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Abstract In this paper, a meshless collocation method is considered to solve the
multi-term time fractional diffusion-wave equation in two dimensions. The moving
least squares reproducing kernel particle approximation is employed to construct the
shape functions for spatial approximation. Also, the Caputo’s time fractional deriva-
tives are approximated by a scheme of order O(τ 3−α), 1 < α < 2. Stability and
convergence of the proposed scheme are discussed. Some numerical examples are
given to confirm the efficiency and reliability of the proposed method.
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1 Introduction

In recent years, the fractional calculus and partial differential equations of fractional
orders have gained considerable attention in engineering and applied science [48, 54,
57]. Several problems in various fields of science and engineering can be modelled
by fractional partial differential equations [24, 32, 64]. Unlike the local property of
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integer order derivatives, the fractional derivatives collect all of the information in a
weighted form which is the so-called memory effect in science areas. Hence, there
are many applications in fluid mechanics, physics, chemistry, viscoelasticity, finance,
etc. [6, 21, 33, 50, 58, 60] for fractional differential equations. One can find some
remarkable theoretical works on the explicit solution of fractional differential equa-
tions in [13, 27, 28, 45, 46, 68] and their references. Since the explicit solutions
are available for special cases, therefore many computational efforts have been done
to obtain numerical schemes for fractional differential equations. Various numerical
approaches have been applied to give the approximate solution of fractional differ-
ential equations. For numerical research on fractional differential equations, one can
refer to works of [16, 19, 49, 69] for finite difference solutions. The solutions by finite
element method are provided in [7, 12, 25, 39, 73]. The authors of [44, 59, 66, 70,
71] are employed the spectral method to numerically solve the fractional differential
equations.

In modern problems, the classical numerical approaches have been facing some
difficulties due to increasing requirements for simulating complicated geometries.
In these methods based on meshes, the global meshing difficulties and a large num-
ber of re-meshing in successive computational steps lead to the complexity of the
computer program. Meshless methods, as alternative numerical approaches for mesh-
dependent methods, have attracted much attention in the past decade. The main
objective of the meshless methods is to get ride of or alleviate the difficulty of coars-
ening or refinement of mesh in classic methods by only adding or deleting nodes.
Meshless methods may also alleviate some other problems associated with the finite
element method, such as locking, element distortion and others [34, 65].

Some meshless methods have been developed, such as smoothed particle hydro-
dynamics (SPH) method [20], diffuse element method (DEM) [51], element-free
Galerkin method (EFG) [5], reproducing kernel particle method (RKPM) [23, 35,
38], hp-clouds [15], partition of unity method (PUM) [47], meshless local Petrov–
Galerkin method (MLPG) [3, 4], finite point method (FPM) [55] and so on. The
meshless collocation strong form method is a truly meshless method which is easy to
implement and computationally efficient.

In recent years, meshless methods based on radial basis functions (RBFs) and
moving least squares (MLS) approximations are employed to numerically solve
the fractional differential equations. The authors of [8] proposed a new definition
of the fractional Laplacian and employed the definition for simulating the power
law behaviours of three-dimensional nonlocal heat conduction by boundary-only
collocation-based singular boundary method. In [43], a meshless method based on
the point interpolation is developed for space fractional diffusion equations. The
authors of [22] developed an implicit strong form meshless method based on RBFs
approximation to numerical simulation of an anomalous subdiffusion equation. Also,
they discussed the stability and convergence of the proposed scheme theoretically
and numerically. In [72], the numerical solution of fractional advection-diffusion
equation has been investigated by MLS-based collocation method and the stability
and convergence of the method have been proven. Authors of [40, 42] proposed a
numerical scheme for numerical solution of time fractional diffusion equation and
fractal mobile/immobile transport model based on RBFs approximation for space
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variable and a semi-discrete finite difference scheme for temporal discretization
and theoretically proved the stability and convergence of the presented scheme. An
implicit meshless method using MLS approximation for 2D time-dependent frac-
tional diffusion–wave equation has been considered in [67] and analysed the stability
and convergence of semi-discretized scheme related to time theoretically. Dehghan
et al. [10] proposed a weak-form meshless method based on RBFs approximation for
solving the time fractional reaction-subdiffusion equation and proved that the time
discrete scheme is unconditionally stable and convergent using the energy method.
Also, a numerical method for the solution of time fractional nonlinear sine-Gordon
equation that appears extensively in classical lattice dynamics in the continuum
media limit and Klein-Gordon equation which arises in physics has been presented
in [9] by Kansa method [29]. The authors of [1] investigated a combination of alter-
nating direction implicit (ADI) approach and interpolating EFG method for solving
fractional reaction-subdiffusion model and obtained an error bound for the procedure
using the energy method. The method of approximate particular solution is applied
to constant- and variable-order time fractional diffusion model in [18]. In [17], a
Laplacian transformed boundary particle method, a novel meshless method, is used
to numerical modelling of time fractional diffusion equations.

