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Abstract The aim of the present paper is to give some new algebraic properties of
the extended block and the extended global Arnoldi algorithms. These results are then
applied on moment matching methods for model reductions in large-scale dynamical
systems to get low-order models that approximate the original models by matching
moments and Markov parameters at the same time. Some numerical examples are
given to show the effectiveness of the methods on some benchmark tests.
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1 Introduction

The extended Arnoldi method was first proposed by Druskin and Knizhnerman in [3]
for functions of matrices in the symmetric, large, and sparse case. The method was
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50 rue F. Buisson, F-62280 Calais Cedex, France

2 Equipe EMMA, ENSA Al-Hoceima, UMP, Oujda, Morocco

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-016-0207-7&domain=pdf
mailto:jbilou@lmpa.univ-littoral.fr
mailto:abidi@lmpa.univ-littoral.fr
mailto:mohammed.heyouni@gmail.com


286 Numer Algor (2017) 75:285–304

then generalized to the nonsymmetric case by Simoncini in [16] and applied for solv-
ing large-scale Lyapunov matrix equations [13, 16] with low rank right-hand sides.
In [11], the extended block Arnoldi method was used for computing approximate
solutions to large-scale continuous-time algebraic Riccati equations while in [12] the
extended global Arnoldi method was defined and used for solving large Sylvester
matrix equations. If A ∈ IRn×n is nonsingular, v ∈ IRn and m is a fixed integer,
the classical extended Arnoldi Krylov subspace Km(A, v), is the subspace of IRn

spanned by the vectors A−m v, . . . , A−2 v, A−1 v, v,A v,A2 v, . . . , Am−1 v.
A convergence analysis of the extended Krylov subspace was recently developed in
[13] where new general estimates for the convergence rate were obtained with real
nonsymmetric and nonsingular matrices A.
For V ∈ IRn×r , the extended block Krylov subspace Km(A, V ) is the subspace of
IRn spanned by the columns of the matricesAk V , k = −m, . . . , m−1. This subspace
is denoted by

Km(A, V ) = colspan({A−m V, . . . , A−2 V,A−1 V, V,AV,A2 V, . . . , Am−1 V }).
The subspace Km(A, V ) is the sum of the simple extended Krylov subspaces
Km(A, V (i)), i = 1, . . . , r where V (i) is the ith column of the matrix V . Notice that
Z ∈ Km(A, V ) means that

Z =
m−1∑

i=−m

Ai V �i, where �i ∈ IRr×r , i = −m, . . . m − 1.

On the other hand, the extended matrix or global Krylov subspaceKm(A, V ) ⊂ R
n×r

is the subspace of matrices in IRn×r spanned by Ak V , k = −m, . . . , m − 1, i.e.,

Km(A, V ) = span{A−m V, . . . , A−2 V,A−1 V, V,AV,A2 V, . . . , Am−1 V },

and hence Z ∈ Km(A, V ) iff Z =
m−1∑

i=−m

αiA
i V , αi ∈ IR.

In this work, we give some new algebraic properties of the extended block and the
extended global Arnoldi algorithms. The new properties use algebraic relations with
the matrix A−1. These new relations could be used in moment matching techniques
for model reduction in large scale multiple input multiple output (MIMO) dynamical
systems. In particular, we will show that some moments of the original transfer func-
tion are matched when using the approximated transfer function. The advantage of
the extended block or global methods is the fact that they allow to approximate the
original transfer functions by low order one for low and high frequencies at the same
time.
The paper is organized as follow. In Section 2, we recall the extended block and
global Arnoldi algorithms and give some new algebraic properties. The application
of these methods to model order reduction is considered in Section 3. We show how
to apply the extended block and global Arnoldi processes to dynamical MIMO sys-
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tems to obtain low order models such that the Markov parameters and the moments of
the original transfer function are approximated by the ones of the projected transfer
function. The last section is devoted to some numerical experiments.

Preliminaries and notations We review some notations and definitions that will be
used throughout this paper. For two matrices Y and Z in IRn×r , we define the Frobe-
nius inner product 〈Y, Z〉F = Tr(Y T Z) where Tr(YT Z) denotes the trace of the

square matrix YT Z. The associated Frobenius norm is given by ‖Y‖F = Tr(Y T Y )
1
2 .

A system {V1, V2, . . . , Vm} of elements of IRn×r is said to be F−orthonormal if it
is orthonormal with respect to the inner product 〈. , .〉F , i.e., 〈Vi, Vj 〉F = δi,j . For
Y ∈ IRn×r , we denote by vec(Y ) the vector of IRnr obtained by stacking the columns
of Y . For two matrices A and B, A ⊗ B = [ai,j B] denotes the Kronecker product
of the matrices A and B. In the sequel, we give some properties of the Kronecker
product assuming that all the sizes are in agreement.

1. (A ⊗ B)T = AT ⊗ BT .
2. (A ⊗ B)(C ⊗ D) = (AC ⊗ BD).
3. If A and B are non singular matrices of size n × n and p × p respectively, then

the np × np matrix A ⊗ B is non singular and (A ⊗ B)−1 = A−1 ⊗ B−1.
4. vec(A)T vec(B) = Tr(AT B).

