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Abstract We investigate CQ algorithm for the split equality problem in Hilbert
spaces. In such an algorithm, the selection of the step requires prior information on
the matrix norms, which is not always possible in practice. In this paper, we propose
a new way to select the step so that the implementation of the algorithm does not
need any prior information of the matrix norms. In Hilbert spaces, we establish the
weak convergence of the proposed method to a solution of the problem under weaker
conditions than usual. Preliminary numerical experiments show that the efficiency of
the proposed algorithm when it applies the variable step-size.
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1 Introduction

In this paper, we are concerned with the split feasibility problem (SFP), which
requires to find a point x̂ ∈ R

n satisfying the property:

x̂ ∈ C and Ax̂ ∈ Q, (1)

where C and Q are nonempty closed convex subset of Rn and R
m, respectively, and

A is an m × n matrix (i.e., a linear operator from R
n into R

m) [5]. The SFP has
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been proved very useful in dealing with a variety of signal processing and image
recovery [7].

Various algorithms have been invented to solve the SFP (1) (see [1, 2, 4, 12, 13]
and reference therein). In particular, Byrne introduced his CQ algorithm:

xk+1 = PC(xk − τA�(I − PQ)Axk), (2)

where A� is the transpose of A and the step τ is a fixed real number in
(

0, 2
‖A‖2

)
.

The CQ algorithm (2) has been now widely studied since it is more easily performed.
However, to implement the CQ algorithm, one has to compute or estimate the value
of ‖A‖, which is not always possible in practice. To overcome this drawback, many
authors have conducted worthwhile works on the CQ algorithm so that the choice of
the step does not depend on the matrix morms (see for instance [7, 10–14]). Among
these works, Yang [14] suggested, instead of the constant-step, a novel variable-step:

τk = �k

‖A�(I − PQ)Axk‖ , (3)

where (�k) is a sequence of positive real numbers such that

∞∑
k=0

�k = ∞,

∞∑
k=0

�2
k < ∞. (4)

With this choice of the step-sizes, the computation of ‖A‖ is avoided, and thus one
need not know a prior any information of ‖A‖. Yang proved the convergence of the
modified algorithm to a solution of the SFP provided that (i) Q is a bounded subset;
and (ii) A is a matrix with full column rank.

Let us now consider the split equality problem (SEP) [8] that consists of finding a
pair (x̂, ŷ) ∈ R

n × R
m such that

x̂ ∈ C, ŷ ∈ Q, and Ax̂ = Bŷ, (5)

where C and Q are nonempty closed convex subsets of Rn and R
m, A is a p × n

matrix, and B is a p×m matrix, respectively. It is clear that the SEP includes the SFP
as special cases. Indeed, when B is the identity matrix, the SEP is then reduced to
the SFP. Recently, Byrne and Moudafi [3] extended CQ algorithm to solve the SEP:
choose an arbitrary initial guess x1, and calculate:

[
xk+1 = PC(xk − τA�(Axk − Byk))

yk+1 = PQ(yk − τB�(Byk − Axk)),
(6)

where the step τ is a positive real number. Then the sequence generated by (6) con-
verges to a solution of the SEP if such a solution exists and the step τ is properly
chosen.

It is worth noting that in the procedure (6) the step τ is the constant-step whose
choice is mainly relying on the norms of matrices A and B. Thus, a similar question
of CQ algorithm (6) also arises: Does there exist a way to select the step in CQ
algorithm (6) that dose not depend on the matrices norms?

It is the purpose of this paper to answer the above question affirmatively. Moti-
vated by the step choice (3), we can propose a new method for selecting the step in
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a way that the implementation of CQ algorithm (6) does not need any prior informa-
tion of matrix norms. We then establish the convergence of the proposed method but
without boundedness on Q nor full column rank of the matrix involved.

2 Preliminary

In this section, we assume that H is a Hilbert space and C ⊆ H is a nonempty closed
convex subset.