In the present work, a meshless point collocation method based on the moving
least squares reproducing kernel (MLSRK) approximation for spatial approximation
and a finite difference approximation of order O(τ 3−α), 1 < α < 2, for Caputo’s
time derivatives is employed for numerical solution of multi-term time fractional
diffusion-wave equation in u(x, t):

P(∂t )u(x, t) − �u(x, t) = f (x, t), x ∈ �, 0 < t ≤ T , (1.1)

u(x, t) = h(x, t), x ∈ ∂� 0 < t ≤ T , (1.2)

u(x, 0) = φ(x),
∂u(x, 0)

∂t
= ψ(x), x ∈ �, (1.3)

where � denotes a bounded and open domain in R2 with boundary ∂�. The function
f is the source term and initial datas, φ and ψ , and boundary data, h(x, t) are given
functions on �. Here, the fractional operator P(∂t) is defined as

P(∂t ) = ∂α
t +

m∑

i=1

bi ∂
αi
t , (1.4)

where 1 < αm ≤ · · · ≤ α2 ≤ α1 < α < 2 are orders of time fractional derivatives,
bi ≥ 0, i = 1, 2, · · · , m, m ∈ N, are constant, and left-sided Caputo’s fractional
derivative, ∂β

t u, 1 < β < 2, is defined by [32]

∂
β
t u(x, t) = 1


(2 − β)

t∫

0

∂2u(x, s)
∂s2

ds

(t − s)β−1
, β ∈ (1, 2), (1.5)

where 
(.) denotes the gamma function.
The single-term model, the case of m = 0, has been employed to model many

universal response of electromagnetic, acoustic and mechanical influences [31, 52,
53]. The multi-term case of model has been reported to be valuable tools to model
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viscoelastic aspects, oxygen delivery through capillaries and other areas [41, 61, 62].
Numerical methods for the multi-term ordinary differential equations were studied in
[30, 56]. There are a few theoretical and numerical works for model (1.1) in the lit-
erature. Applying the spectral representation of the fractional Laplacian operator, the
authors of [14] converted the multi-term time-space fractional advection-diffusion
equations into multi-term time fractional ordinary differential equations and by using
the Luchkos theorem [46], obtained the desire analytical solution. In [26], a method
of separating variables is used to solve the multi-term time fractional diffusion-wave
equation in a finite domain and derived the analytical solutions of the model with
three kinds of non-homogeneous boundary conditions. The authors of [2] analysed a
diffusion-wave equation with two fractional derivatives of different order on bounded
and unbounded spatial domains and presented a series and integral representation
of the solutions. Dehghan et al. [11] employed a high order difference scheme and
Galerkin spectral technique for the numerical solution of multi-term time fractional
partial differential equations and stability and convergence have been proven.

The rest of this paper is organized as follows: The time discretization scheme is
presented in Section 2. Also, Section 2 is devoted to prove the stability and con-
vergence of the numerical scheme in semi-discrete form. Section 3 gives a brief
discussion of the MLSRK approximation, and the numerical implementation of the
proposed method is presented in the end of this section. Section 4 includes some
test problems and computational results to reveal the efficiency and accuracy of the
proposed method. Finally, some concluding remarks are discussed in Section 5.

2 Discrete scheme

In this section, an implicit time difference scheme for model (1.1) is suggested. Then,
the stability and convergence are studied for the proposed scheme.

2.1 Derivation of time difference scheme

To obtain a time discrete scheme, the time interval [0, T ] is divided into N equally
distance intervals of length τ = T/N . For instant tn = nτ , let us define the following
notations

un−1/2 = 1

2
(un + un−1), δtu

n−1/2 = 1

τ
(un − un−1), (2.1)

where un = u(x, tn). Also, let ν(x, t) = ∂u(x,t)
∂t

and by a rewritten of the Caputo’s
fractional derivative (1.5), one can obtain

∂α
t u(x, t) = 1


(2 − α)

t∫

0

∂2u(x, s)
∂s2

ds

(t − s)α−1

= 1


(2 − α)

∫ t

0

∂ν(x, s)
∂s

ds

(t − s)α−1
= w(x, t). (2.2)

Therefore, the following lemmas of [63] can be employed to approximate time
fractional derivatives.
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Lemma 2.1 [63]. Suppose g(t) ∈ C2[0, tn]. Then
∣∣∣∣∣

∫ tn

0

g′(t)
(tn − t)β−1

dt − 1

τ

[
a0g(tn) −

n−1∑

k=1

(an−k−1 − an−k)g(tk) − an−1g(t0)

]∣∣∣∣∣

≤ 1

2 − β

[
2 − β

12
+ 23−β

3 − β
− (1 + 21−β)

]
max
0≤t≤tn

|g′′(t)|τ 3−β,

where ak = τ 2−β

2−β

[
(k + 1)2−β − k2−β

]
and 1 < β < 2.