Definition 1 Let A = [A1, . . . , Aq ] and B = [B1, . . . , Bl] be matrices of dimension
n × qp and n × lp, respectively, where Ai and Bj (i = 1, . . . , q; j = 1, . . . , l) are
n × p. Then the q × l matrix AT � B is defined by:

AT � B = [〈Ai, Bj 〉F ]1≤i≤q; 1≤j≤l .

Remark 1 The following relations were established in [1].

1. The matrix A = [A1, . . . , Aq ] is F−orthonormal if and only if AT � A = Iq .
2. For all X ∈ IRn×p, we have XT � X = ‖X‖2F .
3. (D A)T � B = AT � (DT B).
4. AT � (

B (L ⊗ Ip)
) = (AT � B)L.

5. ‖AT � B‖F ≤ ‖A‖F ‖B‖F .

In the next proposition, we recall the global QR (gQR) factorisation of an n × kr

matrix Z.

Proposition 1 [1] Let Z = [
Z1, Z2, . . . , Zk

]
be an n × kr matrix with Zi ∈

IRn×r , i = 1, . . . , k. Then, the matrix Z can be factored as

Z = Q (R ⊗ Ir ),

whereQ = [Q1, . . . , Qk] is an n×kr F-orthonormal matrix satisfyingQT �Q = Ik

and R is an upper triangular matrix of dimension k × k.
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2 Some algebraic properties on the extended block and global Arnoldi
processes

2.1 The block case

The extended block Arnoldi algorithm generates a sequence of blocks {V b
1 , . . . , V b

m}
of size n × 2r such that their columns form an orthonormal basis of the extended
block Krylov subspace Km(A, V ). The algorithm is defined as follows [11, 16].

The blocks Vm = [
V b
1 , V b

2 , . . . , V b
m

]
with V b

i ∈ IRn×2r have their columns mutu-
ally orthogonal provided that none of the upper triangular matrices Hb

j+1,j are rank
deficient.
Hence, after m steps, Algorithm 1 builds an orthonormal basis Vm of the extended
block Krylov subspace Km(A, V ) and a upper block Hessenberg matrix Hm whose
non zero blocks are the Hb

i,j . Note that each submatrix Hb
i,j (1 ≤ i ≤ j ≤ m) is of

order 2r .
Let T b

i,j = (V b
i )T AV b

j ∈ IR2r×2r and Tm = [T b
i,j ] ∈ IR2mr×2mr be the restriction

of the matrix A to the extended Krylov subspace Km(A, V ), i.e.,

Tm = V
T
m AVm.

It is shown in [16] that Tm is also upper block Hessenberg with 2r × 2r blocks.
Moreover, a recursion is derived to compute Tm from Hm without requiring matrix-
vector products with A. For more details, on how to compute Tm from Hm, we refer
to [16]. We note that for large problems, the inverse of the matrix A is not computed
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explicitly and in this case we can use iterative solvers with preconditioners to solve
linear systems with A. Next, we give the extended block Arnoldi relations

AVm = Vm+1 Tm,

= Vm Tm + V b
m+1 T b

m+1,m E
T
m,

where Tm = V
T
m+1 AVm, and Em = [O2r×2(m−1)r , I2r ]T is the matrix of the last

2r columns of the 2mr × 2mr identity matrix I2mr . We will also consider the matrix
defined as

Lm = V
T
m A−1

Vm.

Notice that we can check that the matrix Lm = [Lb
i,j ] is also an upper block Hes-

senberg matrix. Moreover, the sub-matrices Lb
i+1,i ∈ IR2r×2rare such that the r first

columns are zero. Hence, Lb
m+1,m is partitioned under the form

Lb
m+1,m =

[
0r L

b(1,2)
m+1,m

0r L
b(2,2)
m+1,m

]
. (1)

In the sequel, we give some new properties that would be useful for building model
order reduction for large-scale dynamical systems defined by (19).

Proposition 2 Assume that m steps of Algorithm 1 have been run and let Lm =
V

T
m+1 A−1

Vm, then we have the following relations

A−1
Vm = Vm+1 Lm

= Vm Lm + V b
m+1 Lb

m+1,m E
T
m. (2)

Proof As Vm+1 = [Vm, V b
m+1], we have

Lm+1 = V
T
m+1 A−1

Vm+1

=
[
V

T
m A−1

Vm V
T
m A−1 V b

m+1
V bT

m+1 A−1
Vm V bT

m+1 A−1 V b
m+1

]

=
[
Lm V

T
m A−1 V b

m+1
V bT

m+1 A−1
Vm V bT

m+1 A−1 V b
m+1

]
.

Now, since Lm+1 is an upper block Hessenberg matrix, we also have

(V b
m+1)

T A−1
Vm = Lb

m+1,m E
T
m,

and so the upper block Hessenberg matrix Lm can be expressed as

Lm =
[

Lm

Lb
m+1,m E

T
m

]
.

Using the fact thatA−1
Km(A, V ) ⊆ Km+1(A, V ) andVm+1 is orthogonal, it follows

that there exists an upper block Hessenberg matrix L such that A−1
Vm = Vm+1 L.

