt v

l− 1
2 − δt v

l− 3
2
)
, δt v

k− 1
2

〉
≥ τ

n∑

k=2

bn−k

∥
∥δt v

k− 1
2
∥
∥2 − τ

n∑

k=2

bn−k

∥
∥δt v

1
2
∥
∥2,

and then

2τ
n∑

k=1

〈
ρD[α]

B2v
k, δt v

k− 1
2
〉 ≥ τ

n∑

k=2

bn−k

∥
∥δtv

k− 1
2
∥
∥2−τ

n∑

k=2

bn−k

∥
∥δtv

1
2
∥
∥2−2a0τ

∥
∥δtv

1
2
∥
∥2 .

(4.13)
We apply Lemma 4.4 with ε = 3L2 and the embedding inequality (4.3) to obtain

2τ
n∑

k=2

〈
ξk, δt v

k− 1
2
〉
� 3

L2

(∥
∥v1
∥
∥2 + τ

n−1∑

l=2

∥
∥vl
∥
∥2 + ∥∥vn

∥
∥2
)

+ L2

3

∥
∥ξn
∥
∥2

�

� 1

2

∥
∥δxv

n
∥
∥2+ τ

2

n−1∑

l=2

∥
∥δxvl

∥
∥2+ 1

2

∥
∥δxv1

∥
∥2+ L2

3

∥
∥ξn
∥
∥2

�
.

(4.14)
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Inserting the estimates (4.13)–(4.14) into (4.12), we apply the first-level estimate
(4.11) and Lemma 2.7 to find

∥
∥δxvn

∥
∥2 � τ

n−1∑

l=2

∥
∥δxvl

∥
∥2 + 2τ

n∑

k=2

bn−k

∥
∥δt v

1
2
∥
∥2 + 4a0τ

∥
∥δt v

1
2
∥
∥2 + 3

∥
∥δxv1

∥
∥2 + 2L2

3

∥
∥ξn
∥
∥2

�

� τ

n−1∑

l=2

∥
∥δxvl

∥
∥2 + 2τ

a20

n∑

k=2

bn−k

∥
∥ξ1
∥
∥2 + 4τ

a0

∥
∥ξ1
∥
∥2 + 2L2

3

∥
∥ξn
∥
∥2

�

� τ

n−1∑

l=2

∥
∥δxvl

∥
∥2 + 5τ

a20

n∑

k=2

an−k

∥
∥ξ1
∥
∥2 + 2L2

3

∥
∥ξn
∥
∥2

�
.

The discrete Gronwall inequality yields the claimed estimate and completes the
proof.

Lemmas 4.3 and 4.5 imply the following result.

Theorem 4.6 The CBDF2 scheme (4.1)–(4.2) is stable in the discrete H 1 norm.

4.2 Convergence

The error function en
h = Un

h − un
h ∈ Vh satisfies the following error system

ρD[α]
B2e

n
i = δ2xe

n
i + (R2)

n
i , xi ∈ �h, 1 � n � N, (4.15)

e0i = 0, xi ∈ �̄h , (4.16)

where (R2)
n
i denotes the truncation error at time t = tn. According to Lemma 2.10,

one has
∣
∣
∣(R2)

1
∣
∣
∣ � CPu,0(τ

2−β |ln τ |−1 + h2α + h2) , (4.17)
∣
∣(R2)

n
∣
∣ � CPu,0ϒ(tn−1)τ

3 + CPu(τ
3−β |ln τ |−1 + h2α + h2), n ≥ 2,(4.18)

where the first-level-dependent factor ϒ(tn−1) is defined by (2.12).
Taking small time-step τ � 2−1/β , we apply Lemma 2.8 (b) to get τ

a0
�

Cρτβ |ln τ |. Thus, Lemma 4.5 together with the truncation error (4.17) yields the
first-level error estimate,

∥
∥δxe

1
∥
∥ �
√

τ

a0

∥
∥(R2)

1
∥
∥ � CPu

(
τ 2−

β
2 |ln τ |− 1

2 + h2α + h2
)
. (4.19)

Assuming further that g(t) ∈ C4([t2, T ]), Lemma 2.10 also yields
∣
∣
ρD

[α]
t g′(t

k+ 1
2
)−ρD[α]

B2(δtg
k+ 1

2 )
∣
∣ � CPg,0ϒ(t

k− 1
2
)τ 3+CPg (τ

3−β |ln τ |−1+h2α +h2), k ≥ 2.

Then, following the technique in [21], one can apply the formula of Taylor expansion
with integral remainder to obtain
∥
∥δt (R2)

k+ 1
2
∥
∥ � CPu,0ϒ(t

k− 1
2
)τ 3 + CPu(τ

3−β |ln τ |−1 + h2α + h2) , k ≥ 2.
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It follows from the definition (4.8) that
∥
∥(R2)

n
∥
∥

�2
� CPu,0ϒ(tn−1)τ

3 + CPu(τ
3−β |ln τ |−1 + h2α + h2) , n ≥ 2. (4.20)

From (2.12), ϒ(tn−1) = 2β
ln 2 t

−1
n−1 if t

β

n−1 ≥ 1
2 and ϒ(tn−1) � β

ln 2 t
−1−β

n−1 if t
β

n−1 < 1
2 .

