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Abstract In this paper, we consider the following class of singular two-point
boundary value problem posed on the interval xε(0, 1]

(g(x)y′)′ = g(x)f (x, y),

y′(0) = 0, μy(1) + σy′(1) = B.

A recursive scheme is developed, and its convergence properties are studied. Further,
the error estimation of the method is discussed. The proposed scheme is based on
the integral equation formalism and optimal homotopy analysis method in which a
recursive scheme is established without any undetermined coefficients. The original
differential equation is transformed into an equivalent integral equation to remove
the singularity. The integral equation is then made free of undetermined coefficients
by imposing the boundary conditions on it. Finally, the integral equation without any
undetermined coefficients is efficiently treated by using optimal homotopy analysis
method for finding the numerical solution. The optimal control-convergence param-
eter involved in the components of the series solution is obtained by minimizing the
squared residual error equation. The present method is applied to obtain numerical
solution of singular boundary value problems arising in various physical models, and
numerical results show the advantages of our method over the existing methods.
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1 Introduction

Nonlinear singular two-point boundary value problems (BVP) arise in a wide variety
of problems [1–15] such as reaction-diffusion process, chemical kinetics, physiologi-
cal process, heat transfer process, nuclear physics, astrophysics, quantum mechanics,
thermal-explosion theory, electro hydrodynamics, shallow membrane caps theory,
fluid mechanics, and elasticity. Since it may be impossible or difficult to obtain
the closed-form solutions to nonlinear singular BVP, these problems must be tack-
led by analytical approximation or numerical methods. Perturbation method [16]
is one of the well-known analytical methods for solving nonlinear problems; how-
ever, this method cannot be applied to solve the singular boundary value problems
under consideration as it does require small/large physical parameters, the so-
called perturbation quantities, in the equations or boundary conditions. To over-
come the restriction of the perturbation methods, some nonperturbation methods are
developed, including the variational iteration method (VIM) [17], the homotopy per-
turbation method (HPM) [18], the Adomian decomposition method (ADM) [19],
and the homotopy analysis method (HAM) [20–25]. The first three methods can
be used to obtain approximate series solution of the problem; however, the con-
vergence of approximation series is not guaranteed. On the other hand, the HAM
provides a convenient way to ensure the convergence of solution series via the so-
called convergence-control parameter.
The aim of the present paper is to introduce a novel approach based on a combina-
tion of integral equation formalism and optimal homotopy analysis method (OHAM)
for the numerical solution of a class of nonlinear singular two-point boundary value
problems. OHAM is basically a modified version of HAM and has been proposed by
S. Liao [26] and V. Marinca et al. [27]. The OHAM has certain advantages over other
nonperturbation methods: (1) it is a general method, (ii) can improve the computa-
tional efficiency of the method, (iii) greatly accelerates the convergence of the series
solution, and (iv) provides fast convergent series solution.
In this work, we consider the following class of singular two-point boundary value
problems:

(g(x)y′)′ = g(x)f (x, y) (1)

with boundary conditions

y′(0) = 0, μy(1) + σy′(1) = B. (2)

Here, μ > 0, σ ≥ 0 and B is finite constant. The following conditions have been
imposed on the functions g(x) and f (x, y) :

C1:f (x, y) is continuous function for all (x, y) ∈ ([0, 1] × R)

C2: ∂f (x,y)
∂y

exists and is continuous for all (x, y) ∈ ([0, 1] × R)

C3 : ∂f (x,y)
∂y

≥ 0
C4 : g(x) ≥ 0, g(0) = 0
C5 : g(x) ∈ C1(0, 1]
C6 : g(x) ∈ L1(0, 1]
C7 : ∫ 1

0
1

g(η)

∫ η

0 g(t)dtdη < ∞.
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The existence and uniqueness of the solution to the problem (1) with boundary
conditions (2) have been established in [28].

In general, singular boundary value problems (1)–(2) are difficult to solve because
of a singularity at the boundary point x = 0. Numerous approximate solution tech-
niques have been developed in the literature to handle the singular problem (1) with
g(x) = xα or xαs(x), α > 0 and boundary conditions y(0) = A (or y′(0) = A1),
y(1) = C (or μy(1) + σy ′(1) = B). To mention a few, in [29], the authors have
developed a direct method based on B-spline for a class of non-linear singular BVP
(1)–(2) with g(x) = xα , α ≥ 1. Jain and Iyenger [30] described a spline finite differ-
ence method of order two for solving the singular problem (1) with g(x) = xα , α > 0
and boundary conditions y(0) = A (or y ′(0) = 0), y(1) = B. In [31], the author pre-
sented a method based on cubic spline for solving a class of singular BVP (1) with
g(x) = xα , α ≥ 1 and subject to the boundary conditions y′(0) = 0, y(1) = B. Fur-
ther, a novel approach, based on a combination of a modified decomposition method
and B-spline collocation, for solving (1) with g(x) = xα , α ≥ 1 and boundary condi-
tions y′(0) = 0 (or y(0) = A) and μy(1) + σy ′(1) = B is presented in [32]. Pandey
and Singh [33] presented a second-order three-point finite difference method (FDM)
for the solution of singular BVP (1)–(2) with g(x) = xαs(x), where s(x) is a general
class of non negative function. Furthermore, the variational iteration method (VIM)
for solving singular differential equation (1) with g(x) = xα , α ≥ 1 and boundary
conditions y(0) = A (or y′(0) = A1), y(1) = C (or μy(1) + σy′(1) = B) is pre-
sented in [34]. Roul and Warbhe [35] have considered the application of HPM for
solving the problems (1)–(2).

