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Abstract We propose a novel approach to the problem of polynomial approximation
of rational Bézier triangular patches with prescribed boundary control points. The
method is very efficient thanks to using recursive properties of the bivariate dual
Bernstein polynomials and applying a smart algorithm for evaluating a collection of
two-dimensional integrals. Some illustrative examples are given.
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1 Introduction and preliminaries

Rational triangular Bézier surfaces are an important tool in computer graphics. How-
ever, they may be sometimes inconvenient in practical applications. The reason is that
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evaluation of integrals or derivatives of rational expressions is cumbersome. Also, it
happens that a rational surface produced in one CAD system is to be imported into
another system which can handle only polynomial surfaces.

In order to solve the two problems above, different algorithms for approximating
the rational surface by polynomial surface are proposed [3, 8, 16, 18–20]. The spec-
trum of methods contains hybrid algorithm [20], progressive iteration approximation
[3, 8], least squares approximation and linear programming [16], and approximation
by Bézier surfaces with control points obtained by successive degree elevation of
the rational Bézier surface [18, 19]. As a rule, no geometric constraints are imposed,
which means a serious drawback: if we start with a patchwork of smoothly connected
rational Bézier triangles and approximate each patch separately, we do not obtain a
smooth composite surface.

In this paper, we propose a method for solving the problem of the constrained least
squares approximation of a rational triangular Bézier patch by a polynomial triangu-
lar Bézier patch; see Problem 2.1 below. The method is based on the idea of using
constrained dual bivariate Bernstein polynomials. Using a fast recursive scheme of
evaluation of Bézier form coefficients of the bivariate dual Bernstein polynomials,
and applying a swift adaptive scheme of numerical computation of a collection of
double integrals involving rational functions contribute to high efficiency of the method.

The outline of the paper is as follows. Section 2 brings a complete solution
to the approximation problem. The algorithmic implementation of the method is
described in Section 3; some technical details of the implementation are presented in
Appendix A. In Section 4, several examples are given to show the efficiency of the
method. In Appendix B, some basic information on the Hahn orthogonal polynomials
is recalled.

We end this section by introducing some notation. For y := (y1, y2, . . . , yd) ∈
R

d , we denote |y| := y1 + y2 + . . . + yd and ‖y‖ := (y2
1 + y2

2 + . . . + y2
d

) 1
2 .

For n ∈ N and c := (c1, c2, c3) ∈ N
3 such that |c| < n, we define the following

sets (cf. Fig. 1):

�n := {k = (k1, k2) ∈ N
2 : 0 ≤ |k| ≤ n},

�c
n := {k = (k1, k2) ∈ N

2 : k1 ≥ c1, k2 ≥ c2, |k| ≤ n − c3},
�c

n := �n \ �c
n.

⎫
⎪⎬

⎪⎭
(1.1)

Remark 1.1 The set �n corresponds to the set of control points of a triangular (ratio-
nal or polynomial) Bézier patch, while the set �c

n is related with the boundary points,
where some constraints are to be imposed. See Section 2 for details.

Throughout this paper, the symbol �2
n denotes the space of all polynomials of two

variables, of total degree at most n.
Let T be the standard triangle in R

2,

T := {(x1, x2) : x1, x2 ≥ 0, x1 + x2 ≤ 1}. (1.2)

For n ∈ N, and k := (k1, k2) ∈ �n, we denote,
(

n

k

)
:= n!

k1!k2!(n − |k|)! .
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Fig. 1 Examples of sets (1.1) (n = 11). Points of the set �c
n are marked by white discs, while the points

of the set �c
n – by black discs. Obviously, �n = �c

n ∪ �c
n

The shifted factorial is defined for any a ∈ C by

(a)0 := 1; (a)k := a(a + 1) · · · (a + k − 1), k ≥ 1.

The Bernstein polynomial basis in �2
n, n ∈ N, is given by (see, e.g., [5] or [6, §17.3]),

Bn
k (x) :=

(
n

k

)
x

k1
1 x

k2
2 (1 − |x|)n−|k|, k := (k1, k2) ∈ �n, x := (x1, x2).

(1.3)
The (unconstrained) bivariate dual Bernstein basis polynomials [12],

Dn
k (·; α)∈ �2

n, k ∈ �n, (1.4)

are defined so that 〈
Dn

k , Bn
l

〉
α

= δk,l, k, l ∈ �n.

Here, δk,l equals 1 if k = l, and 0 otherwise, while the inner product is defined by

〈f, g〉α :=
∫∫

T

wα(x)f (x) g(x) dx, (1.5)

where the weight function wα is given by

wα(x) := Aαx
α1
1 x

α2
2 (1 − |x|)α3 , α := (α1, α2, α3), αi > −1, (1.6)

with Aα := �(|α| + 3)/[�(α1 + 1)�(α2 + 1)�(α3 + 1)].

Remark 1.2 The normalising constant Aα is introduced in order to simplify the form
of the dual Bernstein polynomials and some other quantities related to them. See [12]
for further explanation.

For n ∈ N and c := (c1, c2, c3) ∈ N
3 such that |c| < n, define the constrained

bivariate polynomial space

�c,2
n :=

{
P∈ �2

n : P(x) = x
c1
1 x

c2
2 (1 − |x|)c3 · Q(x), where Q ∈ �2

n−|c|
}

.