Then, VT
m+1 A−1

Vm = L, which shows that L = Lm. Hence, we obtain

A−1
Vm = Vm+1 L = Vm+1 Lm = Vm Lm + V b

m+1 Lb
m+1,m E

T
m,
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which completes the proof.

Now using (1) and the fact that V b
m+1 = [V b(1)

m+1, V
b(2)
m+1], the relation (2) becomes

A−1
Vm = Vm Lm + [On×(2m−1)r , V

b(1)
m+1 L

b(1,2)
m+1,m + V

b(2)
m+1 L

b(2,2)
m+1,m].

Next, to show how to compute the columns of the matrix Lm without using A−1,
we have to give some notations:

– Let [V, A−1V ] = V b
1 � be the QR decomposition of [V, A−1V ] which can be

written as

[V,A−1V ] = V b
1 � = [V b(1)

1 , V
b(2)
1 ]

[
�1,1 �1,2
0 �2,2

]
. (3)

– For k = 1, . . . , m, let us partition the lower triangular matrix Hb
k+1,k under the

form

Hb
k+1,k =

[
H

b(1,1)
k+1,k H

b(1,2)
k+1,k

0 H
b(2,2)
k+1,k

]
.

The following result enables us to compute Lm directly from the columns of the
upper block Hessenberg matrix Hm obtained from Algorithm 1.

Proposition 3 Let Lm and Hm be the upper block Hessenberg matrices defined
earlier. Then we have the following relations

Lm ẽ1 = [
ẽ1 �1,2 + ẽ1 �2,2

]
(�1,1)

−1, (4)

and for k = 1, . . . , m
Lm ẽ2k = Hm ẽ2k, (5)

and

Lm ẽ2k+1 =
(

ẽ2k−1 −
[
Lk

02(m−k)r×2kr

]
Hk ẽ2k−1

)
(H

b(1,1)
k+1,k )−1, (6)

where ẽi = ei ⊗ Ir and the ei’s are the vectors of the canonical basis.

Proof To prove (4), we start from the QR decomposition of [V, A−1V ] given in (3):
[V, A−1V ] = [V b(1)

1 �1,1, V
b(1)
1 �1,2 + V

b(2)
1 �2,2].

Then, if �1,1 is nonsingular, we obtain

A−1 V
b(1)
1 = A−1 V �−1

1,1 = [V b(1)
1 �1,2 + V

(2)
1 �2,2] �−1

1,1.

Then, we get (4) by pre-multiplying the above equality on the left by V
T
m+1

and using the facts that V
T
m+1 V

b(i)
1 = (ei ⊗ Ir ) = ẽi for i = 1, 2 and

V
T
m+1 A−1 V

b(1)
1 = Lm (e1 ⊗ Ir ) = Lm ẽ1.

To prove (5) and (6), we notice that for k ≥ 1, Vk = [V b(1)
k , V

b(2)
k ] ∈ IRn×2r and

from Algorithm 1, we have

V̂ b
k+1 = [AV

b(1)
k , A−1 V

b(2)
k ] − Vk Hk [̃e2k−1, ẽ2k], (7)
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and

V b
k+1 Hb

k+1,k = V̂ b
k+1. (8)

Using the relations (7) and (8), we obtain

A−1 V
b(2)
k = V̂ b

k+1 ẽ2 + Vk Hk ẽ2k = V b
k+1 Hb

k+1,k ẽ2 + Vk Hk ẽ2k

= Vk+1Hk ẽ2k.

Now, multiplying on the left by V
T
m+1, we get

V
T
m+1 A−1 V

b(2)
k = V

T
m+1 Vk+1Hk ẽ2k,

hence,

V
T
m+1 A−1

Vm ẽ2k =
[

I2(k+1)r
02(m−k)r×2(k+1)r

]
Hk ẽ2k

and so

Lm ẽ2k =
[
Hk

02(m−k)r×2kr

]
= Hm ẽ2k,

which gives the relation (5).
Now, for the even blocks, we multiply (7) on the left by A−1 and we consider only
the first r-columns of each block. We obtain the following relation

A−1 V̂
b(1)
k+1 = V

b(1)
k − A−1

Vk Hk ẽ2k−1.

Notice that since V̂ b
k+1 = V b

k+1 Hb
k+1,k , we also have

V̂
b(1)
k+1 = V

b(1)
k+1 H

b(1,1)
k+1,k ,

where H
b(1,1)
k+1,k is the first r × r block of the upper 2r × 2r triangular matrix Hb

k+1,k .

Then, if H
b(1,1)
k+1,k is nonsingular, we obtain

A−1 V
b(1)
k+1 = A−1 V̂

b(1)
k+1 (H

b(1,1)
k+1,k )−1 = (

V
b(1)
k − A−1

Vk Hk ẽ2k−1
)
(H

b(1,1)
k+1,k )−1.