In this paper, we introduce a new efficient and accurate recursive algorithm for
solving the singular BVP given in (1) and (2). The first step of the algorithm converts
the singular BVP (1)–(2) into an equivalent integral equation to overcome the singu-
lar behaviour at the origin. We note that the resulting integral equation contains an
undetermined coefficient. In the second step, the boundary condition at the right end
point of the domain of the problem is employed in the integral equation to eliminate
the undetermined coefficient. In the last step, the resulting integral equation without
any undetermined coefficient is treated by employing OHAM to establish a recur-
sive scheme for obtaining the approximate solution of the singular boundary value
problems (1)–(2). In this method, we have introduced an approach based on mini-
mization of the squared residual error to find out the optimal convergence-control
parameter involved in the components of the series solution. It is worth pointing
out that although some recursive schemes based on modified ADM [32], VIM [34],
and ADM [36] have been proposed for solving singular boundary value problems,
however, these methods require the computation of undetermined coefficients. This
would lead to an increase an computational cost, because a sequence of transcenden-
tal equations would have to be solved for that.

Besides the numerical design, we establish the convergence result and error esti-
mate for the proposed method. The method is tested on four nonlinear singular
boundary value problems arising in various physical models of engineering and sci-
ence. We also compare the results obtained by the present technique with those
obtained by the various approximatation methods, such as B-spline [29], mixed ADM
B-spline [32], cubic spline [31], FDM [33], spline-FDM [30], and VIM [34].
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The organization of the remainder of this paper is as follows. In Section 2, a short
description of the basic principles of standard homotopy-analysis method is pre-
sented. In Section 3, we construct a new recursive scheme based on OHAM to obtain
numerical solution of singular boundary value problems considered in the paper.
Section 4 is devoted to the convergence analysis and error estimation of the method.
The method is illustrated by numerical examples in Section 5. Finally, we summarize
our work and present our conclusion in Section 6.

2 Review of classical homotopy analysis method

In this section, we shall give a brief outline of the classical homotopy analysis
method. The homotopy analysis method (HAM) was developed and improved by
S. Liao [20–25] for solving a wide class of functional equations. This method pro-
vides a convenient way to control or adjust the convergence region and the rate of
convergence.
To illustrate the basic ideas of the method, let us consider the following nonlinear
differential equation of the form

N[y(x)] = 0, (3)

where N represents the general differential operator, y(x) is an unknown function
andx is an independent variable. For simplicity, we ignore all boundary or initial con-
ditions. According to homotopy analysis method, we construct a homotopy u(x, p):
� × [0, 1] −→ R, for (3) which satisfies the following relation

Ĥ (u(x), h, H(x), p) = (1 − p)L[u(x, p) − y0(x)] − phH(x)N [u(x, p)], (4)

where p ∈ [0, 1] is an embedding parameter, h �= 0 is a constant (called the
convergence-control parameter),H(x) �= 0 is an auxiliary function, y0(x) is an initial
approximation of the exact solution y(x) of (3).

Imposing the homotopy (4) to be zero, we have the so called zero-order deforma-
tion equation

(1 − p)L[u(x, p) − y0(x)] − phH(x)N [u(x, p)] = 0. (5)

When p = 0, the zero order deformation (5) becomes

u(x, 0) = y0(x), (6)

and when p = 1, the zero order deformation (5) reduces to

N[u(x, 1)] = 0, (7)

u(x, 1) = y(x). (8)

Hence, u(x, 1) is the solution of nonlinear problem (3). As the parameter p varies
through 0 to 1, the solution u(x, p) varies continuously from y0(x) to y(x). Variation
of this kind is called deformation in topology. We now expand the function u(x, p)
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in Taylor series with respect to the parameter p as follows:

u(x, p) = y0(x) +
∞∑

m=1

ym(x)pm, (9)

where

ym(x) = 1

m!
∂mu(x, p)

∂pm
.