Thus,

ϒ(tn−1) �
β

ln 2
t−1
n−1μ(t

β

n−1), n ≥ 2 . (4.21)

Furthermore, applying Lemma 2.8 (b)-(c) with τ � 2−1/β , it is not difficult to obtain

τ

a20

n∑

k=2

an−k � Cρτ 2β−1 |ln τ |2 βtn−1μ(t
β

n−1)

lnμ(t
β

n−1)
� Cρβτ 2β−1 |ln τ |2 tn−1μ(t

β

n−1), n ≥ 2.

(4.22)
Therefore, we apply Lemma 4.5 and the embedding inequality (4.3) to find

∥
∥δxe

n
∥
∥ � exp

( tn
2

)
√√
√
√5τ

a20

n∑

k=2

an−k

∥
∥(R2)1

∥
∥2 + 2L2

3

∥
∥(R2)n

∥
∥2

�

� CPu,0

√
max
(
t
1−β

n−1 , 2tn−1
)
τβ− 1

2 |ln τ | (τ 2−β |ln τ |−1 + h2α + h2
)

+CPu,0 max
(
t
−β

n−1, 2
)
t−1
n−1τ

3+CPu

(
τ 3−β |ln τ |−1+ h2α + h2

)
, n ≥ 2,

(4.23)

where the estimates (4.17)–(4.20) of truncation errors and (4.21)–(4.22) has been
applied.

Theorem 4.7 Assume that ρ(α) ∈ C([0, β]), P[u](α) ∈ C2α([0, β]) and the subdif-
fusion problem (1.2)–(1.4) admits a smooth solution u(x, t) ∈ C4,3x,t (�̄ × [0, T ]) ∩
C4,4x,t (�̄ × (0, T ]). The solution of the CBDF2 scheme (4.1)–(4.2) is convergent in the
sense of (4.19) and (4.23).

It is seen that the first-level-dependent factor ϒ(tn−1) dominates the global error
when the integration time tn is close to t = 0 such that the main lose of temporal
accuracy in (4.23) is due to the application of Caputo’s BDF1 formula (2.1) at t = t1.
However, numerical tests in next section show that, in resolving smooth solutions,
the CBDF2 scheme (4.1)–(4.2) is second-order accurate in time. Maybe, the lose of
theoretical accuracy is only a fault of the present H 1 discrete energy analysis rather
than practical effectiveness of the CBDF2 method. To see it more clearly, in next
subsection, we apply the method of maximum principle to resolve the theoretical
deficiency partly.

4.3 Improved analysis for β � 1/3

The fractional BDF2 formula (2.4) also takes the form of

Dα
B2g

n =
n∑

k=1

c
(n,α)
n−k

(
δtg

k− 1
2
)
, n ≥ 1,
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The coefficient c(n,α)
k is defined by [10]

c
(1,α)
0 = a

(α)
0 ; c

(n,α)
k =

⎧
⎪⎨

⎪⎩

a
(α)
0 + b

(α)
0 , k = 0,

a
(α)
k + b

(α)
k − b

(α)
k−1, 1 � k � n − 2,

a
(α)
n−1 − b

(α)
n−2, k = n − 1,

n ≥ 2;

(4.24)

where a
(α)
k and b

(α)
k are defined by (2.2) and (2.3), respectively. We have the

following results.

Lemma 4.8 For 0 < α < 1 and x ≥ 1, p1(x) = (x+2)1−α+x1−α

2 − (x+1)2−α−x2−α

2−α
> 0.

Proof Consider the consistency error of the trapezoidal formula for s1−α in [x, x+1],
∫ x+1

x

s1−α ds − (x + 1)1−α + x1−α

2
= α(1 − α)

12(x + μ1)1+α
, 0 < μ1 < 1.

Then, we apply the mean-value theorem to get

p1(x) = (x + 2)1−α + x1−α

2
−
∫ x+1

x

s1−α ds = (x + 2)1−α − (x + 1)1−α

2
− α(1 − α)

12(x + μ1)1+α

= 1 − α

2(x + μ2)α
− α(1 − α)

12(x + μ1)1+α
≥ 1 − α

2(x + μ2)
− α(1 − α)

12(x + μ1)

= (1 − α) [(6 − α)x + 6μ1 − αμ2]

12(x + μ1)(x + μ2)
≥ (1 − α) (6 + 6μ1 − 3α)

12(x + μ1)(x + μ2)
> 0, x ≥ 1,

where 0 < μ1 < 1 < μ2 < 2. The proof is completed.

Lemma 4.9 For positive constants d0 and d1, p2(d0, d1; s) = d02−s − d13−s − 1
is increasing monotonously for s � s∗ and decreasing for s > s∗, where s∗ =
ln
(

d1 ln 3
d0 ln 2

)
/ ln( 32 ).

Proof The claimed result follows from the fact, dp2
ds = 3−sd0 ln 2

(
d1 ln 3
d0 ln 2

−
(
3
2

)s)
.

Lemma 4.10 If 0 < α � 1/3, the coefficient c(n,α)
l defined by (4.24) is positive and

fulfils

(a) c
(n,α)
n−1 ≥ 1

2
a

(α)
n−1, n ≥ 1; (b) c

(n,α)
l−1 ≥ c

(n,α)
l , 1 � l � n − 1, n ≥ 2 .