Multiplying from the left by VT
m+1, we get

V
T
m+1 A−1 V

b(1)
k+1 =

(
V

T
m+1 V

b(1)
k − V

T
m+1 A−1

Vk Hk ẽ2k−1

)
(H

b(1,1)
k+1,k )−1,

and then

Lm+1 ẽ2k+1 =
(
V

T
m+1 Vm+1 ẽ2k−1 − V

T
m+1 A−1

Vm

[
I2kr

02(m−k)r×2kr

]
Hk ẽ2k−1

)
(H

b(1,1)
k+1,k )−1

=
(

ẽ2k−1 − Lm

[
I2kr

02(m−k)r×2kr

]
Hk ẽ2k−1

)
(H

b(1,1)
k+1,k )−1

=
(

ẽ2k−1 −
[
Lk

02(m−k)r×2kr

]
Hk ẽ2k−1

)
(H

b(1,1)
k+1,k )−1,

which gives the second relation (6).
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2.2 The global case

The extended global Arnoldi process was first described in [12]. The algorithm is
summarized as follows

We point out that if the upper 2×2 triangular matrices H
g

j+1,j (j = 1, . . . , m) are full

rank, Algorithm 2 constructs an n× 2mr F -orthonormal matrix Vm = [V g

1 , . . . , V
g
m]

with V
g
i ∈ IRn×2r (i = 1, . . . , m) and a 2(m + 1) × 2m upper block Hessen-

berg matrix Hm =
[
H

g
i,j

]
= [hp,q ] with H

g
i,j ∈ IR2×2 for i = 1, . . . , m + 1,

j = 1, . . . , m and hp,q ∈ IR for p = 1, . . . , 2(m + 1), q = 1, . . . , 2m.

Now, setting T
g
i,j = V

gT
i � (A V

g
j ) ∈ IR2×2, for i, j = 1, . . . , m and introducing the

matrices

Tm = VT
m � (AVm) =

[
T

g
i,j

]
and T m = VT

m+1 � (AVm),

a recursive relation was given in [12] allowing the computation of T̄m without requir-
ing additional matrix-vector products with A. Moreover, it was also shown that after
m steps of Algorithm 2, we have

AVm = Vm+1 (T m ⊗ Ir )

= Vm (Tm ⊗ Ir ) + V
g

m+1 (T
g

m+1,m ET
m ⊗ Ir ),

where ET
m = [O2×2(m−1), I2] is the matrix of the last two rows of the 2m × 2m

identity matrix I2m.
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Now, as for the block case seen in the previous subsection, we consider the matrix

Lm =
[
L

g
i,j

]
= [lp,q ] defined by

Lm = VT
m � (A−1 Vm),

where L
g
i,j ∈ IR2×2 for i, j = 1, . . . , m and lp,q ∈ IR for p, q = 1, . . . , 2m. We

mention that it can be easily verified that the matrix Lm is a 2m × 2m upper block
Hessenberg matrix and that the sub-matrices L

g

i+1,i ∈ IR2×2 are such that the first

column is zero. So, the sub-matrix L
g

m+1,m is such that l2m+1,2m−2 = l2m+2,2m−2 =
0, i.e.,

L
g

m+1,m =
[
0 l2m+1,2m
0 l2m+2,2m

]
. (9)

In order to build order model reductions for large-scale dynamical systems, we give
some new properties of the extended global Arnoldi process.

Proposition 4 Assume that m steps of Algorithm 2 have been run and let Lm =
VT

m+1 A−1 Vm, then we have the following relations

A−1 Vm = Vm+1 (Lm ⊗ Ir )

= Vm (Lm ⊗ Ir ) + V
g

m+1 (L
g

m+1,m ET
m ⊗ Ir ). (10)

The proof is similar to the one given for Proposition 2.
Notice that since V

g

m+1 = [V g(1)
m+1, V

g(2)
m+1], then by using (9), the Arnoldi relation (10)

becomes

A−1 Vm = Vm Lm + [On×(2m−1), l2m+1,2m V
g(1)
m+1 + l2m+2,2m V

g(2)
m+1].

Now, in order to update progressively the columns of the matrix Lm without inverting
A or solving linear systems with A, we recall some elementary results:

– Let [V, A−1V ] = V
g

1 (� ⊗ Ir ) be the global QR decomposition of [V, A−1V ]
which can be written as

[V,A−1V ] = V
g

1 (� ⊗ Ir ) = [V g(1)
1 , V

g(2)
1 ]

[
γ1,1 γ1,2
0 γ2,2

]
.

– For k = 1, . . . , m, let us partition the lower triangular matrix H
g

k+1,k under the
form

H
g

k+1,k =
[

h2k+1,2k−1 h2k+1,2k
0 h2k+2,2k

]
.

As in the block case, the following result enables us to compute Lm directly from the
columns of the upper block Hessenberg matrix Hm obtained from Algorithm 1.

Proposition 5 Let Lm = [l:,1, . . . , l:,2m] and Hm = [h:,1, . . . , h:,2m] be the upper
block Hessenberg matrices defined earlier. Then, we have the following relations

l:,1 = (γ1,2 e1 + γ2,2 e2)/γ1,1,
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and for k = 1, . . . , m, we have
l:,2k = h:,2k (11)

and

l2k+1 =
(

e2k−1 −
[

Lk

02(m−k)×2k

]
Hk e2k−1

)
/h2k+1,2k,

where the ei’s are the vectors of the canonical basis.