Assume that the auxiliary linear operator L, the auxiliary parameter h, initial approx-
imation y0(x), and the auxiliary function H(x) are properly chosen so that the series
in (9) converges at p = 1. Then, at p = 1, the series (9) becomes

u(x, 1) = y0(x) +
∞∑

m=1

ym(x). (10)

Now using (8), we have

y(x) = y0(x) +
∞∑

m=1

ym(x). (11)

The solution components yn(x) can be obtained from the higher-order deformation
equation as described below.
Define the vector −→

yn={y0(x), y1(x), ..., yn(x)}.
Inserting (9) into (5), yields

(1 − p)L

[ ∞∑

m=1

ym(x)pm

]

= phH(x)N [u(x, p)] (12)

Differentiating (12) m times w.r.t. the embedding parameter p, we obtain

L[ym(x) − χmym−1(x)] = hH(x)∂m−1N[u(x, p)]
(m − 1)!∂pm−1

∣
∣
∣
∣
p=0

(13)

Therefore, we have the following m-th order deformation equation:

L
[
ym(x) − χmym−1(x)

] = hH(x)Rm

(−−→
ym−1(x)

)
, (14)

where

χm =
{
0, m ≤ 1
1, m > 1

and

Rm(
−−→
ym−1(x)) = 1

(m − 1)!
∂m−1N[

∞∑
m=1

ym(x)pm]
∂pm−1

∣
∣
∣
∣
p=0

(15)

with the initial condition
ym(0) = 0, m > 1. (16)

For any given nonlinear operator N, the term Rm

(−−→
ym−1(x)

)
in (14) can be easily

expressed by (15). It is worth pointing out that the higher-order deformation (14) is
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governed by the same linear operator L. The solution components yn are computed
by means of solving the (14) recursively.
The m-th order approximation solution of y(x) is given by

	m(x) = y0(x) +
m∑

i=1

yi(x). (17)

3 A new recursive scheme based on OHAM

In this section, we derive a new recursive scheme based on OHAM for solving non-
linear singular problems (1) with Neumann and Robin boundary conditions (2). To
derive the method, we set z(x) = g(x)y′ in (1), then integrating (1) from 0 to x, we
get

z(x) = z(0) +
∫ x

0
g(t)f (t, y)dt. (18)

Now applying the boundary condition at x = 0 in (18), it follows that

y′(x) = 1

g(x)

∫ x

0
g(t)f (t, y)dt. (19)

Again integrating (19) from x to 1, we obtain

y(x) = y(1) −
∫ 1

x

1

g(η)

(∫ η

0
g(t)f (t, y)dt

)

dη. (20)

We set y(1)=C∗, where C∗ is not known. To determine the value of C∗ in (20), we
impose the boundary condition at x = 1, namely μy(1)+σy′(1) = B. With the help
of the boundary condition, we obtain

y(1) = C∗ = B

μ
− σ

μg(1)

∫ 1

0
g(t)f (t, y)dt. (21)

Insert (21) into (20) to get

y(x) = B

μ
− σ

μg(1)

∫ 1

0
g(t)f (t, y)dt −

∫ 1

x

1

g(η)

(∫ η

0
g(t)f (t, y)dt

)

dη. (22)

Now interchanging the order of integration in (22), we get

y(x) = B

μ
− σ

μg(1)

∫ 1

0
g(t)f (t, y)dt −

∫ x

0

(∫ 1

x

1

g(η)
dη

)

g(t)f (t, y)dt

−
∫ 1

x

(∫ 1

t

1

g(η)
dη

)

g(t)f (t, y)dt. (23)

The OHAM is extended to solving integral (23) derived from the original (1) with
boundary conditions (2).
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For this, we consider the (23) as

N(y) = y(x) − B

μ
+ σ

μg(1)

∫ 1

0
g(t)f (t, y)dt +

∫ x

0

(∫ 1

x

1

g(η)
dη

)

g(t)f (t, y)dt

+
∫ 1

x

(∫ 1

t

1

g(η)
dη

)

g(t)f (t, y)dt = 0. (24)

Using (24) in (15), we obtain

Rm

(
y→
m−1(x)

) = 1

(m − 1)!
(

∂m−1N(y)

∂pm−1

)

p=0
.

or

Rm(y→
m−1(x)) = ym−1(x) − (1 − χm)F (x) + σ

μg(1)

∫ 1

0
g(t)Tm−1(t, y)dt

+
∫ x

0

(∫ 1

x

1

g(η)
dη

)

g(t)Tm−1(t, y)dt

+
∫ 1

x

(∫ 1

t

1

g(η)
dη

)

g(t)Tm−1(t, y)dt, (25)

where

F(x) = B

μ
(26)

and

Tm−1(x, y) = 1

(m − 1)!