Proof In this proof, the definitions (2.2), (2.3), and (4.24) of a
(α)
k , b

(α)
k , and c

(n,α)
k

will be used frequently and they will be not mentioned every time. If n � 2, c(1,α)
0 −

1
2a

(α)
0 = 1

2a
(α)
0 > 0,

c
(2,α)
1 −1

2
a

(α)
1 = τ 1−α

�(2 − α)

(
2−α− 1

2 − α

) ≥ τ 1−α

�(2 − α)

( 1√
2
−2

3

)
> 0, ∀ 0 < α � 1

2
.
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For the case of n ≥ 3, we apply Lemma 4.8 to get

c
(n,α)
n−1 − 1

2
a

(α)
n−1 = 1

2
a

(α)
n−1 − b

(α)
n−2 = τ 1−α

�(2 − α)
p1(n − 2) > 0, n ≥ 3.

Thus, the inequality (a) has been verified.
It is in position to prove the decreasing property of c

(n,α)
k . If n = 2, Lemma 2.1

shows that c(2,α)
0 − c

(2,α)
1 = a

(α)
0 + 2b(α)

0 − a
(α)
1 > 0. For the case of n ≥ 3, Lemma

2.2 in [10] gives the following results,

c
(n,α)
0 >

∣
∣c(n,α)

1

∣
∣, c

(n,α)
0 > c

(n,α)
2 ≥ c

(n,α)
3 ≥ · · · ≥ c

(n,α)
n−1 > 0, n ≥ 3.

Moreover, Lemma 2.2 means that c(3,α)
1 − c

(3,α)
2 = c

(n,α)
1 − c

(n,α)
2 + b

(α)
2 > c

(n,α)
1 −

c
(n,α)
2 , n ≥ 4. Thus, it remains to prove that c

(n,α)
1 > c

(n,α)
2 is valid for n ≥ 4 and

0 < α � 1
3 .

Thanks to Lemma 4.9, the maximum point of p2(2, 1; α) is α∗ =
ln
( ln 3
ln 4

)
/ ln( 32 ) < 0 so that p2(2, 1; α) � p2(2, 1; 0) = 0 for 0 � α � 1;

while the maximum point of p2(3, 2; α) locates at α� = ln
( ln 9
ln 8

)
/ ln( 32 ) > 0 and

p2(3, 2; α) ≥ min{p2(3, 2; 0), p2(3, 2; 1
4 )} = p2(3, 2; 0) = 0 for 0 � α � 1

4 . Then,
for n ≥ 4, we have (see the curves of P2(α, α) and P2(0, α) in Fig. 1)

�(3 − α)τα−1(c(n,α)
1 − c

(n,α)
2

) = �(3 − α)τα−1
[
a

(α)
1 − a

(α)
2 − b

(α)
2 + 2b(α)

1 − b
(α)
0

]

= 6p2(3, 2; α) − 3α

2
p2(2, 1; α) ≥ 6p2(3, 2; α) ≥ 0, 0 � α � 1

4
.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.1

−0.05

0
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0.08

P2(α,α)

P2(0,α)

P2(1/4,α)

Fig. 1 Curves of P2(λ, α) = 6p2(3, 2;α) − 3λ
2 p2(2, 1;α) for λ = α, 0 and 1/4
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Take d̄0 = 46
15 and d̄1 = 31

15 such that the maximum point of p2(d̄0, d̄1; α) locates near
α� > 0 and p2(d̄0, d̄1; α) ≥ min{p2(d̄0, d̄1; 0), p2(d̄0, d̄1; 1

3 )} = p2(d̄0, d̄1; 0) = 0
for 0 � α � 1

3 . It follows that (see the curves of P2(α, α) and P2(1/4, α) depicted in
Fig. 1)

�(3 − α)τα−1(c(n,α)
1 − c

(n,α)
2

) = 6p2(3, 2; α) − 3α

2
p2(2, 1; α) ≥ 6p2(3, 2; α) − 3

8
p2(2, 1; α)

= 45

8
p2(d̄0, d̄1;α) ≥ 0,

1

4
� α � 1

3
, n ≥ 4.

Therefore, we obtain (b) and complete the proof.

Now, define the following coefficient

c
(n)
k ≡ hα

Nα∑

�=1

c
(n,α

�− 1
2
)

k ρ(α
�− 1

2
) , 1 � k � n − 1, n ≥ 1. (4.25)

where c
(n,α

�− 1
2
)

k is defined by (4.24). Then Lemma 4.10 yields

Lemma 4.11 If 0 < β � 1/3, the coefficient c
(n)
l defined by (4.25) is positive and

fulfils

(a) c
(n)
n−1 ≥ 1

2
an−1, n ≥ 1; (b) c

(n)
l−1 ≥ c

(n)
l , 1 � l � n − 1, n ≥ 2 .

Also, the distributed-order BDF2 formula (2.11) reads ρD[α]
B2g

n =
∑n

k=1 c
(n)
n−k

(
δtg

k− 1
2
)
. Thanks to Lemma 4.11, one can take ω

(n)
l = c

(n)
l

(0 � l � n − 1) in Lemma 3.2 to get the following minimum-maximum principle.