The proof can be obtained in a similar way as the one for Proposition 3 in the block
case.
The results of the previous two subsections are used to prove other properties in the
next section which is devoted to the application of the extended block and global
Arnoldi methods to obtain reduced order models in large-scale dynamical systems.
As we will see, the methods allow one to approximate low and high frequencies of
the corresponding transfer function at the same time.

Next, we give some properties that are used to show that the first m moments of
the transfer function F are matched.

Proposition 6 Let Vm = [V b
1 , . . . , V b

m], Lm := V
T
m A−1

Vm be respectively the
matrix and the upper block Hessenberg matrix defined in the extended block Arnoldi
process and let E1 = [I2r , 02r , . . . , 02r ]T . Then for j = 0 . . . , m − 1, we have the
following relation

A−j
Vm E1 = Vm L

j
m E1, (12)

and
T

−1
m Ej = Lm Ej , j = 1, . . . , m − 1. (13)

Proof The relation (12) can be derived directly by multiplying relation (2) from the
left by A−j+1 and from the right by E1. Then we obtain

A−j
Vm E1 = Vm L

j
m E1 +

j∑

i=1

A−(i−1) V b
m+1 Lb

m+1,m E
T
mL

j−i
m E1.

Now, as Lm is an upper block Hessenberg matrix, it follows that ET
m L

j−i
m E1 = 0,

for j = 1, . . . , m − 1.
To prove the relation (13), we multiply (12) from the right by Ej , and then we get

A−1
Vm Ej = Vm Lm Ej , for j = 1, . . . , m − 1.

Since, Vm is orthogonal, then pre-multiplying the above equality by V
T
m A, we get

Ej = Tm Lm Ej for j = 1, . . . , m − 1 and finally we obtain (13), if we assume that
Tm is nonsingular.

Next, we establish a similar result for the extended global Arnoldi process.

Proposition 7 Let Vm = [V g

1 , . . . , V
g
m], Lm := VT

m � (A−1 Vm) be respectively the
matrix and the upper block Hessenberg matrix defined by the extended global Arnoldi



Numer Algor (2017) 75:285–304 295

process and let E1 = [I2, 02, . . . , 02]T . Then for j = 1 . . . , m − 1, we have the
following relation

A−j Vm E1 = A−j Vm (E1 ⊗ Ir ) = Vm (Lj
m E1 ⊗ Ir ), (14)

and for j = 1, . . . , m − 1 we have

T −1
m Ej = Lm Ej . (15)

Proof Pre-multiplying (10) by A−j+1 and using the properties of the Kronecker
product, we get

A−j Vm = Vm (Lj
m ⊗ Ir ) +

j∑

i=1

A−(i−1) V
g

m+1 (L
g

m+1,m ET
m Lj−i

m ⊗ Ir ).

Post-multiplying the above equality by (E1 ⊗ Ir ), we obtain

A−j Vm E1 = A−j Vm (E1 ⊗ Ir )

= Vm (Lj
m E1 ⊗ Ir ) +

j∑

i=1

A−(i−1) V
g

m+1 (L
g

m+1,m ET
m Lj−i

m E1 ⊗ Ir ),

= Vm (Lj
m E1 ⊗ Ir ).

In the last equality, we used the fact that ET
m Lj−i

m E1 = 0 since Lm is an upper block
Hessenberg matrix. Using again the properties of the ⊗ and � products, the proof of
the second relation (15) can be derived in a similar fashion to that of (13).

Next, we give a general result that is satisfied by upper Hessenberg matrices. This
result will be used when establishing moment matching properties for the block and
global Arnoldi processes.

Proposition 8 Let T = (Ti,j ) and L = (Li,j ) be two upper block Hessenberg
matrices with blocks Ti,j , Li,j ∈ IRr×r for i, j = 1, . . . , m and suppose that

T Ej = LEj , for j = 1, . . . , m − 1 (16)

where Ej = [0r , . . . , 0r , Ir , 0r , . . . , 0r ]T , is the mr × r matrix whose columns are
the column j, . . . , j + r of the identity matrix Imr . Then

T k
E1 = Lk

E1, for k = 1, . . . , m − 1. (17)

Proof For k = 1, . . . , m−1, we denote by T
(k)
i,j and L

(k)
i,j the (i, j)th block of T k , Lk

respectively, i.e.,

T k =
(
T

(k)
i,j

)
and Lk =

(
L

(k)
i,j

)
.

Since T and L are upper block Hessenberg matrices, we can easily verify that

T
(k)
i,j = L

(k)
i,j = 0r , for i > j + k. (18)

Now, we proceed by induction on k ∈ {1, 2, . . . , m − 1}.
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We first remark that the property is verified for k = 1 and we suppose that the
property is valid for k ∈ {1, . . . , m − 2}.
Obviously, we have

T k+1
E1 = T

(
T k

E1) = T (Lk
E1

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m∑

p=1

T
(1)
1,p L

(k)
p,1

m∑

p=1

T
(1)
2,p L

(k)
p,1

...
m∑

p=1

T (1)
m,p L

(k)
p,1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and thanks to (18) and (16), we have L
(k)
p,1 = 0r for p = m and T