⎛

⎜
⎜
⎜
⎝

∂m−1f (x,
∞∑
i=1

yi(x)pi)

∂pm−1

⎞

⎟
⎟
⎟
⎠

p=0

. (27)

Inserting (25) into (14), we obtain

L

(

ym(x) − χmym−1(x)

)

= hH(x)

[

ym−1(x) − (1 − χm)F (x)

+ σ

μg(1)

∫ 1

0
g(t)Tm−1(t, y)dt

+
∫ x

0

(∫ 1

x

1

g(η)
dη

)

g(t)Tm−1(t, y)dt

+
∫ 1

x

(∫ 1

t

1

g(η)
dη

)

g(t)Tm−1(t, y)dt

]

. (28)

We take an initial guess y0(x) = F(x), auxiliary function H(x) = 1, and an
auxiliary linear operator L(u) = u. In view of these assumptions, from (28), we have
the solution components yn(x), n ≥ 0 as follows:



538 Numer Algor (2017) 75:531–552

y0(x) = F(x),

y1(x) = h

[
σ

μg(1)

∫ 1

0
g(t)T0(t, y)dt +

∫ x

0

(∫ 1

x

1

g(η)
dη

)

g(t)T0(t, y)dt

+
∫ 1

x

(∫ 1

t

1

g(η)
dη

)

g(t)T0(t, y)dt

]

,

y2(x)=(1 + h)y1 + h

[
σ

μg(1)

∫ 1

0
g(t)T1(t, y)dt +

∫ x

0

(∫ 1

x

1

g(η)
dη

)

g(t)T1(t, y)dt

+
∫ 1

x

(∫ 1

t

1

g(η)
dη

)

g(t)T1(t, y)dt

]

,

y3(x) = (1 + h)y2 + h

[
σ

μg(1)

∫ 1

0
g(t)T2(t, y)dt

+
∫ x

0

(∫ 1

x

1

g(η)
dη

)

g(t)T2(t, y)dt +
∫ 1

x

(∫ 1

t

1

g(η)
dη

)

g(t)T2(t, y)dt

]

,

.

.

.
Hence, the present method can be defined by the recurrence relation

y0(x) = F(x),

y1(x) = h

[
σ

μg(1)

∫ 1

0
g(t)T0(t, y)dt +

∫ x

0

(∫ 1

x

1

g(η)
dη

)

g(t)T0(t, y)dt

+
∫ 1

x

(∫ 1

t

1

g(η)
dη

)

g(t)T0(t, y)dt

]

,

yi(x) = (1 + h)yi−1 + h

[
σ

μg(1)

∫ 1

0
g(t)Ti−1(t, y)dt

+
∫ x

0

(∫ 1

x

1

g(η)
dη

)

g(t)Ti−1(t, y)dt

+
∫ 1

x

(∫ 1

t

1

g(η)
dη

)

g(t)Ti−1(t, y)dt

]

, i ≥ 2 (29)

The solution components yn, n ≥ 1, defined in (29), contain convergence con-
trol parameter h which provides us with a simple way to adjust and control the
convergence region of the series solution. By properly choosing this parameter, the
present method provides rapidly convergent successive approximations of the exact
solutions. In the present approach, the optimum value of the convergence-control
parameter h is obtained by minimizing the squared residual of governing equation:

Rn(h) =
∫ 1

0
(N[	n(x, h)])2dx. (30)
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At the minimum, we have
∂Rn(h)

∂h
= 0.

i.e.,
∂

∂h

∫ 1

0
(N[	n(x, h)])2dx = 0. (31)

Since, the analytical integration may not be always possible to perform especially
for transcendental function or it is time consuming particularly for large n, hence the
(31) can be discretized in the form:

∂

∂h

M∗
∑

i=1

(N[	n(xi, h)])2 = 0 (32)

Here, M∗ is the number of discrete points of the interval [0, 1]. Having computed the
optimal value of h, we can proceed to obtain the components yn of the solution y(x).
Hence, the m-term truncated approximate series solution of the singular BVP (1)
with boundary condition (2) can be obtained as

φm(x) = y0 + y1 + y2 + y3 + ... + ym. (33)

It is worth pointing out that the recursive scheme defined in (29) does not require the
computation of unknown constants for solving the singular boundary value problems
(1)–(2). Hence, there is a huge gain in efficiency since the computationally expensive
unknown constants evaluation is not performed.

4 Convergence of the method

In this section, we establish the convergence of method defined in (29) for the
solution of singular two-point boundary value problems (1) and (2).

Theorem 1 Let the recursive scheme defined by (29). If the series y(x) =
∞∑

m=0
ym(x)

is convergent, then it must be a solution of the integral (23).

Proof Assume that the series y(x) =
∞∑

m=0
ym(x) is convergent. Then, we have

limm→∞ ym(x) = 0.
By means of the operator L, we can write,

n∑

m=1
L[ym(x) − χmym−1(x)] =

n∑

m=1
[ym(x) − χmym−1(x)] = yn(x).

Taking limit on both sides, yields
∞∑

m=1
L[ym(x) − χmym−1(x)]= limn→∞ yn(x) = 0.