Theorem 4.12 Assume that 0 < β � 1
3 and the function vn

h ∈ Vh, 0 � n � N ,
satisfies

ρD[α]
B2v

n
i = δ2xv

n
i + ξn

i , xi ∈ �h, 1 � n � N,

v0i = φi, xi ∈ �̄h.

Then it holds that, for k ≥ 1,

min
{
0, min

xj ∈�h

φj +2τ min
xj ∈�h
1�l�k

ξ l
j

al−1

}
� vk

i � max
{
0, max

xj ∈�h

φj +2τ max
xj ∈�h
1�l�k

ξ l
j

al−1

}
, xi ∈ �h.

It means that, if 0 < β � 1
3 , the CBDF2 scheme (4.1)–(4.2) is nonnegative-

preserving and stable in the maximum norm.
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Recalling the definition (2.12), we apply Lemma 2.8 (b) and tk � 2tk−1 (k ≥ 2)
to find

τ

ak−1
ϒ(tk−1) = t

β
k μ(t

β

k−1) lnμ(t
β
k )

tk−1 lnμ(t
β

k−1)
� 21+βt

β−1
k−1 , if t

β

k−1 ≥ 1

2
, k ≥ 2,

and τ
ak−1

ϒ(tk−1) � 2βt−1
k−1 if t

β

k−1 �
1
2 , k ≥ 2. Thus, it follows that

τ

ak−1
ϒ(tk−1) � 2βt−1

k−1 max
(
1, 2tβk−1

)
, k ≥ 2. (4.26)

We apply Theorem 4.12 to the error system (4.15)–(4.16) of the CBDF2 method and
obtain

∥
∥en
∥
∥∞ � 2τ max

1�k�n

∥
∥(R2)

k
∥
∥∞

ak−1
� Cρτβ |ln τ | ∥∥(R2)

1
∥
∥∞ + 2τ max

2�k�n

∥
∥(R2)

k
∥
∥∞

ak−1

� CPu,0τ
β |ln τ | (τ 2−β |ln τ |−1 + h2α + h2

)+ CPu,0τ
3 max
2�k�n

τ

ak−1
ϒ(tk−1)

+CPu max
2�k�n

t
β
k β−1 lnμ(t

β
k )
(
τ 3−β |ln τ |−1 + h2α + h2

)

� CPu,0τ
2 + CPu max

2�k�n
t
β
k β−1 lnμ(t

β
k )
(
τ 3−β |ln τ |−1 + h2α + h2

)
, n ≥ 1,

(4.27)

where the estimates (4.17)–(4.18) of truncation errors and (4.26) have been used.
Obviously, it improves the error estimate (4.23) derived by the H 1 discrete energy
analysis. In general, the CBDF2 scheme would not attain the time accuracy O(τ 3−β)

because the first-level solution u1h is only second-order accurate in time, see (3.7).

Theorem 4.13 Let 0 < β � 1
3 , ρ(α) ∈ C([0, β]), P[u](α) ∈ C2α([0, β]), and

the distributed-order subdiffusion problem (1.2)–(1.4) admits a smooth solution
u(x, t) ∈ C4,3x,t (�̄×[0, T ]). The numerical solution of the CBDF2 scheme (4.1)–(4.2)
is second-order convergent in the maximum norm in the sense of (4.27).

5 Numerical experiments

We examine the proposed CBDF1 (3.1)–(3.2) and CBDF2 (4.1)–(4.2) schemes by
running them onMATLAB in a PC with 4GB RAM. In this section, the temporal con-
vergence rate will be focused on since the standard second-order spatial discretization
has been well examined, see [11], for example. In our computations, the fractional-
order interval (0, β) and spatial domain � = (0, L) are divided uniformly into Nα

and M subintervals, respectively, with the grid lengths hα = β/Nα and h = L/M .
Also, the time interval [0, T ] is divided into N uniform parts with the step size τ =
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T/N . As usual, the maximum norm solution error e(N,Nα, M) = ∥∥U(·, T )−uN
∥
∥∞

at the final time t = T , is recorded in each run.

5.1 Accuracy verification

Example 1 The smooth solution u(x, t) = x(1 − x)(1 + t3) solves the following
problem,∫ β

0
�(4 − α)Dα

t u(x, t) dα = ∂2u

∂x2
+ f (x, t), 0 < x < 1, 0 < t � T ,

u(0, t) = 0, u(1, t) = 0, 0 < t � T ; u(x, 0) = x(1 − x), 0 � x � 1,

where f (x, t) = 2(t3 + 1) + 6x(1−x)
ln t

t3(t−β − 1) and T = 1.

We examine the solution error and convergence order by running the CDBF1
and CBDF2 method for Example 1 with β = 1/3, 1/2 and 1. Fixed the grid
spacings hα = 1/1200 and h = 1/1000, values small enough such that the spa-
tial and fractional-order error is negligible as compared with the temporal error, or
e(N,Nα, M) ≈ e(N). Tables 1 and 2 list the solution errors on the gradually refined
grids with the coarsest grid of N = 8. The experimental rate (listed as Rate in tables)
of convergence, in τ , is estimated by qτ ≈ log2 [e(N)/e(2N)] . It is observed that the
CBDF1 scheme (3.1)–(3.2) is of order O(τ 2−β) in time, which supports Theorem 3.5
experimentally. Table 2 implies that the time accuracy of the CBDF2 method (4.1)–
(4.2) is of order O(τ 3−β); however, it is mysterious to us. At least, the second-order
convergence for the case of β = 1 is confirmed numerically.