It is obvious that al > al+1 [63]. Using above-mentioned definitions, (1.1)
becomes

w(x, t) +
m∑

i=1

biwi(x, t) = �u(x, t) + f (x, t), (2.3)

where wi(x, t) = ∂
αi
t u(x, t). Applying Taylor expansion, the following difference

schemes are provided from (2.2) and (2.3)

νn−1/2 = δtu
n−1/2 + (r1)

n−1/2, (2.4)

wn−1/2 +
m∑

i=1

biw
n−1/2
i = �un−1/2 + f n−1/2 + (r2)

n−1/2, x ∈ �, n ≥ 1, (2.5)

where there exists a constant c1 such that

|(r1)n−1/2| ≤ c1τ
2, |(r2)n−1/2| ≤ c1τ

2. (2.6)

Therefore, according to Lemma 2.1, one can obtain

1

τ 
(2 − α)

[
a0δtu

n−1/2 −
n−1∑

k=1

(an−k−1 − an−k)δtu
k−1/2 − an−1ψ

]

+
m∑

i=1

bi

τ 
(2 − αi)

{
ai,0δtu

n−1/2 −
n−1∑

k=1

(ai,n−k−1 − ai,n−k)δtu
k−1/2 − ai,n−1ψ

}

= �un−1/2 + f n−1/2 + Rn−1/2, n ≥ 1, (2.7)

where ai,k = τ 2−αi

2−αi

[
(k + 1)2−αi − k2−αi

]
and Rn−1/2 is as follows :

Rn−1/2 = − 1

τ
(2 − α)

[
a0(r1)

n−1/2 −
n−1∑

k=1

(an−k−1 − an−k)(r1)
k−1/2

]

−
m∑

i=1

bi

τ 
(2 − αi)

{
ai,0(r1)

n−1/2 −
n−1∑

k=1

(ai,n−k−1 − ai,n−k)(r1)
k−1/2

}

−(r3)
n−1/2 + (r2)

n−1/2 −
m∑

i=1

bi(r3)
n−1/2
i ,
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where

|(r3)n−1/2
i | ≤ c2τ

3−αi . (2.8)

It results from Lemma 2.1 and inequalities (2.6), (2.8) and some manipulations that

|Rn−1/2| ≤ Cτ 3−α, (2.9)

where

C =
[

2c1
(2 − α)
(2 − α)

+ c2 + c1 +
m∑

i=1

bi

{
2c1

(2 − αi)
(2 − αi)
+ c2

}]
.

Eventually, by eliminating the small error term,Rn−1/2, the following time difference
scheme for (1.1) is obtained

1

τ 
(2 − α)

[
a0δtU

n−1/2 −
n−1∑

k=1

(an−k−1 − an−k)δtU
k−1/2 − an−1ψ

]

+
m∑

i=1

bi

τ 
(2 − αi)

{
ai,0δtU

n−1/2 −
n−1∑

k=1

(ai,n−k−1 − ai,n−k)δtU
k−1/2 − ai,n−1ψ

}

= �Un−1/2 + f n−1/2, x ∈ �, n ≥ 1,

Un = h(x, tn), x ∈ ∂�. (2.10)

2.2 Analysis of semi-discrete difference scheme

In the rest of this section, the stability and convergence of the semi-discrete scheme
(2.10) are proven. To this end, we introduce the following inner products and norms.

The L2(�) is a Hilbert space with the inner product

(u, v) =
∫

�

uv dx, (2.11)

with the endowed norm

‖u‖2 = (u, u)1/2 =
(∫

�

u2 dx
)1/2

. (2.12)

If we assume α = (α1, · · · , αd) is a d-tuple of non-negative integers in R
d , |α| =

d∑

i=1

αi and

Dαu = ∂ |α|u
∂x

α1
1 ∂x

α2
2 · · · ∂x

αd

d

,

then, one can define the Hilbert space Hm(�)

Hm(�) =
{
u ∈ L2(�), Dαu ∈ L2(�) for all |α| ≤ m

}
,
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with inner product

(u, v)m =
∑

|α|≤m

∫

�

DαuDαv dx,

which induces the norm

‖u‖Hm(�) =
⎛

⎝
∑

|α|≤m

‖Dαu‖22
⎞

⎠
1/2

.

And, the Sobolev space W 1,p(I ) is defined as

W 1,p(�) =
{

u ∈ Lp(�)| ∃ g1, g2 ∈ Lp(�) such that

∫

�

u
∂ϕ

∂xi

= −
∫

�

giϕ, ∀ϕ ∈ C1(�), i = 1, 2

}
.

Also, the following lemma and corollary are needed.

Lemma 2.2 [63]. For any G = {G1, G2, · · · } and q, we have

N∑

n=1

[
a0Gn −

n−1∑

k=1

(a−an−k)Gk − an−1q

]
Gn ≥ t1−α

N

2
τ

N∑

n=1

G2
n − t2−α

N

2(2 − α)
q2,

where al are defined in Lemma 2.1.

Corollary 1 (Poincaré’s inequality). Suppose that 1 ≤ p < ∞ and � is a bounded
open set. Then there exist a constant C� (depending on � and p) such that

‖u‖Lp(�) ≤ C�‖∇u‖Lp(�), ∀ u ∈ W
1,p
0 (�).