Thereforem from (14), we obtain
∞∑

m=1
L[ym(x) − χmym−1(x)] =

∞∑
m=1

[hH(x)R(y→
m−1(x))] = 0.
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Since h �= 0, H(x) �= 0, we have
∞∑

m=1

Rm(y→
m−1(x)) = 0. (34)

Now using (25) in (34), we obtain

0 =
∞∑

m=1

[

ym−1(x) − (1 − χm)F (x) + σ

μg(1)

∫ 1

0
g(t)Tm−1(t, y)dt+

∫ x

0

(∫ 1

x

1

g(η)
dη

)

g(t)Tm−1(t, y)dt +
∫ 1

x

(∫ 1

t

1

g(η)
dη

)

g(t)Tm−1(t, y)dt

]

.

= y(x) − F(x) + σ

μg(1)

∫ 1

0
g(t)

∞∑

m=1

Tm−1(t, y)dt+
∫ x

0

(∫ 1

x

1

g(η)
dη

)

g(t)

∞∑

m=1

Tm−1(t, y)dt +
∫ 1

x

(∫ 1

t

1

g(η)
dη

)

g(t)

∞∑

m=1

Tm−1(t, y)dt.

= y(x) − F(x) + σ

μg(1)

∫ 1

0
g(t)f (t, y)dt+

∫ x

0

(∫ 1

x

1

g(η)
dη

)

g(t)f (t, y)dt +
∫ 1

x

(∫ 1

t

1

g(η)
dη

)

g(t)f (t, y)dt.

y(x) = F(x) − σ

μg(1)

∫ 1

0
g(t)f (t, y)dt−

∫ x

0

(∫ 1

x

1

g(η)
dη

)

g(t)f (t, y)dt −
∫ 1

x

(∫ 1

t

1

g(η)
dη

)

g(t)f (t, y)dt.

Therefore, y(x) =
∞∑

m=0
ym(x) be is the exact solution of the integral (23). We next

discuss the existence of unique solution of (23). For this purpose, we write the (23)
in the following form:

y(x) = C +
∫ 1

0
k(x, t)g(t)f (t, y)dt,

where k(x, t) is the kernel and is given by

k(x, t) =
{ ∫ 1

x
1

g(η)
dη + σ

μg(1) , t ≤ x
∫ 1
t

1
g(η)

dη + σ
μg(1) , t > x

(35)

and C = B
μ
.

Let X=C[0,1] be the Banach space with the norm
‖ z ‖= max

x∈[0,1]
| z(x) |.

Lemma 1 Let g satisfy C5 and C7 . Then there exists a constant M such that

max
xε[0,1]

|
∫ 1

0
k(x, t)g(t)dt | = M.
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Proof The proof of the Lemma is quite straightforward. In view of C5 and C7
and the kernel K(x, t) as defined in (35), we must have max

xε[0,1]
| ∫ 1

0 k(x, t)g(t)dt |
= M < ∞.

Theorem 2 Let the right-hand side function f (x, y) of the singular differential equa-
tion (1) satisfies the Lipschitz condition, that is ‖ f (x, y1) − f (x, y2) ‖≤ σ ‖
y1−y2 ‖, ∀y1, y2εX, where σ is Lipschitz constant. If we assume that β = σM < 1,
then the (23) has at most one solution.

Proof To prove this assertion, let us assume that there are two solutions y1 and y2 of
the (23).

‖y1 − y2‖ =
∥
∥
∥
∥
∥

∫ 1

0
k(x, t)g(t)f (t, y1)dt −

∫ 1

0
k(x, t)g(t)f (t, y2)dt

∥
∥
∥
∥
∥

.

=
∥
∥
∥
∥
∥

∫ 1

0
k(x, t)g(t)[f (t, y1) − f (t, y2)]dt

∥
∥
∥
∥
∥

.

≤ max
t∈[0,1]

| f (t, y1) − f (t, y2) | max
t∈[0,1]

|
∫ 1

0
k(x, t)g(t)dt | .

In view of Lemma-1, we have

‖ y1 − y2 ‖≤ M max
t∈(0,1]

| f (t, y1) − f (t, y2) | .

Using Lipschitz continuity of f (x, y), we have

‖ y1 − y2 ‖≤ M max
t∈(0,1]

σ | y1 − y2 | .

= Mσ ‖ y1 − y2 ‖ .

Setting β = σM in the above inequality, we have

‖ y1 − y2 ‖≤ β ‖ y1 − y2 ‖ .

Since β < 1, the equality y1 = y2 must occur. This means that the (23) has a unique
solution.

Theorem 3 Let X=C[0,1] be the Banach space with the norm ‖ z ‖= max
x∈(0,1]

|

z(x) |. The series solution
∞∑

m=0
ym in which the functions ym(x) are determined by

means of relation (29), is uniformly convergent in the intervals [0,1], if there exist
λn ∈ (0, 1) such that ‖ ym+1 ‖< λn ‖ ym ‖, ∀m ≥ m0, for some m0 ∈ N .