It can be easily seen that the constrained set {Bn
k }k∈�c

n
of degree n bivariate Bern-

stein polynomials forms a basis in this space. We define constrained dual bivariate
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Bernstein basis polynomials,

D
(n,c)
k (·; α) ∈ �c,2

n , k ∈ �c
n, (1.7)

so that 〈
D

(n,c)
k , Bn

l

〉

α
= δk,l for k, l ∈ �c

n, (1.8)

where the notation of (1.5) is used. For c = (0, 0, 0), basis (1.7) reduces to the uncon-
strained basis (1.4) in �2

n. Notice that the solution of the least squares approximation
problem in the space �

c,2
n can be given in terms of the polynomials D

(n,c)
k . Namely,

we have the following result.

Lemma 1.3 Let F be a function defined on the standard triangle T (cf. (1.2)). The
polynomial Sn ∈ �

c,2
n , which gives the minimum value of the norm

‖F − Sn‖L2,α := 〈F − Sn, F − Sn〉
1
2
α ,

is given by

Sn =
∑

k∈�c
n

〈
F,D

(n,c)
k

〉

α
Bn

k . (1.9)

Proof Obviously, Sn has the following representation in the Bernstein basis of the
space �

c,2
n :

Sn =
∑

k∈�c
n

〈
Sn, D

(n,c)
k

〉

α
Bn

k .

On the other hand, a classical characterization of the best approximation polynomial
Sn is that 〈F − Sn, Q〉α = 0 holds for any polynomial Q ∈ �

c,2
n (see, e.g., [4, Thm

4.5.22]). In particular, for Q = D
(n,c)
k

, we obtain
〈
F, D

(n,c)
k

〉

α
=
〈
Sn, D

(n,c)
k

〉

α
, k ∈ �c

n.

Hence, the formula (1.9) follows.

The coefficients Ek
l (α, c, n) in the Bézier form of the dual Bernstein polynomials,

D
(n,c)
k (x; α) =

∑

l∈�c
n

Ek
l (α, c, n) Bn

l (x), k ∈ �c
n, (1.10)

play an important role in the proposed method. Using the duality property (1.8), we
obtain the following expression for the coefficients of the above expansion:

Ek
l (α, c, n) =

〈
D

(n,c)
k , D

(n,c)
l

〉

α
. (1.11)

In a recent paper [11], an efficient algorithm was obtained for evaluating all these
coefficients for k, l ∈ �c

n, with the computational complexity proportional to the
total number of these coefficients. See Section 3.1 for details.



Numer Algor (2017) 75:93–111 97

2 Polynomial approximation of Bézier triangular surfaces with
constraints

In this paper, we consider the following approximation problem.

Problem 2.1 Let Rn be a rational triangular Bézier surface of degree n,

Rn(x) := Qn(x)

ω(x)
=

∑

k∈�n

ωkrkB
n
k (x)

∑

k∈�n

ωkB
n
k (x)

, x ∈ T ,

with the control points rk ∈ R
3 and positive weights ωk ∈ R, k ∈ �n. Find a

polynomial Bézier triangular surface

Pm(x) :=
∑

k∈�m

pkB
m
k (x), x ∈ T ,

of degree m, with the control points pk ∈ R
3, which minimises the distance

dα(Rn,Pm) :=
∫∫

T

wα(x)‖Rn(x) − Pm(x)‖2 dx, (2.1)

between the surfaces Rn and Pm, and satisfies the additional condition:

pk = gk for k ∈ �c
m, (2.2)

where gk ∈ R
3 are prescribed control points, and c := (c1, c2, c3) ∈ N

3 is a given
parameter vector with |c| < m.

Remark 2.2 Remember that continuity conditions for any two adjacent triangular
Bézier patches are given in terms of several rows of the control net ”parallel” to the
control polygon of their common boundary (see, e.g., [6, Section 17.6]). Therefore,
constraints (2.2) are natural, in a sense (cf. Fig. 1). In Section 4, we give several
examples of practical usage of this approach.

Clearly, the Bézier triangular patch being the solution of Problem 2.1 can be
obtained in a componentwise way. Hence, it is sufficient to give a method for solv-
ing the above problem in the case where Rn and Pm are scalar functions, and gk are
numbers.

All the details of the proposed method are given in the following theorem.

Theorem 2.3 Assume that we are given the coefficients rk and positive weights ωk ,
k ∈ �n, of the rational function

Rn(x) := Qn(x)

ω(x)
=

∑

k∈�n

ωkrkB
n
k (x)

∑

k∈�n

ωkB
n
k (x)

. (2.3)
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For a fixed m ∈ N, the polynomial

Pm(x) :=
∑

k∈�m

pkB
m
k (x) (2.4)

with the coefficients

pk =
∑

l∈�c
m

(
m

l

)
Ek

l (α, c, m)
(
ul − vl

)
, k ∈ �c

m, (2.5)

where the symbol Ek
l (α, c, m) has the meaning given in (1.10),

ul := ∑

h∈�n

(
n

h

)(
n + m

h + l

)−1

ωhrh Ih+l,

vl := 1

(|α| + 3)2m

∑

h∈�c
m

(
m

h

)( 3∏

i=1

(αi + 1)hi+li

)

gh

with h3 := m − |h|, l3 := m − |l|, and

Ij :=
∫∫

T

wα(x)
Bn+m

j (x)