Based on above-mentioned preliminaries, we can obtain the results of stability and
convergence of time difference scheme (2.10).

Theorem 2.3 Let Un be the solution of discrete scheme (2.10), where as Un ∈
H 1

0 (�). Then, the time discrete scheme (2.10) is unconditionally stable in the sense
that for all τ > 0, the following inequality is holds

‖∇Un‖22 ≤ ‖∇U0‖22 +
m∑

j=0

bj


(2 − αj )

t
2−αj
n

(2 − αj )
‖ψ‖2 + T tα−1

n 
(2 − α) max
1≤k≤n

‖f k−1/2‖22.

Proof For simplicity’s sake, let us put b0 = 1 and α0 = α, then time difference
scheme (2.10) becomes

m∑

i=0

bi

τ 
(2 − αi)

{
ai,0δtU

n−1/2 −
n−1∑

k=1

(ai,n−k−1 − ai,n−k)δtU
k−1/2 − ai,n−1ψ

}
= �Un−1/2+f n−1/2.



1152 Numer Algor (2017) 74:1145–1168

Multiplying both side by δtU
n−1/2 and integrating over � yields

m∑

i=0

bi

τ 
(2 − αi)

{
ai,0‖δtU

n−1/2‖22 −
n−1∑

k=1

(ai,n−k−1 − ai,n−k)(δtU
k−1/2, δtU

n−1/2)

}

−
m∑

i=0

bi

τ 
(2 − αi)
ai,n−1(ψ, δtU

n−1/2) = (�Un−1/2, δtU
n−1/2) + (f n−1/2, δtU

n−1/2),

Also, we have

(�Un−1/2, δtU
n−1/2) = −(∇Un−1/2, ∇δtU

n−1/2)

= −
∫

�

(
∇Un + ∇Un−1

2

)(
∇Un − ∇Un−1

τ

)
= − 1

2τ

∫

�

[
(∇Un)2 − (∇Un−1)2

]

= − 1

2τ

(
‖∇Un‖22 − ‖∇Un−1‖22

)
.

Hence,

m∑

i=0

bi

τ 
(2 − αi)

{
ai,0‖δtU

n−1/2‖22 −
n−1∑

k=1

(ai,n−k−1 − ai,n−k)‖δtU
k−1/2‖2‖δtU

n−1/2‖2
}

−
m∑

i=0

bi

τ 
(2 − αi)
ai,n−1‖ψ‖2‖δtU

n−1/2‖2 ≤ − 1

2τ

(
‖∇Un‖22 − ‖∇Un−1‖22

)

+ ‖f n−1/2‖2‖δtU
n−1/2‖2.

Summing both side of above inequality from n = 1 to p, we obtain

p∑

n=1

m∑

i=0

bi

τ 
(2 − αi)

{
ai,0‖δtU

n−1/2‖2 −
n−1∑

k=1

(ai,n−k−1 − ai,n−k)‖δtU
k−1/2‖2 − ai,n−1‖ψ‖2

}
‖δtU

n−1/2‖2

≤ − 1

2τ

(
‖∇Up‖22 − ‖∇U0‖22

)
+

p∑

n=1

‖f n−1/2‖2‖δtU
n−1/2‖2.

Using Lemma 2.2 for left-hand side of the last inequality results in

m∑

i=0

bi

τ 
(2 − αi)

[
t
1−αi
p

2
τ

p∑

n=1

‖δtU
n−1/2‖22 − t

2−αi
p

2(2 − αi)
‖ψ‖22

]

≤ − 1

2τ

(
‖∇Up‖22 − ‖∇U0‖22

)
+

p∑

n=1

‖f n−1/2‖2‖δtU
n−1/2‖2.

On the other hand, using the following Young’s inequality

|ab| ≤ 1

2θ
a2 + θ

2
b2, ∀θ �= 0,



Numer Algor (2017) 74:1145–1168 1153

with θ = b0 t
1−α0
p


(2−α0)
, we have

p∑

n=1

‖f n−1/2‖2‖δtU
n−1/2‖2 ≤ b0 t

1−α0
p

2
(2 − α0)

p∑

n=1

‖δtU
n−1/2‖22 + 
(2 − α0)t

α0−1
p

2b0

p∑

n=1

‖f n−1/2‖22.

Therefore,

b0 t
1−α0
p

2
(2 − α0)

p∑

n=1

‖δtU
n−1/2‖22 −

m∑

i=0

bit
2−αi
p

2τ(2 − αi)
(2 − αi)
‖ψ‖22

≤ b0 t
1−α0
p

2
(2 − α0)

p∑

n=1

‖δtU
n−1/2‖22 + 
(2 − α0)t

α0−1
p

2b0

p∑

n=1

‖f n−1/2‖22

− 1

2τ

(
‖∇Up‖22 − ‖∇U0‖22

)
.

