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Abstract Using the equivalent block two-by-two real linear systems and relaxing
technique, we establish a new block preconditioner for a class of complex symmet-
ric indefinite linear systems. The new preconditioner is much closer to the original
block two-by-two coefficient matrix than the Hermitian and skew-Hermitian splitting
(HSS) preconditioner. We analyze the spectral properties of the new preconditioned
matrix, discuss the eigenvalue distribution and derive an upper bound for the degree
of its minimal polynomial. Finally, some numerical examples are provided to show
the effectiveness and robustness of our proposed preconditioner.
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1 Introduction

We consider the iterative solution of large and sparse complex symmetric linear
systems

Ax = b, A ∈ C
N×N and x, b ∈ C

N. (1)

The nonsingular complex symmetric matrix A can be written as

A = W + iT , (2)

where the matrices W, T ∈ R
N×N are symmetric, and i = √−1 denotes the imagi-

nary unit. Many scientific and engineering applications often lead to the problem (1),
such as diffuse optical tomography [1], electromagnetic problem [17], and quantum
mechanics [34]. For other applications, we refer to [19] and references therein.

A class of splitting iteration methods based on Hermitian and skew-Hermitian
splitting (HSS) has been established by Bai et al. [10, 12], and it has been further
discussed and generalized by many researchers, see, e.g., [8, 9, 11, 13, 18]. When
the matrices W and T are symmetric positive semi-definite and one of them is posi-
tive definite, Bai et al. constructed a modified HSS (MHSS) [5] iteration method and
the preconditioned MHSS (PMHSS) [6] iteration method. These two methods are
unconditionally convergent and the latter shows h-independent convergence behav-
ior. Recently, Bai [4] further analyzed algebraic and convergence properties of the
PMHSS iteration method for solving complex linear systems, and presented analyti-
cal and numerical comparisons among several iteration methods. When the real part
of the coefficient A is dominant, Li et al. [27] derived a lopsided PMHSS (LPMHSS)
iteration method. In [36], Xu generalized the PMHSS iteration method to solve two
classes of complex symmetric indefinite linear systems. Recently, Cao and Ren [21]
considered two variants of the PMHSS iteration method. For the problem (1) with
symmetric indefinite matrix W ∈ RN×N and symmetric positive definite matrix
T ∈ R

N×N , the MHSS and PMHSS iteration methods converge slowly or stagnate.
To overcome this problem, Wu [35] designed the Hermitian normal splitting (HNS)
iteration method and simplified HNS (SHNS) iteration method. Recently, Zhang and
Dai [38] proposed their preconditioned versions. For other effective splitting iteration
methods, we refer to [39, 40].

The problem (1) can be equivalently rewritten as the following real block two-by-
two linear systems

Ax =
[

W −T

T W

] [
x

y

]
=

[
f

g

]
≡ b, (3)

or

Ax =
[

T −W

W T

] [
x

−y

]
=

[
g

f

]
≡ b, (4)

which can be solved in real arithmetics by some Krylov subspace iteration meth-
ods, such as the preconditioned GMRES [32] method. A high-quality preconditioner
is very crucial to improve the numerical behavior of some Krylov subspace itera-
tion methods. For the symmetric positive semidefinite matrices W and T , a number
of block preconditioners have been derived. Bai [3] developed a class of rotated
block triangular (RBT) preconditioners based on the PMHSS preconditioning matrix
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[7]. To increase the speed-up ratios of the RBT preconditioners, Lang and Ren [26]
studied inexact RBT (IRBT) preconditioners. By introducing a new equivalent vari-
ant of the problem (3), Yan and Huang [37] presented a class of splitting-based
block preconditioners. The SOR-like methods is a class of effective iteration meth-
ods for solving the saddle point problems. Bai et al. [15] proposed a generalized SOR
(GSOR) method for the saddle point problems, analyzed its convergence, and deter-
mined its optimal iteration parameter and the corresponding optimal convergence
factor. Bai and Wang [16] developed the method to generalized saddle point prob-
lems. Recently, Salkuyeh et al. [33] applied the GSOR method to the linear system
(3) and derived the GSOR iteration method for solving complex symmetric linear
systems, and Hezari et al. [25] designed its preconditioned version. Liang and Zhang
[28] established the symmetric SOR (SSOR) method and its accelerated variant for
solving the problem (3).