ω(x)
dx, j ∈ �c

n+m, (2.6)

minimises the error

‖Rn − Pm‖2
L2,α

= 〈Rn − Pm,Rn − Pm〉α (2.7)

under the constraints
pk = gk for k ∈ �c

m. (2.8)

Proof Observe that
‖Rn − Pm‖2

L2,α
= ‖W − Sm‖2

L2,α

where
W := Rn − Tm, Tm :=

∑

k∈�c
m

gkBm
k , Sm :=

∑

k∈�c
m

pkBm
k ,

the notation being that of (1.1). Thus, we want Sm to be the best approximation
polynomial for the function W in the space �

c,2
m . Its Bézier coefficients are given by

pk =
〈
W, D

(m,c)
k

〉

α
=
∑

l∈�c
m

Ek
l (α, c, m)

( 〈
Rn, B

m
l

〉
α

− 〈Tm, Bm
l

〉
α

)
, k ∈ �c

m,

where we have used Lemma 1.3. We obtain:
〈
Rn, Bm

l

〉
α

= ∑

h∈�n

ωhrh

〈
Bn

h

ω
, Bm

l

〉

α

= ∑

h∈�n

ωhrh

(
n

h

)(
m

l

)(
n + m

h + l

)−1〈
1

ω
, Bn+m

h+l

〉

α

= ∑

h∈�n

ωhrh

(
n

h

)(
m

l

)(
n + m

h + l

)−1

Ih+l,
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where we use the notation (2.6). Further, using (1.3) and (1.5), we get
〈
Tm, Bm

l

〉
α

= ∑

h∈�c
m

gh

〈
Bm

h , Bm
l

〉
α

=
∑

h∈�c
m

gh

(
m

h

)(
m

l

)
(α1 + 1)h1+l1(α2 + 1)h2+l2(α3 + 1)2m−|h|−|l|

(|α| + 3)2m

.

Hence, the formula (2.5) follows.

Remark 2.4 In general, the integrals (2.6) cannot be evaluated exactly. In Section 3.2,
we show that they can be efficiently computed numerically up to high precision using
an extension of the method of [9] to the case of two-dimensional integration over a
triangular domain.

In the special case where all the weights ωi , i ∈ �n, are equal, the rational func-
tion (2.3) reduces to a polynomial of degree n, so that the problem is actually the
constrained polynomial degree reduction problem (see, e.g., [17]). Evaluation of the
integrals is then a simple task.

3 Implementation of the method

In this section, we discuss the computational aspects of the polynomial approxima-
tion of the rational Bézier function described in Section 2 (see Theorem 2.3).

3.1 Computing the coefficients Ek
l

We have to compute all the coefficients Ek
l (α, c, m) with k, l ∈ �c

m. It has been
shown [11] that they can be given in terms of the quantities

ek
l (μ, M) := 〈DM

k , DM
l 〉μ, k, l ∈ �M (3.1)

with M := m − |c| and μ := α + 2c, where DM
k (x) ≡ DM

k (x; μ) are the uncon-
strained dual Bernstein polynomials of total degree M (cf. (1.4)). More specifically,
we have

Ek
l (α, c, m) = U Vk Vl ek−c′

l−c′ (μ, M), k, l ∈ �c
m, (3.2)

where c′ := (c1, c2), and

U := (|α| + 3)2|c|
3∏

i=1

(αi + 1)−1
2ci

, Vh :=
(

M

h − c′

)(
m

h

)−1

.

Obviously, we have the following symmetry property: ek
l (μ, M) = el

k(μ, M) that
will be exploited in the Algorithm 3.1 below. This algorithm is based on the following
recurrence relations satisfied by ek

l ≡ ek
l (μ, M), obtained in [11]. In the sequel, we

assume that ek
l = 0 if k �∈ �M or l �∈ �M .

The first recurrence relation is

e
k+v2
l =

(
[σ1(k) − σ1(l)]ek

l − σ2(k)e
k−v2
l + σ0(l)e

k
l+v2

+ σ2(l)e
k
l−v2

)
/σ0(k),

(3.3)
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where v2 := (0, 1), and for t := (t1, t2), we define

σ0(t) := (|t | − M)(t2 + μ2 + 1), σ2(t) := t2(|t | − μ3 − M − 1),

σ1(t) := σ0(t) + σ2(t).

}

(3.4)

To initialise the computation, we use, for l := (l1, l2) ∈ �M , the following
formula:

e
(0,0)
l (μ, M) = (−1)l1(|μ| + 3)M

M!(α1 + 2)l1

M−l1∑

i=0

Ci(l1) hi(l2; μ2, μ3, M − l1), (3.5)

where

Ci(l1) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(μ1 + 2)n

(μ2 + μ3 + 2)M−l1

, i = 0,

(
M

i

)
(2i + μ2 + μ3 + 1)(μ1 + 2)M−i (|μ| + M + 3)i

(−M)i(μ3 + 1)i(μ2 + μ3 + i + 1)M−l1+1
, i ≥ 1,

(3.6)
and we use the notation hi(t; a, b,N) for the Hahn orthogonal polynomials (see
(B.1)). Notice that we can evaluate efficiently the sum in (3.5) using the Clenshaw’s
algorithm, with the cost of O(M − l1) operations (see Remark B.1).