Multiplying both side by 2τ yields

‖∇Up‖22 ≤ ‖∇U0‖22 +
m∑

i=0

bi t
2−αi
p

(2 − αi)
(2 − αi)
‖ψ‖22 + τ
(2 − α0)t

α0−1
p

b0

p∑

n=1

‖f n−1/2‖22.

Then, we can obtain

‖∇Up‖22 ≤ ‖∇U0‖22 +
m∑

i=0

bi t
2−αi
p

(2 − αi)
(2 − αi)
‖ψ‖22 + T 
(2 − α)tα−1

p max
1≤k≤p

‖f k−1/2‖22.

Finally, changing index from p to n, we have

‖∇Un‖22 ≤ ‖∇U0‖22 +
m∑

i=0

bi t
2−αi
n

(2 − αi)
(2 − αi)
‖ψ‖22 + T 
(2 − α)tα−1

n max
1≤k≤n

‖f k−1/2‖22,

which is complete the proof.

Theorem 2.4 Let un = u(x, tn) ∈ H 1
0 be the exact solution of (2.7) and Un

be its approximate solution from (2.10), then the time difference scheme (2.10) is
convergent with convergence order O(τ 3−α).
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Proof We set
en = un − Un, n ≥ 1,

where e0 = 0. Subtracting (2.7) form (2.10), the following error equation is obtained

1

τ 
(2 − α)

[
a0δt e

n−1/2 −
n−1∑

k=1

(an−k−1 − an−k)δt e
k−1/2

]

+
m∑

i=1

bi

τ 
(2 − αi)

{
ai,0δt e

n−1/2 −
n−1∑

k=1

(ai,n−k−1 − ai,n−k)δt e
k−1/2

}

= �en−1/2 + Rn−1/2.

Using the obtained results in the stability Theorem 2.3, we have

‖∇en‖22 ≤ τ
(2 − α)tα−1
n

n∑

k=1

‖Rk−1/2‖22.

By inserting (2.9) into the right-hand side of the last inequality, we can obtain

‖∇en‖2 ≤ C
√

T α
(2 − α) τ 3−α.

Now, using Poincaré’s inequality form Corollary 1, we have

‖en‖2 ≤ C� C
√

T α
(2 − α) τ 3−α,

which is complete the proof.

3 The MLSRK approximation and full discretization

In the current work, the spatial discretization is constructed by moving least squares
reproducing kernel (MLSRK) approximation [36, 37]. The MLSRK approximation
was provided as a different version of the moving least squares (MLS) approxima-
tion where the shape functions are generated by a local least squares approach. The
interpolation of this kind contains a reproducing kernel (RK), which, as a general-
ization of the discrete case, establishes a continuous basis for a partition of unity and
can reproduce any smooth function accurately in a global least squares sense.

Let u(x), x ∈ R
d , be a sufficiently smooth function defined on a simply open set

� ⊂ R
d with a Lipschitz continuous boundary. For each x ∈ �, we define

B(x) = {y ∈ �|ϕ(
x − y

ρ
) �= 0} ⊆ �. (3.1)

Also, for a positive integer q, the space of polynomials of degree less than or equal
to q in Rd is defined as

Pq,d = span{(x − y)α}α: |α|≤q, (3.2)

and define ux : B(x) → R by

ux(y) = u(y), ∀y ∈ B(x). (3.3)
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The global approximation uG : � → R is obtained as follows

uG(x) := lim
x̄→x

(Lx̄u)(x), ∀x ∈ �. (3.4)

where Lx̄u : B(x̄) → R is a local approximant for function ux̄ : � → R. In the
current contribution, for a fixed point x̄ ∈ �̄, the local approximant is considered as
follows:

ul(x) = (Lx̄u)(x) :=
Q∑

i=1

ψi(
x − x̄

ρ
)di(x̄) = �(

x − x̄

ρ
)d(x̄), (3.5)

where Q = dimPq,d =
(

q + d

d

)
and

dt (y) := {d1, d2, · · · , dQ}(x), (3.6)

�(y) := {p1, p2, · · · , pQ}, (3.7)

pi = (x − y)αi

ρ
, i = 1, 2, · · · , q. (3.8)

Since the polynomial series is finite, then we can define a residual rρ

rρ := ul(x) − �(
x − x̄

ρ
)d(x̄), x ∈ B(x̄). (3.9)

Then, a functional related to this residual is defined as

J (d(x̄)) =
∫

B(x̄)

r2ρ(x, x̄)ωρ(x − x̄) dB, (3.10)

where ωρ(x − x̄) = ω(x−x̄
ρ

). One can obtain the following equation by minimizing
the quadratic form J (d(x̄))

∫

B(x̄)

�t (
x − x̄

ρ
)

(
ul(x) − �(

x − x̄

ρ
)d(x̄)

)
ωρ(x − x̄) dB = 0. (3.11)

When supp{ωρ(x − x̄)} ⊆ B, then the above integral can be extended over the whole
domain

∫

�x

�t (
x − x̄

ρ
)

(
ul(x) − �(

x − x̄

ρ
)d(x̄)

)
ωρ(x − x̄) d�x = 0, (3.12)

which yields

(∫

�x

�t (
x − x̄

ρ
)ωρ(x − x̄)�(

x − x̄

ρ
)d�x

)
d(x̄) =

∫

�x

�t (
x − x̄

ρ
)u(x)ωρ(x − x̄)d�x.