In this paper, we construct a novel block preconditioner based on the new splitting
of the coefficient matrix A. In order to obtain a better approximation to the matrix
A, we apply the relaxing technique to modify this new preconditioner. Theoretical
analysis shows that all eigenvalues of the new preconditioned matrix are located in
the interval (0, 1]. We also investigate the eigenvalue distribution and derive an upper
bound of the degree of the minimal polynomial of the new preconditioned matrix.

The framework of the paper is organized as follows. In Section 2, we present the
new block preconditioner and describe the detail implementation of the precondition-
ing process. In Section 3, we give some theoretical analyses about the preconditioned
matrix. In Section 4, some numerical examples are tested to show the effective-
ness of our proposed preconditioner. Finally, we make some concluding remarks in
Section 5.

2 A new block splitting preconditioner

In this section, we will construct a new block splitting preconditioner for the equiv-
alent real block two-by-two linear systems (4) with symmetric indefinite matrix
W ∈ R

N×N and symmetric positive definite matrix T ∈ R
N×N .

Bai et al. [9] first introduced the positive definite and skew-Hermitian split-
ting (PSS), established the PSS iteration method for solving non-Hermitian positive
definite linear systems, and showed its unconditional convergence. Pan et al. [29]
developed the PSS preconditioner for saddle point problems, which can be consid-
ered as a deteriorated version of the PSS iteration method. For the linear system (4),
it is easy to obtain the following splitting of the coefficient matrix A,

A = J + K, (5)

where J =
[

T O

O O

]
and K =

[
O −W

W T

]
. Analogous to the PSS preconditioner,

we set

P = 1

2α
(αI + K)(αI + J ). (6)
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When the matrixP is considered as the preconditioner, the pre-factor 1
2α has no effect

on the preconditioned system. Therefore, we can let

P1 = 1

α
(αI + K)(αI + J ) = 1

α

[
αI −W

W αI + T

] [
αI + T O

O αI

]
=

[
αI + T −W

W(I + 1
α
T ) αI + T

]
.

(7)
From (6) and (7), we have

R1 = P1 − A =
[

αI O
1
α
WT αI

]
. (8)

As seen from (8), the two diagonal blocks trend to zero, but the nonzero off-diagonal
block becomes unbounded as α approaches 0. Therefore, a practical parameter α

should be introduced to balance the two parts. For more details, we refer to [24].
Inspired by the idea of the relaxed preconditioner [20, 22, 23], we modify the

preconditioner P1 by

P2 = 1

α

[
αI −W

W T

] [
αI + T O

O αI

]
=

[
αI + T −W

W(I + 1
α
T ) T

]
. (9)

From (9), it holds that

R2 = P2 − A =
[

αI O
1
α
WT O

]
. (10)

Comparing the matrixR2 with the matrixR1, we know that the preconditioner P2 is
much closer to the coefficient matrix A than the preconditioner P1.

Note that the preconditioner P2 can be constructed based on the new splitting of
the coefficient matrix A

A = P2 − R2 =
[

αI + T −W

W(I + 1
α
T ) T

]
−

[
αI O

1
α
WT O

]
. (11)

For the preconditioned Krylov subspace iteration method with the preconditioner
P2, we need to solve the following linear subsystems

1

α

[
αI −W

W T

] [
αI + T O

O αI

] [
z1
z2

]
=

[
αI + T −W

W(I + 1
α
T ) T

] [
z1
z2

]
=

[
r1
r2

]
,

(12)
where (zT

1 , zT
2 )T and (rT

1 , rT
2 )T are the current and generalized residual vectors,

respectively. From (12), we have[
z1
z2

]
= α

[
αI + T O

O αI

]−1 [
αI −W

W T

]−1 [
r1
r2

]

= α

[
αI + T O

O αI

]−1 [
I 1

α
W

O I

] [
αI O

O T + 1
α
W 2

]−1 [
I O

− 1
α
W I

] [
r1
r2

]
(13)

Using the above results, we can describe the implementing process of the
preconditioner P2 in Algorithm 1.