Since the twomethods have the same approximation for the integral with respect to
the fractional-order α, we only test it by using the CBDF2 scheme with β = 1. Given
small time and spatial steps τ = 2 × 10−4 and h = 10−3 such that e(N,Nα, M) ≈
e(Nα), Table 3 lists the CBDF2 solution errors on the gradually halving grids with the
coarsest grid of Nα = 4. The experimental rate of convergence, in hα , is estimated by
qα ≈ log2 [e(Nα)/e(2Nα)] . We see that the CBDF2 (or CBDF1) scheme is second-
order accurate in hα .

Table 1 Numerical accuracy in τ of CBDF1 solutions for Example 1 with hα = 1/1200, h = 1/1000,
and β = 1/3, 1/2, 1

β = 1/3 β = 1/2 β = 1

N e(N) Rate e(N) Rate e(N) Rate

8 2.9979e-04 1.6196 7.3591e-04 1.5287 4.2924e-03 1.1908

16 9.7560e-05 1.6534 2.5506e-04 1.5573 1.8803e-03 1.1930

32 3.1014e-05 1.6757 8.6665e-05 1.5742 8.2243e-04 1.1856

64 9.7078e-06 1.6911 2.9105e-05 1.5840 3.6156e-04 1.1741

128 3.0064e-06 ∗ 9.7085e-06 ∗ 1.6023e-04 ∗
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Table 2 Numerical accuracy in τ of CBDF2 solutions for Example 1 with hα = 1/1200, h = 1/1000,
and β = 1/3, 1/2, 1

β = 1/3 β = 1/2 β = 1

N e(N) Rate e(N) Rate e(N) Rate

8 2.4999e-05 2.6830 6.2390e-05 2.5885 4.0603e-04 2.2296

16 3.8928e-06 2.6972 1.0373e-05 2.5965 8.6573e-05 2.2112

32 6.0024e-07 2.7074 1.7151e-06 2.6008 1.8696e-05 2.1928

64 9.1899e-08 2.7149 2.8273e-07 2.6024 4.0893e-06 2.1755

128 1.3997e-08 ∗ 4.6558e-08 ∗ 9.0521e-07 ∗

5.2 Numerical comparisons

Example 2 [11] The solution u(x, t) = (2t)κ sin x solves the following problem,
∫ 1

0
�(κ + 1 − α)Dα

t u(x, t) dα = ∂2u

∂x2
+ f (x, t), 0 < x < π, 0 < t � T ,

u(0, t) = 0, u(π, t) = 0, 0 < t � T ; u(x, 0) = 0, 0 � x � π,

where f (x, t) = 2κ tκ−1 sin x
[
t + �(κ + 1) (t−1)

ln t

]
and T = 0.5.

Note that the second-order CBDF2 scheme (4.1)–(4.2) computes the first-level
solution by using the CBDF1 scheme (3.1)–(3.2) such that a second-order accurate
solution u1h will be needed. The first-level error of the CBDF1 solution is now exam-

ined by taking κ = 2 in Example 2 with ∂2u

∂t2
= O(1). Taking small grid lengths

h = hα = 10−3 such that the time error dominates the solution error, Fig. 2 depicts
log2 ‖U1−u1‖∞ against log2 τ for time-steps τ = 2−k (k = 6, 7, 8, 9, 10). By doing
a least square fitting, we get

log2 ‖U1 − u1‖∞ ≈ 1.9402 log2 τ − 0.9684 ,

which suggests the solution u1h is about second-order accuracy in time. The first-level
error estimate (3.7) is confirmed experimentally.

Now, we compare the CBDF2 method with a second-order WSG scheme, see
(3.11)–(3.13) in [11], which is constructed by applying a weighted and shifted
Grünwald formula to approximating the fractional derivative. Note that the two
schemes are only different in numerical approximations of fractional derivative such

Table 3 Accuracy in hα of
CBDF2 solution for Example 1
with N = 5000, M = 1000

Nα e(Nα) Rate

4 4.2653e-06 2.0115

8 1.0578e-06 2.0015

16 2.6418e-07 1.9949

32 6.6282e-08 *
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Fig. 2 Initial error at t1 = 2−k (k = 6, 7, 8, 9, 10) of CBDF1 solution

that the computational cost of them is about the same. Table 4 reports the max-
imum norm solution errors of three different solutions in Example 2 by setting
M = Nα = 103. It is observed that the time accuracy of CBDF2 scheme is compara-
ble with that of WSG scheme for κ = 2 and 3/2, while for κ = 1, the WSG scheme
has a lose of accuracy and the CBDF2 scheme has no temporal error.