Proof Let 	n be the n-th partial sum of the series
∞∑

m=0
ym(x), that is 	n =

n∑

m=0
ym(x).
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We complete the proof by showing that:

(i) ‖ 	n+1 − 	n ‖≤ λn+1−m0 ‖ ym0 ‖.

(ii) The sequence 	n is a Cauchy sequence in X=C[0,1].

‖ 	n+1 − 	n ‖=‖ yn+1 ≤ λ ‖ yn ‖≤ λ2 ‖ yn−1 ‖≤ · · · · · · · · · ≤ λn+1−m0 ‖ ym0 ‖.
For every m, n ∈ N , m0 ≤ m ≤ n, we have

‖ 	n − 	m ‖= ‖(	n − 	n−1) + (	n−1 − 	n−2) + · · · · · · · · · + (	m+1 − 	m)‖.
≤‖ 	n − 	n−1 ‖ + ‖ 	n−1 − 	n−2 ‖ + · · · · · · + ‖ 	m+1 − 	m ‖
≤ λn−m0 ‖ ym0 ‖ +λn−m0−1 ‖ ym0 ‖ + · · · · · · + λm+2−m0

‖ ym0 ‖ +λm+1−m0 ‖ ym0 ‖
≤‖ ym0 ‖ λm+1−m0(1 + λ + λ2 + · · · · · · + λn−1−m)

≤‖ ym0 ‖ λm+1−m0

(
1 − λn−m

1 − λ

)

. (36)

Since 0 < λ < 1, 1 − λn−m < 1, we have from (36)

‖ 	n − 	m ‖≤‖ ym0 ‖ λm+1−m0

(
1

1 − λ

)

. (37)

Taking limit as n,m → ∞, we obtain

lim
n,m→∞ ‖ 	n − 	m ‖= 0.

Therefore, 	n is a Cauchy sequence in the Banach space X. This implies that the

series solution
∞∑
i=0

yi is convergent.

This completes the proof of the Theorem.

Theorem 4 Let y(x) be the exact solution of the (23). Let 	m be the m-th partial

sum of the series solution
∞∑

m=0
ym(x). The error of the m-term truncated approximate

series solution of the singular BVP (1)-(2) can be estimated as follows:

sup
x∈[0,1]

| y −
m∑

i=0

yi(x) |≤‖ ym0 ‖
(

λ
m+1−m0
n

1 − λn

)

.

Proof With the help of the estimation of (	n−	m) defined in (37), we have ∀m, n ∈
N with m0 < m ≤ n,

‖
n∑

i=0

yi(x) −
m∑

i=0

yi(x) ‖=‖ 	n − 	m ‖≤‖ ym0 ‖
(

λ
m+1−m0
n

1 − λn

)

.
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Taking n → ∞, we get

‖ y(x) −
m∑

i=0

yi(x) ‖≤‖ ym0 ‖
(

λ
m+1−m0
n

1 − λn

)

,

or

sup
x∈[0,1]

| y −
m∑

i=0

yi(x) |≤‖ ym0 ‖
(

λ
m+1−m0
n

1 − λn

)

.

5 Numerical illustration

In this section, we illustrate the applicability, reliability, and accuracy of the present
recursive scheme by solving several nonlinear singular boundary value problems
arising in various physical problems of engineering and science. Numerical results
are compared with that of [29–34]. All the numerical computations were done using
symbolic computation software package Mathematica. To measure the accuracy of
the present method against the exact solution, we determine the maximum absolute
error, as defined by

En(x) = max
x∈[0,1]

| 	n(x) − Y (x) | .

Here, Y (x) is the exact solution of the problem and 	n(x) is the truncated n-term
approximate series solution.

Example 1 Consider the nonlinear singular two-point boundary value problem
arising in the theory of thermal explosions

(xy′(x))′ = −xey(x) (38)

y′(0) = 0, y(1) = 0.
The exact solution is given by y(x) = 2ln( A+1

Ax2+1
) with A = 3 − 2

√
2.