Fortunately, in Algorithm 1, we only need to solve two symmetric positive def-
inite linear subsystems under the assumptions of symmetric indefinite matrix W

and symmetric positive definite matrix T . Therefore, we can apply the sparse
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Algorithm 1 Implementing process of preconditioner P2

1. Give a residual vector r = (rT
1 , rT

2 )T ;
2. Compute u1 = r2 − 1

α
Wr1;

3. Solve the linear system (T + 1
α
W 2)z2 = u1;

4. Compute u2 = r1 + Wz2;
5. Solve the linear system (αI + T )z1 = u2;
6. Set the generalized residual vector z = (zT

1 , zT
2 )T .

Cholesky decomposition, the conjugate gradient (CG) method or the preconditioned
CG method to solve symmetric positive definite linear systems (T + 1

α
W 2)z2 = u1

and (αI + T )z1 = u2.
For the HSS preconditioner, we can derive the computing process as in Algorithm

2.

Algorithm 2 Implementing process of HSS preconditioner

1. Give a residual vector r = (rT
1 , rT

2 )T ;
2. Solve the linear system (αI + T )v1 = r1;
3. Solve the linear system (αI + T )v2 = r2;
4. Compute u1 = v2 − 1

α
Wv1;

5. Solve the linear system (αI + 1
α
W 2)z2 = u1;

6. Compute z1 = 1
α
(v1 + Wz2);

7. Set the generalized residual vector z = (zT
1 , zT

2 )T .

From Algorithm 2, we may see that there are three symmetric positive definite lin-
ear subsystems to be solved. Therefore, our preconditioner returns better computing
efficiency than the HSS preconditioner.

3 Theorectical analysis of the preconditioned matrix

In this section, we investigate the spectral properties of the preconditioned matrix and
give an upper bound of the degree of its minimal polynomial.

First, we analyze the eigenvalue distribution of the preconditioned matrix P−1
2 A.

Theorem 1 Assume that the coefficient matrix A is nonsingular, W ∈ R
N×N is

symmetric indefinite and T ∈ R
N×N is symmetric positive definite. Let α be a real

positive constant. Then for the preconditioned matrix P−1
2 A, the following results

hold.

(1) P−1
2 A has an eigenvalue 1 with multiplicity at least N;

(2) the remaining nonunit eigenvalues of P−1
2 A satisfy the generalized eigenvalue

problem α(U + T )y = λ(αI + U)(αI + T )y and locate in the interval (0, 1).
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Proof From (8)–(10), we have

P−1
2 A = P−1

2 (P2 − R2) = I − P−1
2 R2

= I − α

[
αI + T O

O αI

]−1 [
αI −W

W T

]−1 [
αI O

1
α
WT O

]

= I − α

[
αI + T O

O αI

]−1 [
I 1

α
W

O I

] [
αI O

O T + 1
α
W 2

]−1 [
I O

− 1
α
W I

] [
αI O

1
α
WT O

]

= I −
[

α(αI + T )−1 + (αI + T )−1W(T + 1
α
W 2)−1( 1

α
WT − W) O

(T + 1
α
W 2)−1( 1

α
WT − W) O

]
.