(1)
i,p = L

(1)
i,p for

i = 1, . . . , m and p = 1, . . . , m − 1. So,

T k+1
E1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m−1∑

p=1

T
(1)
1,p L

(k)
p,1

m−1∑

p=1

T
(1)
2,p L

(k)
p,1

...
m−1∑

p=1

T (1)
m,p L

(k)
p,1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m−1∑

p=1

L
(1)
1,p L

(k)
p,1

m−1∑

p=1

L
(1)
2,p L

(k)
p,1

...
m−1∑

p=1

L(1)
m,p L

(k)
p,1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and since L
(k)
p,1 = 0r for p = m, we finally get

T k+1
E1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m∑

p=1

L
(1)
1,p L

(k)
p,1

m∑

p=1

L
(1)
2,p L

(k)
p,1

...
m∑

p=1

L(1)
m,p L

(k)
p,1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Lk+1
E1.
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3 Application for model reduction techniques

We consider the following Linear Time Independent (LTI) dynamical system
{

ẋ(t) = Ax(t) + B u(t),

y(t) = C x(t),
(19)

where x(t) ∈ IRn is the state vector, u(t), y(t) ∈ IRr are the input and the output
vectors of the system (19), respectively. The matrices B, CT are in IRn×r and A ∈
IRn×n is assumed to be large and sparse. The transfer function of the original system
(19) is given as

F(s) = C (s In − A)−1 B. (20)

In many applications, the dimension n of the system (19) is large which makes the
computations infeasible in terms of execution time and memory. Then the goal of
model reduction problems is to produce a low-order system of the form

{
ẋm(t) = Am xm(t) + Bm u(t)

ym(t) = Cm xm(t),
(21)

whereAm ∈ IRp×p, Bm, CT
m ∈ IRp×r . The basic technique is to project the system’s

state space of dimension n onto a space of lower dimension p � n, in such a way that
the reduced-order model preserves the important properties of the original system
like stability and passivity and such that the output ym is close to the output y of the
original system. The associated low-order transfer function is denoted by

Fm(s) = Cm (s Ip − Am)−1 Bm.

There are two well known sets of model reduction methods for MIMO systems which
are currently in use, SVD-based methods and Krylov (moment matching) based
methods; see [7, 8] and the references therein. One of the most common approach of
the first category is the so-called balanced reduced order model which was introduced
by Moore [15]. Krylov subspace methods have been extensively used for SISO (the
case r = 1) and MIMO dynamical systems; see [2–6, 9, 10, 17] and the references
therein. Unfortunately, the standard version of these methods builds reduced order
models that poorly approximate low and high frequency dynamics at the same time.
In order to address this problem, we consider the extended Arnoldi process associ-
ated to the matrices A andA−1. The transfer function F relates the Laplace transform
of the output vector to that of the input vector. For that reason, it is called the transfer
function matrix of the system. Each entry Fi,j (s) is a rational function representing
the transfer function between the ith input and the j th output, all other inputs being
set equal to zero.
The rational function F can be expressed as a sum of a Taylor series around (s = ∞)
in the following form

F(s) = 1

s
C (In − A

s
)−1 B = 1

s

∞∑

i=0

Mi s−i , with Mi = C Ai B.
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Recall that the matrix coefficients Mi are called the Markov parameters of F . Now
applying the extended block Arnoldi process to the pair (A, B), we can verify that
the original transfer function F can be approximated by

Fm(s) = Cm (s I2mr − Tm)−1
Bm,

where Tm = V
T
m AVm, Cm = C Vm, and Bm = V

T
m B. This reduced transfer func-

tion is related to the low-order dynamical system (21) with Am = Tm.
Similarly, if m iterations of the extended global Arnoldi algorithm are applied to the
pair (A, B), then we can approximate F by

Fm(s) = Cm (s I2mr − (Tm ⊗ Ir ))
−1 Bm,

where Tm = VT
m � (AVm), Cm = C Vm and Bm = VT

m � B = ‖B‖F (e
(2m)
1 ⊗ Ir ). In

this case, the reduced transfer function is related to the low-order dynamical system
(21) with Am = Tm ⊗ Ir .
The developments of Fm and Fm around s = ∞ give the following expressions

Fm(s) = 1

s

∞∑

i=0

mb
i s−i , with mb

i = Cm T
i
m Bm,

and

Fm(s) = 1

s

∞∑

i=0

m
g
i s−i , with m

g
i = Cm (Tm ⊗ Ir )

i Bm.

In this case, one can show that the first m Markov parameters are matched, i.e., in the
block case

Mi = mb
i , i = 0, . . . , m − 1,

and in the global case
Mi = m

g
i , i = 0, . . . , m − 1.

Now, the development of the Neumann series of F around s = 0 gives the following
expression

F(s) =
∞∑

i=0

M̃i+1 si .

The matrix coefficients M̃i are called the moments of F and they are given by

M̃j = −C A−j B, j = 1, 2, . . . .