The second recurrence relation is

e
k+v1
l =

(
[τ1(k) − τ1(l)]ek

l − τ2(k) e
k−v1
l + τ0(l) ek

l+v1
+ τ2(l) ek

l−v1

)
/τ0(k),

(3.7)
where v1 := (1, 0), and for t := (t1, t2), the coefficients τj (t) are given by

τ0(t) := (|t | − M)(t1 + μ1 + 1), τ2(t) := t1(|t | − μ3 − M − 1),

τ1(t) := τ0(t) + τ2(t).

}

(3.8)

The precise formulation of the algorithm is as follows.

Algorithm 3.1 (Computing the coefficients Ek
l (α, c, m))

STEP 1 Let M := m − |c|, and μ := α + 2c.
STEP 2 For l1 = 0, 1, . . . , M − 1,

l2 = 0, 1, . . . , M − l1,
compute e

(0,0)
(l1,l2)

defined by (3.5) and (3.6) using the Clenshaw algorithm,

and put e(l1,l2)
(0,0) := e

(0,0)
(l1,l2)

.
STEP 3 For k1 = 0, 1, . . . , M − 1,

1o for k2 = 0, 1, . . . , M − k1 − 1,
l1 = k1, k1 + 1, . . . , M ,
l2 = 0, 1, . . . , M − l1,
compute e

(k1,k2+1)
(l1,l2)

using the recurrence (3.3), and put e
(l1,l2)
(k1,k2+1) :=

e
(k1,k2+1)
(l1,l2)

;
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2o for l1 = k1 + 1, k1 + 2, . . . , M ,
l2 = 0, 1, . . . , M − l1,
compute e

(k1+1,0)
(l1,l2)

using the recurrence (3.7), and put e(l1,l2)
(k1+1,0) := e

(k1+1,0)
(l1,l2)

.

STEP 4 Compute the table {Ek
l (α, c, m)}k,l∈�c

m
by (3.2).

Observe that the complexity order of the algorithm equals O(m4), i.e., is propor-
tional to the total number of the coefficients Ek

l (α, c, m).

3.2 Computing the integrals Ij

The most computationally expensive part of the proposed method is the evaluation of
the collection of integrals (2.6). For example, for n + m = 22, if c = (0, 0, 0), there
are 276 two-dimensional integrals to be computed. It is obvious that using any stan-
dard quadrature would completely ruin the efficiency of the algorithm. Moreover,
if any of the parameters αi (i = 1, 2, 3) in (1.6) is smaller than 0 and the corre-
sponding constrain parameter ci equals zero, then the integrands in (2.6) are singular
functions, and standard quadratures may fail to deliver any approximations to the
integrals.

Therefore, for evaluating the complete set of integrals (2.6), we introduce a special
scheme which is based on the general method [9] for approximating singular inte-
grals. The proposed numerical quadrature is of the automatic type, which means that
the required number of nodes is adaptively selected, depending on the complexity
of the rational Bézier function, so that the requested accuracy of the approxima-
tion is always achieved. Most importantly, the algorithm is extremely effective in
the considered application. In the example given at the beginning of this subsection
(n + m = 22), the time required to compute the whole collection of 276 integrals is
only twice1 longer than the time needed to approximate a single separate integral of
a similar type.

First, we shall write the integral (2.6) in a different form which is better suited for
fast numerical evaluation. Observe that bivariate Bernstein polynomials (1.3) can be
expressed in terms of univariate Bernstein polynomials. Namely, we have

BN
j (x) = BN

j1
(x1)BN−j1

j2
(x2/(1 − x1)), j := (j1, j2), x := (x1, x2),

where BM
i (t) := (M

i

)
t i (1 − t)M−i , 0 ≤ i ≤ M , are univariate Bernstein polynomials

of degree M . Further, the bivariate weight function wα (see (1.6)) can be expressed as

wα(x) = Aα vα2+α3,α1(x1) vα3,α2(x2/(1 − x1)),

1Based on the Maple implementation of the algorithm. If the collection consists of 990 integrals (n+m =
42), the computation time increases by only 50 % (compared to the case of 276 integrals). The detailed
report from the efficiency test can be found at the end of Appendix A.
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where vα,β(t) := (1 − t)αtβ is the univariate Jacobi weight function. Hence, the
integral (2.6) can be written as

Ij =
∫ 1

0

∫ 1−x1

0
wα(x)

BN
j (x)

ω(x)
dx2 dx1

= Aα

∫ 1

0
vα2+α3+1,α1(s)BN

j1
(s)

⎛

⎝
∫ 1

0
vα3,α2(t)

BN−j1
j2

(t)

ω∗(s, t)
dt

⎞

⎠ ds

= Aα

(
N

j

)∫ 1

0
va,b(t)

(∫ 1

0
vc,d(s)

1

ω∗(s, t)
ds

)

dt, (3.9)

where we denoted N := n + m,

a ≡ a(j) := α3 + N − |j |, b ≡ b(j2) := α2 + j2,

c ≡ c(j1) := α2 + α3 + N − j1 + 1, d ≡ d(j1) := α1 + j1,

}

(3.10)

and

ω∗(s, t) := ω(s, (1−s)t) =
n∑

i=0

wi(t)Bn
i (s), wi(t) =

n−i∑

j=0

ωi,j Bn−i
j (t). (3.11)

Note that the computation of values of the integrand is now much more effective,
because the coefficients wi of the function ω∗ (1 ≤ i ≤ n) in (3.11) do not depend
of the inner integration variable s. The main idea is, however, to compute the values
of ω∗ only once (at a properly selected set of quadrature nodes) and obtain a tool for
fast computation of the integrals (3.9) for different values of a, b, c, and d, i.e. for
different values of j .