Setting U = WT −1W , we have

α(αI + T )−1 + (αI + T )−1W(T + 1
α
W 2)−1( 1

α
WT − W)

= (αI + T )−1(αI + W(T + 1
α
W 2)−1( 1

α
WT − W))

= (αI + T )−1(αI + W(W(W−1T W−1 + 1
α
I)W)−1W( 1

α
T − I ))

= (αI + T )−1(αI + ( 1
α
I + W−1T W−1)−1( 1

α
T − I ))

= (αI + T )−1(αI + (I + 1
α
W−1T W−1)−1WT −1W( 1

α
T − I ))

= (αI + T )−1(αI + (I + 1
α
U)−1U( 1

α
T − I ))

= (αI + T )−1(αI + (I + 1
α
U)−1U( 1

α
T − I ))

= (αI + T )−1(αI + U)−1(α2I + UT ).

Therefore, we obtain

P−1
2 A =

[
I − (αI + T )−1(αI + U)−1(α2I + UT ) O

(T + 1
α
W 2)−1(W − 1

α
WT ) I

]

=
[

α(αI + T )−1(αI + U)−1(U + T ) O

(T + 1
α
W 2)−1(W − 1

α
WT ) I

]
.

(14)

From (14), we know that the preconditioned matrix P−1
2 A has an eigenvalue 1 with

multiplicity at least N , and the remaining nonunit eigenvalues of P−1
2 A satisfy the

following generalized eigenvalue problem

α(U + T )y = λ(αI + U)(αI + T )y. (15)

Since the matrix W ∈ R
N×N is symmetric indefinite and the matrix T ∈ R

N×N

is symmetric positive definite, then the matrix U = WT −1W is symmetric positive
semidefinite, so U + T and αI + U are symmetric positive definite for α > 0. It is
easy to verify that all the eigenvalues of the generalized eigenvalue problem (15) are
positive real numbers.

For ∀y ∈ R
N, y �= 0, let

a = (T y, y)

(y, y)
, b = (Uy, y)

(y, y)
and c = (UTy, y)

(y, y)
, (16)

then a > 0 and b ≥ 0.
Consider the following eigenvalue problem

T WT −1Wv = βv,

where β is an eigenvalue and v is the corresponding eigenvector. Let T = LLT be the
Cholesky factorization of the matrix T and z = L−1v, then we have LT WT −1Wz =
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βz. Since the matrix LT WT −1WL is symmetric positive semidefinite, then β ≥ 0
and c ≥ 0.

From (15) and (16), we can deduce λ(P−1
2 A) = α(a+b)

α2+α(a+b)+c
. Finally, it follows

from α > 0, a > 0, b ≥ 0, and c ≥ 0 that 0 < λ(P−1
2 A) < 1, i.e., the remaining

nonunit eigenvalues of P−1
2 A are located in (0, 1).

It is very crucial to choose an optimal parameter α during the implementation
of the preconditioner P2. For the HSS preconditioner, Bai [2] derived the theoreti-
cally optimal parameter α for solving the saddle point problems. However, it is very
difficult for the preconditioner P2 to obtain the theoretically optimal parameter α.
Using the algebraic estimation technique given by Golub and Greif [24], we can get
an estimate parameter αest = ‖W 2‖2/‖T ‖2. A practical method for determining the
parameter α is to find α such that

‖R2‖F = ‖P2 − A‖F = ‖
[

αI O
1
α
WT O

]
‖F = min.

Then, we obtain the parameter αpra =
(

tr(T W 2T )
N

) 1
4
. However, our numerical results

show that αest and αpra are not very effective to improve the convergence behavior
of the preconditioned GMRES method. Similar to the PMHSS preconditioner [7],
the parameter α may be determined by performing numerical experiments.

Bai and Ng [14] established some inexact preconditioners and discussed the finite-
step termination properties of the corresponding preconditioned Krylov subspace
method with an optimal or Galerkin property. Similar to the proposition 2.1 in [14]
and following its proof, we have the following result.

Theorem 2 Assume that the conditions of Theorem 1 are satisfied and the precon-
ditioner P2 is defined in (9). Then ∂(P−1

2 A) ≤ N + 1, where ∂(P−1
2 A) denotes the

degree of the minimal polynomial of the preconditioned matrix P−1
2 A.