By considering the Taylor series of Fm and Fm , we get the following expansion of
Fm around s = 0

Fm(s) =
∞∑

i=0

m̃b
i+1s

i, with m̃b
i = −Cm T

−i
m Bm,

while for Fm, we get

Fm(s) =
∞∑

i=0

m̃
g

i+1s
i, with m̃b

i = −Cm (Tm ⊗ Ir )
−i Bm.
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As for the Markov parameters, the following result shows that the first m moments
resulting from the Newman series of the transfer function F around s = 0 are also
matched either by those of Fm when using the extended block Arnoldi process or by
those of Fm when using the extended global Arnoldi process.

Proposition 9 Let M̃j and m̃b
j be the matrix moments given by the Newman

expansions of F and Fm, respectively around s = 0. Then we have

M̃j = m̃b
j , for j = 0, . . . , m − 1.

Proof The equality is verified for j = 0. For j ≥ 1, we obtain

M̃j = C A−j B

= C A−j V b
1

[
�1,1
0

]
= C A−j

Vm E1

[
�1,1
0

]
.

Therefore, using the result of Proposition 6, we get

M̃j = C Vm L
j
m E1

[
�1,1
0

]
.

On the other hand, applying Proposition 8 to the upper Hessenberg matrices Lm and
T

−1
m , we get

L
j
m E1 = T

−j
m E1; j = 0, . . . , m − 1

and this gives for j = 1, . . . , m − 1

M̃j = C Vm T
−j
m V

T
m V b

1

[
�1,1
0

]

= C Vm T
−j
m V

T
m B = Cm T

−j
m Bm

= m̃b
j .

Now, using the extended global Arnoldi process, we can also state the following result

Proposition 10 Let M̃j and m̃
g
j be the matrix moments given by the Newman

expansions of F and Fm, respectively around s = 0. Then we have

M̃j = m̃
g
j , for j = 0, . . . , m − 1.

Proof The equality is verified for j = 0. For j ≥ 1, we obtain

M̃j = C A−j B

= C A−j V
g

1

[
γ1,1
0

]
= C A−j Vm E1

[
γ1,1
0

]
.

Therefore, using the result of Proposition 7, we get

M̃j = C Vm (Lj
m E1 ⊗ Ir )

[
γ1,1
0

]
.
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Table 1 Test matrices

Matrix A size n ‖A‖F cond(A)

FOM 1006 1.82e+04 1000

RAIL5177 5177 5.64e+03 3.74e+07

CDplayer 120 2.31e+05 1.81e+04

Eady 598 1.26e+02 5.37e+02

MNA3 4863 2.11e+05 1.81e+08

Flow 9669 2.54e+04 1.61e+07

FDM 160,000 2.87e+08 9.79e+04

Now, similarly to the block case, applying Proposition 8 to Lm and T −1
m , we also

have Lj
m E1 = T −j

m E1 for j = 0, . . . , m − 1 and so we get

M̃j = C Vm (T −j
m E1 ⊗ Ir )

[
γ1,1
0

]
= C Vm (T −j

m ⊗ Ir ) (E1 ⊗ Ir )

[
γ1,1
0

]

= C Vm (T −j
m ⊗ Ir ) (VT

m � V
g

1 )

[
γ1,1
0

]

= C Vm (T −j
m ⊗ Ir )

(
VT

m �
(

V
g

1

[
γ1,1
0

]
⊗ Ir

))

= C Vm (T −j
m ⊗ Ir ) (VT

m � B)

= Cm T −j
m Bm = m̃

g
j .

We would like to mention here that these moment matching results do not influence
the extended Arnoldi algorithms themselves but just to clarify for example why the
extended block and global Arnoldi algorithms allow us to match some moments and
Markov parameters of transfer functions. This will be shown with some numerical
experiments in the next section.

4 Numerical tests

In this section, we give some experimental results to show the effectiveness of the
proposed approaches. All the experiments were performed on a computer of Intel
Core i5 at 1.3 GHz and 8 GB of RAM. The algorithms were coded in Matlab R2010a.
We used different known benchmark models listed in Table 1.
The matrices for the benchmark problems CDplayer, FOM, Eady, MNA3 were
obtained fromNICONET [14] while the matrices for the Flow and RAIL5177mod-
els are from the Oberwolfach collection 1. Some informations on these matrices are

1 Oberwolfach model reduction benchmark collection, 2003. http://www.imtek.de/simulation/benchmark

http://www.imtek.de/simulation/benchmark
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reported in Table 1. For the FDMmodel, the corresponding matrix A is obtained from
the centred finite difference discretization of the operator

LA(u) = �u − f (x, y)
∂u

∂x
− g(x, y)

∂u

∂y
− h(x, y)u,

on the unit square [0, 1] × [0, 1] with homogeneous Dirichlet boundary conditions
with ⎧

⎨

⎩

f (x, y) = sin(x + 2y),

g(x, y) = ex+y,

h(x, y) = x + y,

and the matrices B and C of sizes n × r and r × n, respectively, were random
matrices with entries uniformly distributed in [0, 1]. The number of inner grid points
in each direction was n0 = 400 and the dimension of A is n = n20.
We notice that in all the figures of Example 1, the parameter m denotes the maximal
iteration number for extended block Arnoldi and extended global Arnoldi algorithms.
When using balanced truncation, the number m denotes also the maximal iteration
number for convergence of the extended block Arnoldi algorithm when applied for
solving the coupled Lyapunov equations. We also notice that for the results presented
in our plots, the dimension of the reduced models are 2mr for extended block and
global Arnoldi methods and also for balanced truncation. For Example 2, the sizes of
the obtained reduced-order models are given in Table 2.