For arbitrary fixed t ∈ [0, 1], define the function

ψt(s) := ω∗(s, t)−1. (3.12)

It is easy to see that we can write

Ij = Aα

(
N

j

)
J (a, b; ),

with

(t) := J (c, d; ψt), (3.13)

where we use the notation

J (α, β; f ) :=
∫ 1

0
(1 − x)αxβf (x)dx.

The functions ψt and  are analytic in a closed complex region containing the inter-
val [0, 1] (it is proved in Appendix A). This implies that (cf. [15, Chapter 3]) they
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can be accurately and efficiently approximated by polynomials given in terms of the
(shifted) Chebyshev polynomials of the first kind,

ψt(s)  SMt (s) :=
Mt∑

i=0

′ γ [t]
i Ti(2s − 1),

(t)  ŜM(t) :=
M∑

l=0

′ γ̂lTi(2t − 1),

0 ≤ s, t ≤ 1, (3.14)

where M may depend on j1, and the prime denotes a sum with the first term halved.
Once the above expansions are computed (this can be done in a time proportional to
Mt log(Mt) and M log(M)), the integrals J (·, ·; ·) can be easily evaluated using the
following algorithm that was proved in [14].

Algorithm 3.2 (Computing the integral J (α, β; S), S being a polynomial)
Given numbers α, β > −1, let r := β −α, u := α +β + 1. Let SM be a polynomial
defined by

SM(x) =
M∑

i=0

′γiTi(2x − 1).

Compute the sequence di , 0 ≤ i ≤ M + 1, by

dM+1 = dM := 0,

di−1 := 2rdi + (i − u)di+1 − γi

i + u
, i = M,M − 1, . . . , 1.

Output: J (α, β; SM) = C ·
(

1
2γ0 − rd0 + ud1

)
, where C := �(α + 1)�(β +

1)/�(α + β + 2).

By the repeated use of the above very fast scheme, we may efficiently approximate
the whole set of integrals Ij for j ∈ �c

n+m. The remaining technical details of the
adaptive implementation of the proposed quadrature and the complete formulation of
the integration algorithm are presented in Appendix A.

3.3 Main algorithm

The method presented in this paper is summarized in the following algorithm.

Algorithm 3.3 (Polynomial approximation of the rational Bézier triangular surface)
Given the coefficients rk and positive weights ωk , k ∈ �n, of the rational function
(2.3), the coefficients pk of the degree m polynomial (2.4) minimising the error (2.7)
under the constraints (2.8) can be computed in the following way.

STEP 1 Compute the table {Ek
l (α, c, m)}k,l∈�c

m
by Algorithm 3.1.

STEP 2 Compute the table {Ij }j∈�c
n+m

by Algorithm A.1.

STEP 3 For k ∈ �c
m, put pk := gk .
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STEP 4 For k ∈ �c
m, compute pk by (2.5).

Output: Set of the coefficients pk , k ∈ �m.

4 Examples

In this section, we present some examples of approximation of rational triangular
Bézier patches by triangular Bézier patches. No theoretical justification is known for
the best choice of the vector parameter α in the distance functional (2.1) if we use
the error function

�α(x) := ‖Rn(x) − Pm(x)‖ (4.1)

to measure the quality of the approximation. On the base of numerical experi-
ments, we claim that α = (α1, α2, α3) with αi ∈ (−1, 0) (i = 1, 2, 3) usually
leads to slightly better results than the one obtained for the more common choice
α = (0, 0, 0) (meaning wα(x) = 1). The computations were performed in 16-
decimal-digit arithmetic. In the implementation of Algorithm A.1, we have assumed
ε = 5 × 10−16 in (A.3) and used the initial values M∗ = M∗

k = 32.

4.1 Example 1

Let R6 be the degree 6 rational triangular Bézier patch [8, Example 2],

R6(x) :=

∑

k∈�6

ωkrkB
6
k (x)

∑

k∈�6

ωkB
6
k (x)

, x ∈ T , (4.2)

T being the standard triangle (1.2), and the control points rk and the associated
weights ωk being listed in Table 1. We let α = (− 1

2 , − 1
2 , − 1

2 ), c = (1, 1, 1) and
constructed the degree 5 best approximating polynomial patch

P5(x) :=
∑

k∈�5

pkB
5
k (x), x ∈ T ,

under the restriction pk = gk for k ∈ �c
5, where

�c
5 := {k = (k1, k2) : k1 = 0, or k2 = 0, or |k| = 5},

and the set of points gk , k ∈ �c
5, is obtained in the following way. As well known, the

boundary of the patch (4.2) is formed by three degree 6 rational Bézier curves. The
least squares degree 5 polynomial approximation to each of these rational curves,
with the endpoints preservation, is constructed using an extension of the method of
[14], described in [13] (the input data: m = 5, α = β = − 1