Proof From (14), the preconditioned matrix can be expressed as

P−1
2 A =

[
�1 O

�2 I

]
, (17)

where�1 = α(αI+T )−1(αI+U)−1(U+T ) ∈ R
N×N and�2 = (T + 1

α
W 2)−1(W−

1
α
WT ) ∈ R

N×N . Suppose that βi(i = 1, . . . , N) are the eigenvalues of the matrix
�1. Then, βi(i = 1, . . . , N) are also the eigenvalues of the preconditioned matrix
P−1
2 A. From (17), the characteristic polynomial of the preconditioned matrix P−1

2 A
is

(λ − 1)N
N∏

i=1

(λ − βi).

It is easy to compute

(P−1
2 A − I )

N∏
i=1

(P−1
2 A − βiI ) =

[
(�1 − I )

∏N
i=1(�1 − βiI ) O

�2
∏N

i=1(�1 − βiI ) O

]
.
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Using Hamilton-Cayley theorem [30], we obtain
∏N

i=1(�1 − βiI ) = 0. Therefore,
we have ∂(P−1

2 A) ≤ N + 1.

It follows from Proposition 6.1 in [31] that the dimension of the Krylov subspace
K(P−1

2 A) is at most N + 1.
Next, we discuss the eigenvector of the preconditioned matrix P−1

2 A.

Theorem 3 Assume that the preconditioner P2 is given in (9), then there are N +
j linear independent eigenvectors of the preconditioned matrix P−1

2 A, which are
described as follows:

(1) N eigenvectors

[
0
vl

]
(l = 1, 2, . . . , N) that correspond to the eigenvalue 1;

(2) j (0 ≤ j ≤ N) eigenvectors

[
u1l
v1l

]
(1 ≤ l ≤ j) that correspond to the nonunit

eigenvalues λl , where α(U + T )u1l = λ(αI + U)(αI + T )u1l , u
1
l �= 0 and

v1l = 1
1−λ

(T + 1
α
W 2)−1(W − 1

α
WT )u1l .

Proof The proof is similar to that of Theorem 3.2 in [22]; hence, it is omitted.

4 Numerical examples

In this section, we give some numerical examples of complex symmetric linear sys-
tems from the references [5, 6, 21] to illustrate the effectiveness and robustness of
the preconditioned GMRES(�) [31, 32] method which is combined with our pro-
posed preconditioner P2 and the HSS preconditioner. All computations are carried
out using double precision float point arithmetic in MATLAB (version R2010b). In
our implementations, we choose the initial guess x0 = zeros(2N, 1) and set the stop-
ping criterion to be

‖rj ‖
‖r0‖ ≤ 1.e − 6, where rj = b − Axj . Note that Its and CPU

denote iteration steps and CPU time (in seconds) for computing an approximate solu-
tion, respectively. Like the PMHSS preconditioner, we choose the optimal parameter
α by performing numerical experiments which minimize the numbers of iteration
steps and computing times, see [7] for more details. αexp denotes the optimal iteration
parameter in this section. A symbol “–” is used to indicate that the method does not
obtain the required stopping criterion before maximum iterations or out of memory.
The maximum number of iteration steps allowed is set to 5000 for the GMRES(�)
method, and to 200 for the preconditioned GMRES(�) method.

Example 1 In this example, we compare the computing efficiency of the precon-
ditioned GMRES(50) method with HSS preconditioner (PHSS) and our proposed
preconditioner (P2). The complex symmetric linear system is of the form [38]

[(Tm ⊗ Im + Im ⊗ Tm − k2h2(Im ⊗ Im)) + iσ2(Im ⊗ Im)]x = b,
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Table 1 Its and CPU for the preconditioned GMRES(50) method in Example 1