Example 1 In the first experiment, we considered the models CDplayer and FOM.
Although the matrices of these models have small sizes they are usually considered
as benchmark examples. The plots of Fig. 1 show the norms of the errors ‖F(jω) −
Fm(jω)‖2 (where j2 = −1) for the extended block (dashed), extended global (solid),
and the balanced-truncation (dashed-dotted) methods with ω ∈ [10−5, 105]. We
denote here that the balanced truncation method needs the solution of two low-rank

Table 2 The H∞ error-norms ‖F −Fm‖H∞ , execution times and reduced space dimensions for extended
block, extended global, and balanced-truncation methods with the frequencies ω ∈ [10−5, 10−2]

Model / Method Bl-Extended Gl-Extended Balanced-Truncation

FDM, n = 160,000, r = 5

H∞-Error norms 2.5 × 10−4 4.6 × 10−4 6.5 × 10−4

Times in seconds 88 92 364

Space dimension 100 104 120

Flow , n = 9669, r = 3

H∞-Error norms 2.6 × 10−4 3.9 × 10−4 1.5 × 10−6

Times in seconds 1.9 2.1 4.5

Space dimension 180 190 220

MNA3 , n = 4863, r = 4

H∞-Error norms 2.6 × 10−6 3.9 × 10−6 2.4 × 10−7

Times in seconds 8.1 8.6 14.8

Space dimension 300 320 360
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Fig. 1 The norms of the errors ‖F(jω) − Fm(jω)‖2 for the extended block (dashed), extended global
(solid), and the balanced-truncation (dashed-dotted) methods with ω ∈ [10−5, 105]. Left the CDplayer
model with m = 10 and r = 2. Right: the FOM model with m = 15, r = 3

right hand sides Lyapunov matrix equations that we solved by using the extended
block Arnoldi method [16] and we stopped the iterations when the norm of the resid-
ual was less than 10−8. Figure 1 shows that the three methods return similar results
with an advantage, in the right plots of this figure, for balanced truncation for medium
frequencies. However, balanced-trucation is generally more expensive as compared
to the two other methods.

For the second experiment, we considered the models RAIL5177 and MNA3
given in Table 1. In Fig. 2, we plotted the norms of the errors ‖F(jω) − Fm(jω)‖2
for the extended block (dashed), extended global (solid), and the balanced-truncation
(dashed-dotted) methods with ω ∈ [10−6, 106].

As can be seen from Fig. 2, the three methods work well for small and high fre-
quencies with a little advantage for the extended block and global Arnoldi methods
for high frequencies.
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Fig. 2 The norm of the errors ‖F(jω) − Fm(jω)‖2 for the extended block (dashed), extended global
(solid), and the balanced-truncation (dashed-dotted) methods . Left: the RAIL5177 model with m = 40
and r = 2. Right: the MNA3 model with m = 12 and r = 3
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Fig. 3 The norm of the errors ‖F(jω) − Fm(jω)‖2 for the extended block (dashed), extended global
(solid) and the balanced-truncation (dashed-dotted) methods with ω ∈ [10−5, 105]. Left: the Flow model
with m = 15 and r = 3. Right: the Eady model with m = 10 and r = 3

The plots in Fig. 3, represent the norms of the errors ‖F(jω) − Fm(jω)‖2
corresponding to the extended block and global Arnoldi methods and to the balanced-
truncation method for the models: the Eady model with m = 10 and r = 3 and the
Flow model with m = 15 and r = 3 for the frequencies ω ∈ [10−5, 105].

Example 2 For this example, we compared the obtained H∞ error-norms ‖F −
Fm‖H∞ , the execution times and the reduced space dimensions for the extended
block and global Arnoldi algorithms with those obtained by the balanced-truncation
method in which the two coupled low-rank right hand sides Lyapunov matrix equa-
tions were solved by the extended block Arnoldi algorithm. For the latter method, the
inner iterations were stopped when the norm of the residual was less than 10−8 and
the obtained approximate solution was given as a product of a matrix with a low rank
with its transpose. We considered three models: FDMwith n = 160,000 and r = 5, the
flow-metermodel with n = 9669 and r = 3, and the MNA3model with n = 4863
and r = 4.

The results of Table 2 show that the cost of balanced truncation method is gener-
ally higher than the cost of the extended block or global Arnoldi methods. However,
some of the obtained H∞ norms are good when using the balanced truncation
method.

5 Conclusion

In this paper, we considered the extended block and global Arnoldi methods. We
gave some new algebraic properties of these two algorithms. We also showed how
these properties could be used in moment matching methods for model reduction in
large-scale dynamical systems. The proposed numerical results on some Benchmark
models, show that the extended block and global Arnoldi algorithms are efficient.
Generally, the two methods return similar results. One advantage of the extended
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global Arnoldi is the fact that a beak-down cannot occur which may be the case for
the extended block Arnoldi algorithm.
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