2 , k = l = 1, notation
used being that of [13]). Now, the set of points gk is the appropriate collection of all
control points of the three resulting Bézier curves. The obtained results are shown in
Fig. 2 (upper part).
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Fig. 2 Constrained degree 5 polynomial approximation of the degree 6 rational triangular Bézier sur-
face, with c = (1, 1, 1). Upper part: Rational surface R6(x) and the approximating surface P5(x)

with α = (− 1
2 ,− 1

2 ,− 1
2 ). Lower part: The error �α(x) plots corresponding to α = (0, 0, 0) and

α = (− 1
2 ,− 1

2 ,− 1
2 ), respectively. Notice that the original surface and the approximating surface agree at

the corner points

We have repeated the computations for α = (a, a, a) and a series of values of
a (with α = β = a, in [13]), obtaining the following maximum errors Ma :=

Table 1 Control points rk (upper entries) and the associated weights ωk (lower entries) of the surface
(4.2), with k = (k1, k2) ∈ �6

k1 \ k2 0 1 2 3 4 5 6

0 (6,0,2) (5,0,3) (4,−0.5,3.5) (3,−0.2,4) (1.5,0.5,2) (0.4,0.4,1) (0,0,0)

0.8 0.3 1.8 1.2 0.8 0.2 1.6

1 (5.2,1,3) (4.5,1,3) (3,0.6,4) (2,0.9,3) (1.2,1,2) (0.4,0.8,0.6)

1 0.4 0.8 2.4 1.3 0.9

2 (4.5,2,5) (4,2.2,4) (3,2,3) (2,1.2,2) (0.8,1.5,1.5)

0.5 1 1 1.8 0.8

3 (4,3,6) (2.5,2.5,5) (1.5,2.8,4) (1,2,3)

0.3 2 1 0.9

4 (3.5,3.5,4) (2.5,3,5) (1.5,3.5,3)

1.5 0.6 1.2

5 (3,4.2,2) (2,4,2)

0.8 0.5

6 (2,5,1)
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maxx∈T �α(x) (cf. (4.1)):

a − 7
8 − 3

4 − 5
8 − 1

2 − 3
8 − 1

4 − 1
8 0 1

8
1
4

3
8

1
2

Ma 0.122 0.12 0.13 0.132 0.142 0.15 0.157 1.62 0.17 0.176 0.182 0.188

Observe that choosing negative values of a leads to slightly better results than the
ones obtained with non-negative a. In Fig. 2 (lower part), we have compared the error
�α(x) plots corresponding to a = 0 and a = − 1

2 . Notice that all the above results
are significantly better than the one obtained in [8] by an iterative algorithm with
α = (0, 0, 0), where the maximum error was equal to 0.29.

4.2 Example 2

Let R∗ be the composite rational surface,

R∗(x) :=
⎧
⎨

⎩

RR
5 (y), y := (1 − |x|, x1 − x2), x ∈ TR,

RY
5 (z), z := (x2 − x1, 1 − |x|), x ∈ TY ,

(4.3)

where for C ∈ {R, Y },

RC
5 (w) :=

∑

k∈�5

ωC
k rC

k B5
k (w)

∑

k∈�5

ωC
k B5

k (w)
, w ∈ T , (4.4)

T being the standard triangle (1.2), and

TR := {x = (x1, x2) : x1 ≥ x2 ≥ 0, |x| ≤ 1},
TY := {x = (x1, x2) : x2 ≥ x1 ≥ 0, |x| ≤ 1}.

The control points rC
k

and the associated weights ωC
k

of the rational patches (4.4) can
be found at the webpage http://www.ii.uni.wroc.pl/∼pwo/programs.html. The surface
(4.3) is shown in Fig. 3 (the left plot).

Now, we show how to obtain the degree m polynomial approximations of the
rational subpatches, which form a C1-continuous composite surface.

1o Let PY
m be the triangular Bézier patch of degree m approximating the rational

patch RY
5 without constraints, i.e., for c = (0, 0, 0). Let pY

k be the control points of
the patch PY

m.
2o We approximate the rational patch RR

5 by the triangular Bézier patch PR
m of

degree m, with constraints of the type c = (2, 0, 0), where the points gk ∈ �c
m are

chosen so that the C1-continuity is obtained (cf. [6, Section 17.6]):

g(0,i) := pY
(i,0), i = 0, 1, . . . , m,

g(1,i) := pY
(i+1,0) + (pY

(i+1,0) − pY
(i,1)), i = 0, 1, . . . , m − 1.

The results, obtained for m = 5 and m = 6, with α = (− 1
2 , − 1

2 , − 1
2 ), are shown in

Fig. 3. It can be observed that approximation of the rational composite surface (4.3)
by two jointed polynomial patches of degree m = 5 (the middle plot) resulted in

http://www.ii.uni.wroc.pl/~pwo/programs.html
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Fig. 3 The composite rational Bézier surface (4.3) (left) and the C1-continuous composite polynomial
surfaces of degree (5,5) (middle) and (6,6) (right)

some visible differences. Increasing the degree of the approximating polynomials to
m = 6 (the right plot) already gave a very satisfactory result.