Actually, for the solution of κ = 1, ∂2u

∂t2
= ∂3u

∂t3
= 0 such that the distributed-

order BDF2 formula (2.11) has no temporal error, see Lemma 2.10, and the CBDF2
scheme is exact in time direction. The numerical behavior for the case of κ = 3/2
may also be explained by our theory. In this case, ∂2u

∂t2
= O(t−1/2) such that the time

truncation error of (R2)
1 in (4.17) would degrade into O(τ

1
2 |ln τ |) and the first-level

error (4.19) becomes O(τ
3
2 ). Thus, the whole temporal accuracy can not exceed the

order ofO(τ
3
2 ). On the other hand, Lemma 2.10 implies that, to recover second-order

time accuracy for this type of solutions, one would improve the resolution for some
of solutions near t0 = 0 but not only the first-level solution. In next subsection, we
will improve the resolution by employing nonuniform meshes.

5.3 Nonuniform mesh and initial behaviors

In resolving the solution which lacks the smoothness near the initial time, nonuniform
meshes that concentrate the grid points near t = 0 would be necessary. We consider
a class of nonuniform grid, 0 = t0 < t1 < · · · < tN = T with tn = (nτ)m, where the
constant m ≥ 1 and τ = T 1/m/N . The larger the value of m, the stronger must be the
concentration of time levels near t = 0. Appendix presents the Caputo’s BDF1 and
BDF2 formulas on nonuniform mesh for approximating the Caputo derivative (1.1)
and distributed-order derivative (1.5).

Taking m = 1.5 and small grid spacings hα , h such that e(N,Nα, M) ≈ e(N),
Table 5 lists the nonuniform CBDF2 solution errors on the gradually refined meshes
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Table 4 Numerical accuracy in τ of solutions for Example 2 with M = Nα = 103

Second-order WSG [11] CBDF2

κ N e(N) Rate e(N) Rate

8 6.2773e-03 2.0295 1.5102e-03 2.2967

16 1.5375e-03 2.0078 3.0737e-04 2.2191

κ = 2 32 3.8230e-04 1.9916 6.6015e-05 2.1636

64 9.6135e-05 1.9548 1.4734e-05 2.0805

128 2.4799e-05 ∗ 3.4835e-06 ∗

8 6.4055e-04 1.6556 8.4038e-04 1.6990

16 2.0332e-04 1.6435 2.5883e-04 1.6265

κ = 3
2 32 6.5077e-05 1.6383 8.3830e-05 1.5936

64 2.0906e-05 1.6479 2.7776e-05 1.5652

128 6.6709e-06 ∗ 9.3863e-06 ∗

8 5.1877e-03 1.3421 3.3671e-07 −0.0036

16 2.0462e-03 1.2537 3.3754e-07 −0.0023

κ = 1 32 8.5812e-04 1.2020 3.3807e-07 −0.0012

64 3.7300e-04 1.1684 3.3836e-07 −0.0006

128 1.6595e-04 ∗ 3.3851e-07 ∗

with the coarsest grid of N = 8. The experimental rate of convergence, in τ , is
also estimated by computing qN ≈ log2 [e(N)/e(2N)] . We see that, for the solu-
tion u(x, t) = (2t)3/2 sin x, the CBDF2 scheme (4.1)–(4.2) on nonuniform mesh is
second-order accurate in time. It is not mysterious although a mathematical analy-
sis is not available. Roughly speaking, the nonuniform time mesh equals to make a
transform t = ξ3/2 for this solution, u(x, t) = v(x, ξ) = √

8 ξ9/4 sin x. Thus, the
resolution of v(x, ξn) near ξ0 = 0 will be improved essentially in the uniform grid of

ξn = nτ due to the fact, ∂2v

∂ξ2
= O(ξ

1
4 ).

Table 5 Improved accuracy in
τ for u = (2t)3/2 sin x with
m = 1.5, M = Nα = 103

N e(N) Rate

8 1.1966e-03 2.0360

16 2.9178e-04 2.0525

32 7.0340e-05 2.0772

64 1.6669e-05 2.1452

128 3.7684e-06 ∗
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Table 6 Numerical accuracy in τ of CBDF1 solution in resolving Example 3 with initial data ϕ1(x) for
grid parameters M = Nα = 103 and m = 1, 1.5, 2

m = 1.0 m = 1.5 m = 2.0

N ē(N) Rate ē(N) Rate ē(N) Rate

8 1.9132e-04 1.1274 1.1232e-04 1.3826 9.1884e-05 1.4383

16 8.7575e-05 1.0626 4.3079e-05 1.2544 3.3905e-05 1.3025

32 4.1929e-05 1.0343 1.8057e-05 1.1878 1.3746e-05 1.2335

64 2.0472e-05 1.0204 7.9266e-06 1.1514 5.8460e-06 1.1894

128 1.0092e-05 ∗ 3.5684e-06 ∗ 2.5633e-06 ∗
256 ∗ ∗ ∗ ∗ ∗ ∗

Example 3 Consider the following initial-boundary value problem
∫ 1

0
Dα

t u(x, t) dα = ∂2u

∂x2
, 0 < x < 1, 0 < t � 1,

u(0, t) = 0, u(1, t) = 0, 0 < t � 1; u(x, 0) = ϕk(x), 0 � x � 1,

where the initial data ϕk(x) (k = 1, 2) are defined by

ϕ1(x) = x(1 − x); ϕ2(x) =
{
2x, 0 � x � 1/2,

2(1 − x), 1/2 < x � 1.

We have no analytic solutions u(x, t) for this example.