Preconditioner k 10 20 30 40 50

m2 162 322 642 1282 2562

No-prec Its – – – – –

CPU – – – – –

PHSS Its 6 5 11 26 67

(α = 0.01) CPU 0.008 0.021 0.167 1.887 27.848

αexp 0.01 0.05 0.001 0.0001 0.0001

P2 Its 3 2 2 2 2

CPU 0.007 0.015 0.071 0.384 1.937

αpra 0.038 0.019 0.010 0.005 0.002

P2 Its 3 3 3 4 3

CPU 0.007 0.023 0.087 0.459 2.369

P2 Its 3 3 3 4 4

(α = 0.01) CPU 0.008 0.018 0.076 0.445 2.437

where Tm = tridiag(−1, 2, −1) is a tridiagonal matrix with order m and k denotes
the wavenumber. We choose the matrices W = Tm ⊗ Im + Im ⊗Tm − k2h2(Im ⊗ Im)

and T = σ2(Im ⊗ Im), where σ2 = 0.1 and h = 1
m+1 . T is symmetric positive

definite. We set the right-hand side b = A ∗ ones(2m2, 1). Table 1, Figs. 1, 2 and 3
report the numerical results.

From Table 1, we can conclude some observations as follows. Firstly, the unpre-
conditioned GMRES(50) method does not converge in all cases. Secondly, the two
preconditioners can improve the convergence behavior of the GMRES(50) method,
but the P2 preconditioned GMRES(50) method returns better numerical results
than the HSS preconditioned GMRES(50) method in terms of Its and CPU time.
Thirdly, the iteration steps of the P2 preconditioned GMRES(50) method are almost
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Fig. 1 The spectral distributions of unpreconditioned matrix (on the left) and HSS preconditioned matrix
(on the right)
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Fig. 2 The spectral distributions of P2 preconditioned matrix with α = 0.01 (on the left) and α = 0.05
(on the right)

constant. Therefore, the P2 preconditioned GMRES(50) method demonstrates h-
independent convergence behavior. The value of parameter α decreases as the grid
size m increases. Fourthly, numerical result shows that the practical parameter αpra

is effective to improve the convergence behavior of the preconditioned GMRES(50)
method compared with the parameter αexp. Lastly, for α = 0.01, the P2 precondi-
tioned GMRES(50) method converges faster and requires less CPU times than the
HSS preconditioned GMRES(50) method. From Figs. 1 and 2, all the eigenvalues
of the preconditioned matrix P−1

2 A (with α = 0.01, 0.05) are located in a circle
centered at (1,0) with a radius strictly less than 1. We also see that the spectral dis-
tribution of the preconditioned matrix P−1

2 A is better than that of the preconditioned
matrix P−1

HSSA and unpreconditioned matrix A, which is consistent with the theoret-
ical results in Theorem 1. From Fig. 3, we can observe that the HSS preconditioner is
more sensitive to the parameter α than theP2 preconditioner. Therefore, our proposed
preconditioner is more effective and practical for solving the complex symmetric
linear systems, in comparison with the HSS preconditioner.
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Table 2 Its and CPU for the preconditioned GMRES(10) method in Example 2

Preconditioner M 5I 10I 20I 30I 50I

No-prec Its – 2864 1221 744 385

CPU – 1.810 0.860 0.542 0.307

PHSS Its 23 24 28 31 38

(α = 0.01) CPU 0.071 0.079 0.084 0.090 0.128

αexp 0.2 0.1 0.09 0.19 0.19

P2 Its 9 9 8 7 6

CPU 0.034 0.038 0.031 0.028 0.025

αpra 0.747 0.774 0.817 0.849 0.883

P2 Its 11 15 18 16 12

CPU 0.040 0.067 0.071 0.062 0.043

P2 Its 21 18 17 16 18

(α = 0.01) CPU 0.057 0.051 0.049 0.048 0.050

Example 2 We consider the following complex symmetric linear system [5, 6, 35]

[(−ω2M + K) + i(ωCV + CH)]x = b.

where M and K are the inertia and stiffness matrices, CV and CH are the viscous
and hysteretic damping matrices, respectively, ω is the driving circular frequency,
K = I ⊗ Vm + Vm ⊗ I , Vm = h−2tridiag(−1, 2, −1) ∈ R

m×m is a tridiagonal
matrix, h = 1

m+1 , CV = 1
2M , CH = μK with μ being a damping coefficient.