(3.13)
Now, if we define the moment matrix M(x) as follows

M(x̄) :=
∫

�x

�t (
x − x̄

ρ
)ωρ(x − x̄)�(

x − x̄

ρ
) d�x, (3.14)
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then the unknown vector d(x̄) is determined as

d(x̄) = M−1(x̄)

∫

�x

�t (
x − x̄

ρ
)u(x)ωρ(x − x̄) d�x. (3.15)

According to (3.5) and (3.15), we will have

ul(x) = (Lx̄u)(x) = �(
x − x̄

ρ
)d(x̄)

= �(
x − x̄

ρ
)M−1(x)

∫

�y

�t (
y − x̄

ρ
)u(y)ωρ(y − x̄)d�y ∀x ∈ B(x̄).

(3.16)

So, according to relation (3.4), the global approximant function uG : � → R, is
obtained in the following form

uG(x) = (Lxu)(x) = �(0)M−1(x)

∫

�

�t(
y − x

ρ
)u(y)ωρ(y − x)d�, ∀x ∈ �.

(3.17)
Now, we set

Cρ(x, x − y) = �(0)M−1(x)�t (
y − x

ρ
). (3.18)

Substituting (3.18) into (3.17), gives

uG(x) =
∫

�

Cρ(x, x − y)u(y)ωρ(y − x)d�, ∀x ∈ �. (3.19)

Let
Kρ(x, x − y) = Cρ(x, x − y)ωρ(y − x), (3.20)

where the function Kρ is the so-called reproducing kernel function. Therefore, we
will have

u(x) :=
∫

�

Kρ(x, x − y)u(y)d�. (3.21)

In order to use (3.21) in the numerical approximation, the integral must be dis-
cretized. Let {xi}NP

i=1, be an admissible particle distribution [36], then by employing
the numerical quadrature, one can approximate (3.21) as follows:

uh(x) =
NP∑

i=1

u(xi)Ch
ρ(x, xi − x)ωρ(xi − x)�Vi

=
NP∑

i=1

Kh
ρ(x, xi − x)ui�Vi, (3.22)

where �Vi is the quadrature weights or ith particle lumped volume and

Ch
ρ(x, y − x) = �(0)(Mh)−1(x)�t (

y − x

ρ
), (3.23)

where

Mh(x) =
NP∑

i=1

�t(
xi − x

ρ
)ωρ(xi − x)�(

xi − x

ρ
)�Vi. (3.24)
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Now, (3.21) can be written as

uh(x) =
NP∑

i=1

�i(ρ, x, xi)ui, (3.25)

where

�i(ρ, x, xi) = Ch
ρ(x, xi − x)ωρ(xi − x)�Vi, (3.26)

= �(0)(Mh)−1(x)�t (
xi − x

ρ
)ωρ(xi − x)�Vi (3.27)

= Kh
ρ(x, xi − x)�Vi. (3.28)

In the rest of this section, the full discrete scheme for model problem (1.1) is obtained
by inserting the MLSRK approximation (3.26) as spatial approximation in semi dis-
crete scheme (2.10). Applying strong form, the point collocation meshless method
yields a system of discretized equations for nodes inside the domain and on essential
boundary. ApproximatingUn = U(x, tn) as (3.26), substituting into the semi discrete
scheme (2.10) and applying collocation method at each interior point xj , lead to

1

τ 
(2 − α)

[
a0δtU

n−1/2
j −

n−1∑

k=1

(an−k−1 − an−k)δtU
k−1/2
j − an−1ψj

]

+
m∑

i=1

bi

τ 
(2 − αi)

{
ai,0δtU

n−1/2
j −

n−1∑

k=1

(ai,n−k−1 − ai,n−k)δtU
k−1/2
j − ai,n−1ψj

}

= �U
n−1/2
j + f

n−1/2
j , n ≥ 1.

If we set

μ0 = 1

τ 2
(2 − α)
, μi = bi

τ 2
(2 − αi)
, i = 1, 2, · · · , m.