Definition 1 A sequence (zk) ⊆ H is said to be quasi-Fejér monotone with respect
to C if there exists N ∈ N such that for any k ≥ N

‖zk+1 − z‖2 ≤ ‖zk − z‖2 + εk, ∀z ∈ C

where (εk) is a positive real sequences satisfying
∑

k εk < ∞.

Lemma 1 [6] Let (zk) ⊆ H be quasi-Fejér monotone with respect to C. Then

(i) (zk) is bounded;
(ii) (‖zk − z‖) is convergent for any z ∈ C;
(iii) (zk) is weakly convergent provided all weak cluster points of (zk) belong to C.

Lemma 2 [9] Let (εk) and (sk) be nonnegative real sequences. If

sk+1 ≤ sk + εk,

∞∑
k=1

εk < ∞,

then the limit of (sk) exists.

Denote by PC the projection from H onto C; that is,

PCx = arg min
y∈C

‖x − y‖, x ∈ H.

The projection operator has the following properties.

Lemma 3 Let PC be the projection operator onto C. Then for any x, y ∈ H,

(i) PC is nonexpansive, i.e.,

‖PCx − PCy‖ ≤ ‖x − y‖;
(ii) PC is firmly nonexpansive, i.e.,

‖PCx − PCy‖2 ≤ 〈x − y, PCx − PCy〉;
(iii) I − PC is firmly nonexpansive.
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3 The proposed algorithms

In this paper, we shall consider problem (5) in Hilbert spaces, that is, we shall study
the following problem: find a pair (x̂, ŷ) ∈ H1 × H2 such that

x̂ ∈ C, ŷ ∈ Q, and Ax̂ = Bŷ, (7)

where C ⊆ H1 and Q ⊆ H2 are nonempty closed convex subsets, A : H1 → H3 and
and B : H2 → H3 are two linear bounded operators, and Hi, i = 1, 2, 3 are three
Hilbert spaces.

Let us now introduce our iterative scheme to solve the SEP. Choose an arbitrary
initial guess x1. Given (xk, yk), if Axk = Byk, stop; otherwise compute:

[
xk+1 = PC

(
xk − τkA

∗(Axk − Byk)
)

yk+1 = PQ

(
yk − τkB

∗(Byk − Axk)
)
,

(8)

where A∗ denotes the adjoint operator of A and τk is defined as

τk := �k

max(‖A∗(Axk − Byk)‖, ‖B∗(Byk − Axk)‖) . (9)

Remark 1 It is worth noting that

max(‖A∗(Axk − Byk)‖, ‖B∗(Byk − Axk)‖) = 0 ⇔ Axk = Byk, (10)

which indicated that max(‖A∗(Axk −Byk)‖, ‖B∗(Byk −Axk)‖) > 0 if Axk �= Byk,

and thus τk is well defined. To show (10), it suffices to show the “⇒” part since the
“⇐” part is trivial. Indeed, assume max(‖A∗(Axk −Byk)‖, ‖B∗(Byk −Axk)‖) = 0.

It then follows that

‖Axk − Byk‖2 = 〈Axk − Byk, Axk − Byk〉
= 〈Axk − Byk, Axk〉 − 〈Axk − Byk, Byk〉
= 〈A∗(Axk − Byk), xk〉 − 〈B∗(Axk − Byk), yk〉
= 0,

that is, Axk = Byk , and hence (10) follows immediately.

Remark 2 It is not hard to check that if the iteration above terminates within finite
steps, then the current iteration must be a solution of the problem. So without loss of
generality, we may assume that the algorithm generates an infinite iterative sequence.

In what follows, we denote by S the solution set of the SEP (7), namely

S = {(x, y) : x ∈ C, y ∈ Q, Ax = By}.
Let z = (x, y) be an element in the product space H1 ×H2, then its norm is given by
‖z‖ = √‖x‖2 + ‖y‖2. Let us now establish the convergence results of the proposed
algorithm.
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Lemma 4 Let zk := (xk, yk) ∈ H1 ×H2 be the sequence generated by (8)–(9). If the
SEP (7) is consistent, namely S �= ∅, then

‖zk+1 − z∗‖2 ≤ ‖zk − z∗‖2 − 2τk‖Axk − Byk‖2 + 2�2
k (11)

holds for each k ∈ N and for all z∗ ∈ S.