This problem is corresponding to (1) and (2) with g(x) = x, μ=1, σ=0, B = 0
and f (x, y) = −ey(x). We solve the problem (38) using the method defined in (29).
The fourth-order approximate solution is as follows:

	4(x, h) = h(−1 + x2) + h2(−1.21875 + 1.125x2 + 0.09375x4)

+ h3(−0.677083 + 0.578125x2 + 0.09375x4

+ 0.00520833x6) + h4(−0.144165 + 0.114258x2

+ 0.0268555x4 + 0.00292969x6 + 0.00012207x8). (39)

The valid region for the values of h can be identified by means of the so-called h-
curve. We plot the h-curve of 	′′(0) for different values of n in Fig. 1. The flat part
(horizontal line) of the curve represents the valid region of h. It is clear from the
figure that the valid region of h is −2 < h < 0.
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Fig. 1 h-curve region of φ′′(0)
for example 1
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Further, the optimal value of h can be obtained by using the method defined in
Section 3. With the help of (32), we find h = −1.17752 for n=4. Inserting this value
of h in (39), we obtain the following fourth-order optimal approximate solution:

	4(x) = 0.315967 − 0.341885x2 + 0.0285548x4

− 0.00287122x6 + 0.000234688x8. (40)

Figure 2 shows a comparison between the exact solution and the approximate solu-
tions of the problem (38) for n=4,6. It is obvious from the figure that the present
method with few solution components approximates the exact solution very well. In
addition, we plot the absolute error for n=4,6,7 in Fig. 3, which shows that the error
decreases as the number components in the series solution increases. Table 1 com-
pares the result of the maximum absolute error obtained by using the present method
with other existing numerical methods such as B-spline method [29], spline-FDM

Fig. 2 Comparison of
approximate solution and exact
solution of example-1
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Fig. 3 Numerical results of
absolute error of example-1
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[30], cubic spline method [31] and mixed B-spline ADM [32]. Comparison shows
that our method with few solution components provides better result than these meth-
ods. The optimal values of h for n=9, 10, 11, 12 are −1.23655, −1.24143, −1.24782,
−1.25162, respectively.

Example 2 Consider the nonlinear singular BVP arising in the study of steady-state
oxygen diffusion in a spherical cell

(x2y′(x))′ = x2 ηy(x)

y(x) + k
, (41)

y′(0) = 0, 5y(1) + y′(1) = 5,
where η and k are positive constants involving the reaction rate and the Michaelis
constant, we take η = 0.76129 and k = 0.03119.
This problem has a singular point at x = 0 and corresponds to (1)–(2) with f (x, y) =
ηy(x)

y(x)+k
, B = 5, μ = 5 and σ = 1. The exact solution of the problem is not known.

Table 1 Maximum absolute error of Example 1

n Present method N Method in [29] N Method in [30] N Method in [31] N Method in [32]

9 1.31 × 10−6 20 3.16 × 10−5 8 4.7 × 10−4 20 3.10 × 10−5 10 8.06 × 10−6

10 4.27 × 10−7 40 7.87 × 10−6 16 3.1 × 10−5 50 5.04 × 10−6 20 2.00 × 10−6

11 1.21 × 10−7 60 3.50 × 10−6 32 1.4 × 10−5

12 3.98 × 10−8 90 1.55 × 10−6 64 4.0 × 10−6
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Fig. 4 h-curve region of φ′′(0)
for example 2
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Using the method defined by (29), we obtain the truncated 6 terms approximate series
solution of the problem (40) as given below:

	6(x, h) = 1 + h(1.03357 − 0.738264x2) + h2(2.59491 − 1.85848x2

+ 0.00366342x4) + h3(3.47207 − 2.49085x2 + 0.00780413x4

+ 0.000152952x6) + h4(2.61212 − 1.87648x2 + 0.00753015x4

+ 0.000289215x6 + 7.72465 × 10−6x8) + h5(1.0477

− 0.753483x2 + 0.00352919x4 + 0.000194136x6

+ 0.0000104179x8 + 2.30924 × 10−7x10) + h6(0.175039

− 0.126001x2 + 0.000655492x4 + 0.0000452032x6

+ 3.65302 × 10−6x8 + 1.62597 × 10−7x10 + 3.06728 × 10−9x12).

(42)

The h-curve of 	′′(0) is displayed in Fig. 4, which shows that the solution series
is convergent if −1.2 < h < −0.2. The optimal value of h can be obtained by
minimizing the sum of the square of the residual error as defined in (32). We find
h = −0.672127 for n = 6. Substituting this value in (42), yields

	6(x) = 0.82884 + 0.121725x2 + 0.000398457x4 − 9.88018 × 10−6x6+
4.84241 × 10−7x8 − 1.6685 × 10−8x10 + 2.82789 × 10−10x12.

(43)

Figure 5 compares our solution with the B-spline solution [29], mixed ADM B-
spline solution [32] and FDM solution [33]. As it is clearly seen in the figure, a close
agreement exists between the results obtained by these four methods.

Example 3 Consider the nonlinear singular boundary value problem describing the
equilibrium of the isothermal gas sphere

(x2y′(x))′ = −x2y5(x), (44)

y′(0) = 0, y(1) =
√

3
4 .
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Fig. 5 Approximate solution of
example-2
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The exact solution is given by y(x) =
√

3
3+x2

.

This problem has a singular point at x = 0 and corresponds to (1)–(2) with f (x, y) =
−y5(x), μ = 1, σ = 0 and B =

√
3
4 .