Now, we examine the numerical behaviors of CBDF1 and CBDF2 schemes in
resolving Example 3 with two different initial data ϕ1(x) and ϕ2(x). As proven in
[15], this type of distributed-order diffusion problems always has limited smoothing
property near the initial time even with smooth initial data.

However, as remarked in the last part of Section 3, the CBDF1 scheme would also
have first-order accurate in time direction, see Tables 6 and 7, in which the CBDF1

Table 7 Numerical accuracy in τ of CBDF1 solution in resolving Example 3 with initial data ϕ2(x) for
grid parameters M = Nα = 103 and m = 1, 1.5, 2

m = 1.0 m = 1.5 m = 2.0

N ē(N) Rate ē(N) Rate ē(N) Rate

8 6.1084e-04 1.1266 3.5720e-04 1.3840 2.9066e-04 1.4399

16 2.7976e-04 1.0621 1.3687e-04 1.2562 1.0713e-04 1.3032

32 1.3398e-04 1.0340 5.7297e-05 1.1892 4.3413e-05 1.2337

64 6.5429e-05 1.0202 2.5128e-05 1.1521 1.8460e-05 1.1896

128 3.2258e-05 ∗ 1.1307e-05 ∗ 8.0935e-06 ∗
256 ∗ ∗ ∗ ∗ ∗ ∗
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Table 8 Numerical accuracy in τ of CBDF2 solution in resolving Example 3 with initial data ϕ2(x) for
grid parameters M = Nα = 103 and m = 1, 1.5, 2

m = 1.0 m = 1.5 m = 2.0

N ē(N) Rate ē(N) Rate ē(N) Rate

8 3.4635e-04 1.0153 7.0083e-05 1.4627 2.8787e-04 1.8182

16 1.7135e-04 1.1095 2.5427e-05 1.2812 8.1634e-05 1.9909

32 7.9412e-05 1.1841 1.0462e-05 1.4280 2.0537e-05 2.0148

64 3.4949e-05 1.2415 3.8883e-06 1.5909 5.0821e-06 2.0135

128 1.4781e-05 ∗ 1.2908e-06 ∗ 1.2587e-06 ∗
256 ∗ ∗ ∗ ∗ ∗ ∗

solution is computed on the gradually refined nonuniform meshes with the coarsest
grid of N = 8. Since the exact solution is not available, the convergence rate q̄ on the
nonuniform meshes is determined as follows. Assume that

∥
∥U(·, T ) − uN(N)

∥
∥∞ ≈

CuN
−q̄ , where un

h(N) denotes the solution at t = tn on nonuniform grid with
N points. Thus, the triangle inequality gives ē(N) �

∥
∥uN(N) − u2N(2N)

∥
∥∞ ≈

CuN
−q̄ (1+2−q̄ ). Then, the experimental rate q̄ of convergence can be approximated

by q̄ ≈ log2 [ē(N)/ē(2N)] .
We see that, compared with the CBDF1 solution on uniform mesh, the nonuniform

CBDF1 solution, especially when m = 2, has little improvement of the convergence
rate. It may be owing to that certain nonuniform grid recovers the accuracy O(τ 2−α)

of the BDF1 formula (2.1) for the α-order Caputo derivative (1.1).
The CBDF2 errors on nonuniform meshes for the initial data ϕ2 are listed in

Table 8. Observation shows that the nonuniform meshes improve the resolution and

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25 t=0.0
t=0.001
t=0.01
t=0.4
t=1.0

Fig. 3 Numerical solution of Example 3 with initial data ϕ1(x)
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Fig. 4 Numerical solution uh(0.5, tn) of Example 3 with data ϕ1(x)

convergence rate of solution evidently, and the case of m = 2 recovers the second-
order temporal accuracy of our CBDF2 method (4.1)–(4.2). For the initial data ϕ1,
we get similar results but omit them here. It is to note that, if a larger m is applied,
numerical precision of solution will be affected since it introduces a larger maximum
time-step τN = (Nτ)m − ((N − 1)τ )m ≈ mT/N . Always, a practical choice of
parameter m is a trade-off between the numerical precision and convergence rate of
solution.

Lastly, we apply the suggested methods with m = 2 to compute the solutions
in Example 3 with the two nonnegative initial data. Note that, due to the resolution

−18 −16 −14 −12 −10 −8 −6 −4 −2
−35

−30

−25

−20

−15

−10

−5

0

Fig. 5 Discrete derivative δtuh(t
n− 1

2
) of Example 3 with data ϕ1(x)
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Fig. 6 Numerical solution of Example 3 with initial data ϕ2(x)

of figures, the solutions generated by the CBDF1 and CBDF2 methods cannot be
distinguished in the following curves such that we do not specify the concrete algo-
rithm in each run. Taking small grid lengths h = hα = 10−3 and the initial data
u(x, 0) = ϕ1(x), we depict the numerical solution un

h in Fig. 3 at five different time
tn = 0, 0.001, 0.01, 0.4, and 1.0. As predicted by Theorems 3.4 and 4.12, the dis-
crete solutions are nonnegative and decaying. Focusing on x = 0.5, for an instance,
we observe

−uh(0.5, 0.01) − uh(0.5, 0)

0.01
� −uh(0.5, 1.0) − uh(0.5, 0.4)

0.6
.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 7 Numerical solution uh(0.5, tn) of Example 3 with data ϕ2(x)
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Fig. 8 Discrete derivative δtuh(t
n− 1

2
) of Example 3 with data ϕ2(x)

It means that the solution near t = 0 decays much more faster than that away from
t = 0.