Proof Taking z∗ = (x∗, y∗) ∈ S, we have that

‖xk+1 − z‖2 = ‖PC(xk − τkA
∗(Axk − Byk)) − x∗‖2

≤ ‖(xk − x∗) − τkA
∗(Axk − Byk)‖2

= ‖xk − x∗‖2 − 2τk〈A(xk − x∗), Axk − Byk〉
+τ 2

k ‖A∗(Axk − Byk)‖2

≤ ‖xk − x∗‖2 − 2τk〈A(xk − x∗), Axk − Byk〉 + ρ2
k ,

and also that

‖yk+1 − y∗‖2 = ‖PQ(yk + τkB
∗(Axk − Byk)) − y∗‖2

≤ ‖(yk − y∗) + τkB
∗(Axk − Byk)‖2

= ‖yk − y∗‖2 + 2τk〈B(yk − y∗), Axk − Byk〉
+τ 2

k ‖B∗(Axk − Byk)‖2

≤ ‖yk − y∗‖2 + 2τk〈B(yk − y∗), Axk − Byk〉 + ρ2
k .

Note that Ax∗ = By∗. Then adding up the last two inequalities immediately yields
the desired inequality.

Theorem 1 Let zk := (xk, yk) ∈ H1 × H2 be the sequence generated by (8)–(9).
If the SEP (7) is consistent and the sequence (�k) satisfies condition (4), then the
sequence zk := (xk, yk) converges to an element in S.

Proof Let z∗ = (x∗, y∗) ∈ S be fixed. By Lemma 4, we have

‖zk+1 − z∗‖2 ≤ ‖zk − z∗‖2 + 2�2
k .

From Definition 1, we see that the sequence (zk) is quasi-Fejér monotone with respect
to S. Thus, by Lemma 1, we conclude that the sequence (‖zk − z∗‖) is convergent,
and in particular, (zk) is bounded. To complete the proof, we next divide our proof
into three steps.

Step 1. show that lim infk ‖Axk − Byk‖ = 0. From (11), it follows that

τk‖Axk − Byk‖2 ≤ 1

2
(‖zk − z‖2 − ‖zk+1 − z‖2) + �2

k,

which immediately implies that

k∑
j=1

τj‖Axj − Byj‖2 ≤ 1

2
‖z1 − z∗‖2 +

k∑
j=1

�2
j .
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Taking the limit by letting k → ∞ in the last formula and having in mind
that

∑
k �2

k < ∞, we have

∞∑
k=1

τk‖Axk − Byk‖2 < ∞. (12)

On the other hand, we see that

‖A∗(Axk − Byk)‖ ≤ ‖A‖‖Axk − Byk‖,
‖B∗(Byk − Axk)‖ ≤ ‖B‖‖Axk − Byk‖,

which implies that

τk ≥ �k

max(‖A‖, ‖B‖)‖Axk − Byk‖ . (13)

Combining (13) and (12), we have
∞∑

k=1

�k‖Axk − Byk‖ < ∞. (14)

This together with the assumption
∑

k �k = ∞ particularly implies that

lim inf
k→∞ ‖Axk − Byk‖ = 0.

Step 2. show limk ‖Axk − Byk‖ = 0. Actually, we have that

‖A(xk+1 − xk)‖ ≤ ‖A‖‖PC(xk − τkA
∗(Axk − Byk)) − xk‖

≤ τk‖A‖‖A∗(Axk − Byk)‖
≤ �k‖A‖,

and also that

‖B(yk+1 − yk)‖ ≤ ‖B‖‖PQ(yk + τkB
∗(Axk − Byk)) − yk‖

≤ τk‖B‖‖B∗(Axk − Byk)‖
≤ �k‖B‖.