Then, we can simplify the full discrete scheme in the following form

[a0μ0 +
m∑

i=1

μiai,0]Un
j − 1

2
�Un

j = [a0μ0 +
m∑

i=1

μiai,0]Un−1
j

+
n−1∑

k=1

{
μ0(an−k−1 − an−k) +

m∑

i=1

μi(ai,n−k−1 − ai,n−k)

}
(Uk

j − Uk−1
j )

+ [τμ0an−1 +
m∑

i=1

τμiai,n−1]ψj + 1

2
�Un−1

j + f
n−1/2
j , (3.29)

where

Uk
j = U(xj , kτ ) =

NP∑

i=1

�i(ρ, xj , xi )Û
k
i ,

�Uk
j =

NP∑

i=1

��i(ρ, xj , xi )Û
k
i .
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Also, the essential boundary condition is imposed as

NP∑

i=1

�i(ρ, xj , xi )Û
k
i = h(xj , kτ ), xj ∈ ∂�. (3.30)

4 Numerical results

To verify the theoretical results and show the efficiency and applicability of the pro-
posed approach, two-dimensional numerical test is solved with regular and irregular
nodal points in rectangular, circular and complex domains. For this purpose, the
following error indicator and convergence ratio are used

L∞(τ ) = max
1≤j≤NP

∣∣U(xj , T ) − u(xj , T )
∣∣ ,

and

Ratio = log(L∞(τ1)
L∞(τ2)

)

log( τ1
τ2 )

,

where τ1 and τ2 are different time step-sizes.
In the test problems, the quadratic basis (m = 2) and Gaussian weight function

are employed as

wi(x) = wρ(xi − x) =
{

exp[−(di/ci )
2]−exp[−(ri/ci )

2]]
1−exp[−(ri/ci )

2] , 0 ≤ di ≤ ri,

0, di > ri,
(4.1)

where di = ‖x − xi‖2, ci is a constant controlling the shape of the weight function
wi and ri is the size of the support domain of node i.

Consider the following two-dimensional multi-term time fractional diffusion-
wave equation

∂α
t u(x, y, t) + ∂

α1
t u(x, y, t) = �u(x, y, t) + f (x, y, t), (4.2)

subject to zero initial conditions and boundary conditions are generated from exact
solution values on the boundary. The exact solution of this problem is

u(x, y, t) = ex+y t2+α+α1 .

4.1 Test problem with rectangular domain

First of all, we discretize the problem domain, � = [0, 1] × [0, 1], with 4096 (64 ×
64) regularly distributed points (see Fig. 1a). Then, the discrete scheme (3.29) is
applied to solve the 2-D multi-term time fractional diffusion-wave equation. The
plots of exact and approximate solutions at t = 1 with α = 1.3, α1 = 1.1 are
depicted in Fig. 2. In Table 1, the absolute error and ratio are listed. One can see
that the obtained results are in a good agreement with the theoretical results since the
ratios are around (3 − α) as we expected from theory.

Moreover, the problem domain is discretized with 4096 Halton type non-uniform
irregular point distribution as shown in Fig. 1b. The approximate and exact solutions
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Fig. 1 a Regular and b irregular nodal distribution for rectangular domain

at t = 1 for α = 1.5, α1 = 1.3 are plotted in Fig. 3. To verify the theoretical results
associated with time step-size, the absolute error and ratios are reported in Table 2
for different step-sizes when the step-size τ decrease from 1/20 to 1/320. It can be
seen that the error decreases with expected rate in either case.

4.2 Test problem with circular domain

As the second example, we solve the studied problem on a circular domain. Particu-
larly, (1.1)–(1.3) are solved over the circular domain with its center at (0.5, 0.5) and
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Fig. 2 Approximate and exact solutions at t = 1 associated with regularly distributed nodes in rectangular
domain with α = 1.3, α1 = 1.1
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Table 1 Absolute error and convergence rate associated with different time step-size for 1089 regularly
distributed nodes on rectangular domain

α = 1.3, α1 = 1.1 α = 1.5, α1 = 1.3

Step-size τ L∞ Ratio Step-size τ L∞ Ratio

1/20 8.34432 × 10−3 – 1/20 2.80285 × 10−2 –

1/40 2.74260 × 10−3 1.6052 1/40 1.02452 × 10−2 1.4519

1/80 8.69406 × 10−4 1.6574 1/80 3.66827 × 10−3 1.4818

1/160 2.72014 × 10−4 1.6763 1/160 1.33058 × 10−3 1.4630

1/320 9.16615 × 10−5 1.5693 1/320 4.65437 × 10−4 1.5154

radius r = 0.5. Firstly, the circular problem domain is discretized with 4096 irreg-
ularly distributed nodal points as shown in Fig. 4. Afterwards, we solve the studied
model with proposed meshless point collocation method using irregularly distributed
points for both cases α = 1.3, α1 = 1.1 and α = 1.5, α1 = 1.3.