5 Conclusions

We propose a method to solve the constrained L2 approximation of the rational tri-
angular Bézier patch by a polynomial triangular Bézier patch. The algorithm adopts
a fast recursive scheme of evaluation of Bézier form coefficients of dual bivariate
Bernstein polynomials, and uses an adaptive strategy of numerical computation of a
collection of double integrals involving rational functions. The numerical examples
confirm high efficiency of the algorithm.

We have shown that the proposed method can be applied in approximation of a
C1-continuous surface composed of two adjacent rational surfaces by a composite
polynomial surface, with the preservation of the smoothness order. It would be inter-
esting to extend this approach to the case of a surface composed of more rational
surfaces, joined smoothly. However, this may require constructing a separate method
for a proper selection of the boundary control points of each part of the approximation
surface. Another question worth further research is whether the proposed approach
can be modified to the case of G1-continuity.
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Appendix A: the adaptive algorithm for computing the integrals Ij

We start with proving that the functions ψt (3.12), t ∈ [0, 1], and  (3.13) are analytic
in a closed complex region containing the interval [0, 1]. The assertion is clearly true
in the case of ψt(z) = ω∗(z, t)−1, as the bivariate polynomial ω∗ has no roots in
[0, 1] × [0, 1]. Similarly, for any s ∈ [0, 1], the function z �→ ω∗(s, z)−1 is analytic
in a rectangular region [−σ, 1 + σ ] × [−σ, σ ], where σ > 0 does not depend on s.
Thus, if s ∈ [0, 1], then ∫

C

ω∗(s, z)−1dz = 0

for any closed contour C ⊂ [−σ, 1+σ ]×[−σ, σ ]. Consequently, if α, β > −1, then
∫

C

(∫ 1

0
(1 − s)αsβω∗(s, z)−1ds

)
dz =

∫ 1

0
(1 − s)αsβ

(∫

C

ω∗(s, z)−1dz

)
ds = 0.

Therefore, by Morera’s theorem (see, e.g., [1, Chapter 2.3]), the function (z) =
J (α, β, ψz) is also analytic in [−σ, 1 + σ ] × [−σ, σ ].

The polynomials SMt and ŜM in (3.14), which approximate the functions ψt and
, are determined to satisfy the interpolation conditions

SMk
(sj ) = ω∗(sj , tk)−1, 0 ≤ j ≤ Mk,

ŜM(tk) = J (c, d; SMk
),

⎫
⎬

⎭
0 ≤ k ≤ M,

where, for simplicity, we denote Mk ≡ Mtk , and the interpolation nodes are given by

sj = 1

2
+ 1

2
cos

jπ

Mk

, tk = 1

2
+ 1

2
cos

kπ

M
. (A.1)

In such a case, the coefficients γ
[tk]
i and γ̂l in (3.14) are given by

γ
[tk]
i = 2 − δi,Mk

Mk

Mk∑

j=0

′′ ω∗(sj , tk)−1 cos
ijπ

Mk

, 0 ≤ i ≤ Mk,

γ̂l = 2 − δl,M

M

M∑

k=0

′′ J (c, d; SMk
) cos

lkπ

M
, 0 ≤ l ≤ M,

(A.2)

where δj,k is the Kronecker delta, the double prime means that the first and the last
term of the sum are to be halved. The sets of coefficients (A.2) can be very efficiently
computed by means of the FFT with only O

(
Mk log(Mk)

)
and O

(
M log(M)

)
arith-

metic operations (cf. [7] or [4, Section 5.1]; the authors recall that the FFT is not
only fast, but also resistant to round-off errors). The presented approach is very con-
venient from the practical point of view because if the accuracy of the approximation
(3.14) is not satisfactory, then we may double the value of Mk (or M) and reuse the
previously computed results. The expansions (3.14) are accepted if

Mk∑

i=Mk−3
|γ [tk]

i |

max
{
1, max

0≤i≤3
|γ [tk]

i |} ≤ 16ε and

M∑

i=M−3
|γ̂i |

max
{
1, max

0≤i≤3
|γ̂i |
} ≤ 256ε, (A.3)
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where ε is the computation precision.
Here is the complete algorithm for efficient approximation of the whole set of

integrals Ij for j ∈ �c
n+m. The functions (parameters) a, b, c, and d are defined in

(3.10).

Algorithm A.1 (Numerical computation of the set of integrals Ij , j ∈ �c
n+m)

Let M := M∗, where M∗ is an arbitrary integer greater than 7.

Phase I. For k ∈ {0, 1, . . . , M}, do the following steps 1–6:
Step 1. Compute tk according to (A.1) and compute wi(tk) in (3.11) for

i ∈ {0, 1, . . . , n}.
Step 2. Let Mk := M∗

k , where M∗
k is an arbitrary integer greater than 7.

Step 3. Compute the values ω∗(sj , tk)−1 for j ∈ {0, 1, . . . , Mk}, where sj
is given by (A.1).

Step 4. Using the FFT, compute the coefficients γ
[tk]
i ( 0 ≤ i ≤ Mk)

defined in (A.2).
Step 5. If the first condition of (A.3) is not satisfied, then set Mk := 2Mk ,

compute the additional values ω∗(sj , tk)−1 for j ∈ {1, 3, 5, . . . ,Mk −
1}, and go to step 4.

Step 6. Compute the set of quantities W [tk, j1] := J
(
c(j1), d(j1); SMk

)

by applying Algorithm 3.2, for j1 ∈ {c1, c1 +1, . . . , N −c2 −c3}, where
N = n + m.