To see the asymptotic behavior of the solution near t = 0, the solution uh(0.5, tn)
is listed in Fig. 4 for tn ∈ (t1, 1), and the time derivative δtuh(0.5, tn− 1

2
) is depicted

in Fig. 5 with respect to ln(tn) for tn ∈ (t1, 0.5). In the two plots, we take m = 3 such
that more mesh points can be concentrated in the initial time layer. One observes that∣
∣ ∂u

∂t

∣
∣ = O(ln(t−1)) as the time t ∈ (0, 10−2), in which there have about 200 grid

points. It supports the asymptotic estimate, see Theorem 2.2 in [20] or Theorem 2.1
in [15], for smooth initial data.

The curves in Figs. 6, 7, and 8, where the solution of Example 3 with the hat-like
initial data ϕ2(x) are reported, are computed analogue to those in Figs. 3, 4, and 5.
It is seen that the solution near t = 0 decays much more faster than that away from
t = 0 and, by comparing Fig. 8 with Fig. 5, the module of time derivative

∣
∣ ∂u

∂t

∣
∣ is

much greater than that generated by smooth data ϕ1(x). It increases the numerical
difficulty in resolving the solution near the initial time. Actually, comparing the last
two columns in Table 7 (Table 9) with those in Table 6 (Table 8), one can find that the
lose of numerical precision near t = 0 pollutes the resolution of numerical solution
evidently.

6 Concluding remarks

By using two Caputo’s BDF formulas of fractional Caputo derivative, we proposed
two stable implicit difference scheme for solving distributed-order subdiffusion equa-
tion. It is proven that the CBDF1 method satisfies the discrete minimum-maximum
principle such that it is nonnegative-preserving and stable in the maximum norm.
By using the discrete energy analysis, the CBDF2 scheme is shown to be stable and
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convergent in the discrete H 1 norm. Due to a low-order scheme employed at the first-
time level, there is a theoretical lose of convergence order. For a certain region of the
fractional-order, β ∈ (0, 1/3], we also apply the maximum principle to prove that the
CBDF2 scheme is nonnegative-preserving and second-order convergent in time.

Extensive experiments are presented to verify our theoretical results and show the
effectiveness of the proposed methods. It is observed that the solution of distributed-
order subdiffusion admits a weak initial singularity even for smooth initial data.
Although the initial singularity is not well resolved theoretically, a class of nonuni-
form meshes which concentrates time-levels near t = 0 is suggested to recover the
convergence rate of numerical methods.

There are a number of issues to be further studied. Firstly, it remains unknown how
to recover the second-order accuracy theoretically for the CBDF2 method with β =
1. Secondly, numerical tests show that the CBDF2 scheme is always nonnegative-
preserving. However, it remains open how to prove the nonnegative property for β =
1. At last, it is of practical interest to develop error estimates, reflecting the regularity
of solutions, on nonuniform grids.
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Appendix: approximate fractional derivatives on nonuniform grid

In a nonuniform time mesh, we denote τn = tn−tn−1 and δtw
n− 1

2 = (wn−wn−1)/τn.
Let ηk = tn − tk−1 = ∑n

l=k τl , 1 � k � n, n ≥ 1. We define the following
coefficients

a
(n,α)
n−k = η1−α

k − η1−α
k+1

�(2 − α)
, 1 � k � n ;

b
(n,α)
n−k = 2

�(3 − α)

η2−α
k − η2−α

k+1

τk + τk−1
− τk

τk + τk−1

η1−α
k + η1−α

k+1

�(2 − α)
, 1 � k � n ,

where ηn+1 = 0. The nonuniform BDF1 and BDF2 formulas of Caputo derivative
(1.1) reads

Dα
B1g

n =
n∑

k=1

a
(n,α)
n−k

(
δtg

k− 1
2
)
, n ≥ 1,

Dα
B2g

n =
n∑

k=1

a
(n,α)
n−k

(
δtg

k− 1
2
)+

n∑

k=2

b
(n,α)
n−k

(
δtg

k− 1
2 − δtg

k− 3
2
)
, n ≥ 1.

To approximate the distributed-order derivative ρD
[α]
t g(tn), we also define

a
(n)
n−k = hα

Nα∑

�=1

a
(n,α

�− 1
2
)

n−k ρ(α
�− 1

2
) , b

(n)
n−k = hα

Nα∑

�=1

b
(n,α

�− 1
2
)

n−k ρ(α
�− 1

2
) , 1 � k � n.
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Then, the distributed-order BDF1 and BDF2 formulas on nonuniform grid take the
form of

ρD[α]
B1g

n =
n∑

k=1

a
(n)
n−k

(
δtg

k− 1
2
)
, n ≥ 1,

ρD[α]
B2g

n =
n∑

k=1

a
(n)
n−k

(
δtg

k− 1
2
)+

n∑

k=2

b
(n)
n−k

(
δtg

k− 1
2 − δtg

k− 3
2
)
, n ≥ 1.
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