Let ak = Axk − Byk. By the last two inequalities, we have

‖ak+1 − ak‖ = ‖(Axk+1 − Byk+1) − (Axk − Byk)‖
≤ ‖A(xk − xk+1)‖ + ‖B(yk+1 − yk)‖
≤ �k(‖A‖ + ‖B‖) = δ�k,

where we define δ := ‖A‖ + ‖B‖. Hence, we have

‖ak+1‖2 = ‖ak‖2 + 2〈ak, ak+1 − ak〉 + ‖ak+1 − ak‖2

≤ ‖ak‖2 + 2‖ak‖‖ak+1 − ak‖ + ‖ak+1 − ak‖2

≤ ‖ak‖2 + 2δ�k‖ak‖ + δ2�2
k .

Setting ηk = 2δ�k‖ak‖ + δ2�2
k, we have

‖ak+1‖2 ≤ ‖ak‖2 + ηk. (15)
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It is clear that
∑

k ηk < ∞ due to (14) and (4). We can therefore apply
Lemma 2 to (15) to get the existence of the limk ‖ak‖. Hence, limk ‖Axk −
Byk‖ = 0, since we have shown that lim infk ‖Axk − Byk‖ = 0.

Step 3. show that every weak cluster point of (zk) is in the set S. Suppose that a
subsequence (zkj

) = (xkj
, ykj

) of (zk) weakly converges to a point ẑ =
(x̂, ŷ). It is readily seen that x̂ ∈ C and ŷ ∈ Q; moreover

‖Ax̂ − Bŷ‖ ≤ lim inf
j→∞ ‖Axkj

− Bykj
‖

= lim
k→∞ ‖Axk − Byk‖ = 0,

where we have used the weak lower semi-continuity of the norm, that is,
Ax̂ = Bŷ. Thus, we conclude that ẑ = (x̂, ŷ) ∈ S.

In summary, we have shown that the sequence (zk) is quasi-Fejér mono-
tone with respect to S and all weak cluster points of (zk) belong to S.
Consequently, the results follow immediately from Lemma 1.

Remark 3 In the theorem above, there are not any requirements of the boundedness
of Q and the full column rank of A as used in Yang’s result [14].

Remark 4 It is clear our choice of the step does not need any information on the
values of ‖A‖ and ‖B‖.

4 A demonstration example

For simplicity, we denote algorithms (6) and (8)–(9) by Algorithm 2 and Algorithm 1,
respectively. We now conduct an experiment to verify convergence of iterative
sequence generated by Algorithm 2 and reveal its efficiency through comparing the
performance of Algorithm 1. In the experiment, we consider the case whenever

C = {x ∈ R
n : ‖x − d‖ ≤ r},

Q = {y ∈ R
m : l ≤ y ≤ u},

where A = (aij )m×n, B = (bij )m×m, aij ∈ [0, 1], bij ∈ [0, 1], di ∈ [0, 10], i =
1, 2, · · · , n, r ∈ [40, 60], lj ∈ [10, 40] and uj ∈ [50, 100], j = 1, 2, · · · , m are
all generated randomly. The restoration accuracy is measured by means of the mean
squared error

MSE(‖xk+1 − xk‖) = 1

n
‖xk+1 − xk‖,

MSE(‖yk+1 − yk‖) = 1

m
‖yk+1 − yk‖.

We first compare the efficiency of Algorithms 1 and 2. The parameter is set as
τ = (rand(1, 1) + 1)/ max(1, norm(A)2) by Algorithm 2 and τk = 1/(k + 1) in



934 Numer Algor (2017) 74:927–935

Algorithm 1. As shown in top figure, the convergence of these two algorithms is jus-
tified. It is readily seen that Algorithm 1 converges faster than by Algorithm 2 does.
This supports in partial the advantage of variable step-size over the constant step-size
for the considered problem. We next compare the efficiency of the parameter p in
Algorithm 1, whenever we set

τk = 1

(k + 1)p
, k ∈ (1/2, 1]

in Algorithm 1. As shown in bottom figure, it seems that the convergence Algorithm 1
goes faster when p is bigger.
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