Phase II. For j1 ∈ {c1, c1 + 1, . . . , N − c3 − c2}, perform the following steps 7–9:

Step 7. Compute the coefficients γ̂l ( 0 ≤ l ≤ M) defined in (A.2), by
means of the FFT, using the stored values W [tk, j1], 0 ≤ k ≤ M , in
place of J

(
c(j1), d(j1); SMk

)
.

Step 8. If the second condition of (A.3) is not satisfied, then set M := 2M ,
and repeat Steps 1–6 for k ∈ {1, 3, 5, . . . ,M − 1}.

Step 9. For j2 ∈ {c2, c2 + 1, . . . , N − c3 − j1}, compute the integrals

Ij ≡ I(j1,j2) := Aα

(
N

j

)
J
(
a(j), b(j2); ŜM

)

using Algorithm 3.2.

Output: Set of the integrals Ij for j ∈ �c
n+m.

Remark A.2 In steps 4 and 7 of the above algorithm, the coefficients γ
[tk]
i ( 0 ≤

i ≤ Mk) or γ̂l ( 0 ≤ l ≤ M) are recalculated each time the value of Mk or M is
doubled. Such a procedure is advised if we use a system (like, e.g., Maple or Matlab)
equipped with a fast built-in FFT subroutine. If we are to program the FFT summation
algorithm by ourselves, it should rather be done in such a way that practically all
results computed for a previous value of Mk or M are reused (cf., e.g., [7]).
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In Table 2, we present the results of the efficiency test, where the proposed
quadrature (implemented in Maple) is compared to the Maple built-in integration
subroutine. We have used the Bézier surface from Example 4.1 (n = 6), and set the
parameters m and c to several different values, to obtain collections of integrals of
different sizes (equal to |�c

n+m|). The experiment was performed in the 64-bit version
of Maple 16 on the computer equipped with the 3.7 GHz i7 processor. All parame-
ters αi in (1.6) were set to 0 (the efficiency of the proposed method does not depend
on α, but the Maple built-in integration subroutine works most efficiently with this
selection).

We have to keep in mind that Maple is an interpretative programming language
with a pretty slow code interpreter. Therefore, the 4.7 times longer computation time
of our quadrature, compared to the computation time of the Maple library function,
in the case of 1-element collection of integrals is in fact an excellent result. The last
collection of 990 integrals (n + m = 42) was too difficult to be computed by the
Maple built-in subroutine (in 14-decimal digit arithmetic, assumed during this test).

Appendix B: Hahn orthogonal polynomials

The notation

rFs

(
a1, . . . , ar

b1, . . . , bs

∣∣∣∣ z
)

:=
∞∑

k=0

(a1)k · · · (ar)k

k!(b1)k · · · (bs)k
zk

is used for the generalized hypergeometric series (see, e.g., [2, §2.1]); here, r, s ∈
Z+, z, a1, . . . , ar , b1, . . . , bs∈ C, and (c)k is the shifted factorial. The Hahn
polynomials (see, e.g., [10, §1.5])

hl(t) ≡ hl(t; a, b,M) := (a + 1)l(−M)l 3F2

(−l, l + a + b + 1, −t

a + 1, −M

∣∣∣∣ 1
)

,

l = 0, 1, . . . , M, (B.1)

where a, b > −1, and M ∈ N, satisfy the recurrence relation

hl+1(t) = Al(t; M) hl(t) + Bl(M) hl−1(t), l ≥ 0; h0(t) ≡ 1; h−1(t) ≡ 0,

(B.2)

Table 2 Comparison of the
computation times of the Maple
library function and the
proposed adaptive quadrature
(Algorithm A.1) in the case of
several collections of integrals
(2.6)

∣∣�c
n+m

∣∣ Computation time (in seconds)

Maple library function The proposed method

1 0.064 0.30

3 0.19 0.30

10 0.64 0.32

28 1.75 0.37

91 6.34 0.43

276 22.9 0.59

990 FAILURE 0.89
The number of integrals which
are to be computed equals
|�c

n+m|
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with the coefficients

Al(t; M) := Cl (2l + s − 1)2 t − Dl − El, Bl(M) := −Dl El−1, (B.3)

where s := a + b + 1, Cl := (2l + s + 1)/[(l + s)(2l + s − 1)],
Dl := Cl l(l + M + s)(l + b), and El := (l + a + 1)(M − l).

Remark B.1 A linear combination of Hahn polynomials, sN(t) := ∑N
i=0 γi hi(t; a,

b,M), can be summed using the following Clenshaw’s algorithm (see, e.g., [4, Thm
3.2.11]). Compute the sequence V0, V1, . . . , Vn+2 from

Vi := γi + Ai(t; M)Vi+1 + Bi+1(M)Vi+2, i = N, N − 1, . . . , 0,

with VN+1 = VN+2 = 0, where the coefficients Ai(t; M) and Bi(M) are defined by
(B.3). Then, sN(t) = V0.
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Aided-Des. 43, 889–895 (2011)
4. Dahlquist, G., Björck, A.: Numerical Methods in Scientific Computing, vol. I. Society for Industrial

and Applied Mathematics, Philadelphia (2008)
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17. Woźny, P., Lewanowicz, S.: Constrained multi-degree reduction of triangular Bézier surfaces using
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