Using the method defined by (29), we obtain the truncated 4 terms approximate
series solution of the problem (44) as given by

	4(x, h) = 1

16777216

√
3(8388608 + 3145728h(−1 + x2)

+ 73728h2(−43 + 34x2 + 9x4) + 1536h3(−1001

+ 623x2 + 333x4 + 45x6) + 3h4(−98839 + 48484x2

+ 39150x4 + 10260x6 + 945x8)). (45)

We plot the h-curve of 	′′(0) for different values of n in Fig. 6. It is clear from
the figures that the valid region of h is −2 < h < 0. With the help of (32), we find

Fig. 6 h-curve region of φ′′(0)
for example 3
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Fig. 7 Comparison of
approximate solution and exact
solution of example-3
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h = −1.2693 for n=4. Substituting the optimum value of h in (45), we obtain the
following equation:

	4(x) = 0.996076 − 0.158321x2 + 0.0338558x4

− 0.00634443x6 + 0.000759719x8. (46)

We plot the approximate solution of problem (44) for different values of n with the
exact solution in Fig. 7. The figure shows that fairly good agreement exist between
the approximate and exact solution. Numerical results of absolute errors for n =
6, 8, 10 are displayed in Fig. 8.

Example 4 Consider the nonlinear singular BVP arising in the study of the distribu-
tion of radial stress on a rotationally symmetric shallow membrane cap

(x3y′(x))′ = x3
(
1

2
− 1

8y2(x)

)

, 0 < x ≤ 1 (47)

y′(0) = 0, y(1) = 1.

Fig. 8 Numerical results of
absolute error of example-3
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Fig. 9 h-curve region of φ′′(0)
for example 4
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This problem has a singular point at x = 0. The problem (46) corresponds to (1)–(2)

with g(x) = x3, f (x, y) =
(
1
2 − 1

8y2(x)

)
, B = 1, μ = 1 and σ = 0. The exact

solution of the problem is not known.
We solve the problem (47) using the method defined in (29). The fourth-order

approximate solution is as follows:

	4(x, h) = 1

503316480
(503316480h(−1 + x2) + 1474560h2(98 − 99x2 + x4)

+ 1280h3(76747 − 78222x2 + 1452x4 + 23x6) + h4(25016697

− 25695910x2 + 657700x4 + 21320x6 + 193x8)). (48)

The h-curve of 	′′(0) is displayed in Fig. 9, which shows that the solution series
is convergent if −1.5 < h < −0.1. The optimal value of h can be obtained by
minimizing the sum of the square of the residual error as defined in (32). We find
h = −1.01676 for n = 4. Substituting this value in (48), we obtain:

	4(x) = 0.954135 + 0.0453366x2 + 0.000543855x4

− 0.0000162116x6 + 4.09817 × 10−7x8. (49)

Fig. 10 Approximate solution
of example-4
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The approximate solutions of (47) obtained using the present method for n = 4, 6
and VIM [34] are depicted in Fig. 10. As it is clearly seen in the figure, a close
agreement exists between the results obtained by these two methods.

6 Conclusion

In this article, we proposed a new efficient recursive algorithm, based on a combi-
nation of integral equation formalism and optimal homotopy analysis method, for
the regular singular two-point boundary value problem with Neumann and Robin
boundary conditions.

There are three major steps occurring in this algorithm:
 The original singular differential equation is transformed into an integral

equation to overcome the singularity at the origin.
 Boundary condition is imposed to eliminate the undetermined coefficients from

the resulting integral equation.
 The integral equation without undetermined coefficients is treated by using

OHAM to obtain a recursive scheme for the solution of singular BVP considered in
the paper.

It is to be noted that the optimal convergence-control parameter involved in the
OHAM has been computed by minimizing the squared residual error. We have
proved the convergence of the proposed scheme and provided an error estimate
of the truncated series solutions. The uniqueness of the solution of the problem
has also been discussed in the paper. Four physical model problems have been
solved to demonstrate the efficiency and accuracy of the present method. It has
been observed that the computed results are in excellent agreement with the exact
solutions. Further, our results were compared with those obtained by the methods
given in [29–34]. The numerical results indicate that our proposed algorithm is more
accurate in comparison to those of [29–34]. Unlike modified ADM, VIM, HPM, or
ADM, the proposed approach contains an adjustable parameter, which can be used
to control the covergence of series solution. Another advantage of our method over
existing recursive schemes using Adomian decomposition method [36], Variational
iteration method [34] and modified Adomian decomposition method [32] is that it
does not demand the calculation of undetermined coefficient. Besides, it can easily
be implemented in symbolic computation softwares like Mathematica and Maple.
Moreover, unlike the discretized based numerical methods such as finite difference
method, finite element method, or spline method, this method does not require any
discretization or linearization of variables. It may be concluded that our proposed
algorithm is reliable, effective, and highly accurate for solving singular two-point
boundary value problems.
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