We choose the matrices W = h2(−ω2M + K) and T = h2(ωCV + CH), and set
ω = 2π and μ = 0.02. For M = 5I, 10I, 20I, 30I, 50I , we can easily show that the
matrix W is symmetric indefinite and the matrix T is symmetric positive definite. In
this example, we set m = 32 and the right-hand side b = A ∗ ones(2m2, 1).

As observed from Table 2, we can see that the GMRES(10) method does not
converge in case of M = 5I . The HSS preconditioned GMRES(10) method and
the P2 preconditioned GMRES(10) method return better convergence behavior than
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Fig. 4 Number of iterations versus α with M = 5I (on the left) and M = 10I (on the right)
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the unpreconditioned GMRES(10) method. Furthermore, for the P2 preconditioned
GMRES(10) method, we also observe that the change of iteration steps is relatively
stable with the inertia matrix M changing. For the parameter α = 0.01, the P2 pre-
conditioned GMRES(10) method requires less iteration steps and CPU times than the
HSS preconditioned GMRES(10) method. Numerical result shows that the practical
parameter αpra is not effective to improve the convergence behavior of the precondi-
tioned GMRES(10) method compared with the parameter αexp. From Fig. 4, we can
obtain the same result as that of Fig. 3.

Example 3 We consider the following complex symmetric linear system [21]

[(K − (3 − √
3)ω2I ) + i(K + (3 + √

3)τ 2I )]x = b,

where K = I ⊗ Vm + Vm ⊗ I , ω = 10π , τ = 2π , h = 1
m+1 , n = m2 and Vm =

h−2tridiag(−1, 2, −1) ∈ R
m×m is a tridiagonal matrix. We choose the symmetric

indefinite matrix W = K − (3− √
3)ω2I and the symmetric positive definite matrix

T = K + (3 + √
3)τ 2I .

From Table 3, for m ≥ 64 we can see that the GMRES(20) method does not
converge. Both the HSS preconditioner and the P2 preconditioner improve comput-
ing efficiency of the GMRES(20) method, and the P2 preconditioned GMRES(20)
method returns better numerical results than the HSS preconditioned GMRES(20)
method in all cases. The iteration steps of theP2 preconditioned GMRES(20) method
increase slowly with the grid size m increasing, but the amplitude is relatively stable.
Numerical result shows that the practical parameter αpra is not effective to improve
the convergence behavior of the preconditioned GMRES(20) method compared with
the parameter αexp. From Fig. 5, we can obtain the same results as those of Figs. 3
and 4.

Table 3 Its and CPU for the preconditioned GMRES(20) method in Example 3

Preconditioner m 16 32 64 128 256

No-prec Its 105 1657 – – –

CPU 0.041 1.220 – – –

PHSS Its 24 26 29 77 181

(α = 1) CPU 0.026 0.086 0.501 6.817 90.069

P2 Its 8 11 11 19 36

(α = 1) CPU 0.009 0.040 0.199 1.608 16.009

αexp 2.54 1.97 1.03 0.49 0.24

P2 Its 6 8 11 14 20

CPU 0.007 0.030 0.194 1.246 9.580

αpra 3.10 4.63 4.97 5.07 5.09

P2 Its 7 11 21 43 89

CPU 0.009 0.042 0.478 3.941 41.54

PHSS Its 10 18 30 48 77

(α = αexp) CPU 0.013 0.063 0.508 4.370 38.491
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Fig. 5 Number of iterations versus α with m = 16 (on the left) and m = 32 (on the right)

5 Conclusion

In this paper, we have developed a new block preconditioner for solving a class
of complex symmetric indefinite linear systems. Theoretical properties of the new
preconditioner have been studied in detail. Numerical results show that the new
preconditioner is more effective than the HSS preconditioner in improving the con-
vergence behavior of the restarted GMRES method. How to select an optimal and
practical parameter α should be investigated in the future.
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