The plots of exact solution versus approximate solution for α = 1.3, α1 = 1.1
are figured in Fig. 5. Also, in Fig. 6, the absolute error of the obtained results is
plotted. Like the rectangular case, absolute errors for both cases α = 1.3, α1 =
1.1 and α = 1.5, α1 = 1.3 with different time step-sizes τ are reported in
Table 3. It is obvious from Table 3 that the obtained results are appropriately con-
firmed the theoretical outcomes on circular domain with irregularly distributed nodal
points.
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Fig. 3 Approximate and exact solutions at t = 1 associated with irregularly distributed nodes in
rectangular domain with α = 1.5, α1 = 1.3
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Table 2 Absolute error and convergence rate associated with different time step-size for 1089 regularly
distributed nodes on rectangular domain

α = 1.3, α1 = 1.1 α = 1.5, α1 = 1.3

Step-size τ L∞ Ratio Step-size τ L∞ Ratio

1/20 8.13847 × 10−3 – 1/20 2.80073 × 10−2 –

1/40 2.50628 × 10−3 1.6992 1/40 1.02078 × 10−2 1.4561

1/80 7.55901 × 10−4 1.7293 1/80 3.62411 × 10−3 1.4939

1/160 2.59268 × 10−4 1.5437 1/160 1.28354 × 10−3 1.4975

1/320 9.09436 × 10−5 1.5114 1/320 4.65437 × 10−4 1.4635

4.3 Test problem with complex domain

To test the ability of the proposed scheme to deal with complex geometries, the stud-
ied problem is considered on irregular domains as depicted in Fig. 7. The domains
are generated by criterion r = 1

n2

[
1 + 2n + n2 − (n + 1) cos(nθ) ], where we used

n = 4 and n = 10 to produce �1 and �2, respectively. After that, the problem
domains are discretized with Halton type non-uniform nodal points and the problem
is solved with α = 1.3, α1 = 1.1.

The numerical results are reported as Figs. 8 and 9 that are shown the graphs of
approximate solution and obtained absolute errors and their contour plots for n = 4
and n = 10, respectively. The depicted figures in this test and previous one are
shown the reliability of the obtained results from discrete scheme and proficiency of
the proposed meshless method. To figure out the convergence of proposed method
for these type of geometries, absolute errors and ratios are summarized in Table 4.
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Fig. 4 Irregular nodal distribution for circular domain
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Fig. 5 Approximate and exact solutions at t = 1 associated with irregularly distributed nodes in circular
domain with α = 1.3, α1 = 1.1
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Fig. 6 Absolute error associated with irregularly distributed nodes in circular domain with α = 1.3,
α1 = 1.1

Table 3 Absolute error and convergence rate associated with different time step-size for 1089 irregular
nodal points on circular domain

α = 1.3, α1 = 1.1 α = 1.5, α1 = 1.3

Step-size τ L∞ Ratio Step-size τ L∞ Ratio

1/20 7.23182 × 10−3 – 1/20 2.44933 × 10−2 –

1/40 2.44147 × 10−3 1.5666 1/40 9.04352 × 10−3 1.4374

1/80 9.58633 × 10−4 1.3486 1/80 3.34827 × 10−3 1.4335

1/160 3.67174 × 10−4 1.3845 1/160 1.23395 × 10−3 1.4401

1/320 1.34244 × 10−4 1.4516 1/320 4.54384 × 10−4 1.4413
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Fig. 7 The considered irregular problem domains

The obtained results suitably proved the reliability of proposed scheme for irregu-
lar domains. Also, to investigate the computational cost of implemented algorithm
for the proposed method, CPU times (in seconds) for four considered domains are
reported in Table 5 with different mesh-sizeN for irregularly distributed nodal points.

Fig. 8 Approximate solution and absolute error at t = 1 with α = 1.3, α1 = 1.1 on �1
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Fig. 9 Approximate solution and absolute error at t = 1 with α = 1.3, α1 = 1.1 on �2

Table 4 Absolute error and convergence rate associated with different time step-size for 1089 irregular
nodal points on irregular domains with α = 1.3, α1 = 1.1

�1 �2

Step-size τ L∞ Ratio Step-size τ L∞ Ratio

1/20 2.55917 × 10−2 – 1/20 2.17967 × 10−2 –

1/40 9.04967 × 10−3 1.4997 1/40 8.46662 × 10−3 1.3642

1/80 3.35596 × 10−3 1.4311 1/80 3.15113 × 10−3 1.4259

1/160 1.25706 × 10−3 1.4167 1/160 1.17676 × 10−3 1.4210

Table 5 CPU time in seconds for different geometries

Problem domain

N Rectangular Circular �1 �2

64 0.593 0.590 0.686 0.645

256 6.081 5.115 5.108 5.298

1024 84.160 79.992 84.875 85.069

4096 1252.726 1198.275 1206.319 1200.95
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5 Concluding remarks

In this study, a meshless point collocation method based on the MLSRK approxima-
tion is employed to solve the 2-D multi-term time fractional diffusion-wave equation.
Strong form meshless methods are computationally efficient and easy to implement
tools to model the real problems in science and engineering with reliable accuracy.
We used a finite difference approximation to discretize the Caputo’s time derivatives
and obtained a semi-discrete scheme. Then, the unconditionally stability property
and convergence of the resulted difference scheme are proved. Eventually, using the
MLSRK approximation for spatial variables, a full discrete scheme is gained. To ver-
ify the theoretical outcomes, some test problems on rectangular, circular and complex
domains with regular and irregular nodal points distribution are considered. From the
obtained numerical solutions and errors, one can be seen that the proposed scheme is
an efficient and reliable approach for the studied problem.
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