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Abstract Let � be an open, simply connected, and bounded region in R
d , d ≥ 2,

and assume its boundary ∂� is smooth and homeomorphic to S
d−1. Consider solv-

ing an elliptic partial differential equation Lu = f (·, u) over � with zero Dirichlet
boundary value. The function f is a nonlinear function of the solution u. The prob-
lem is converted to an equivalent elliptic problem over the open unit ball Bd in R

d ,
say ˜Lũ = ˜f (·, ũ). Then a spectral Galerkin method is used to create a convergent
sequence of multivariate polynomials ũn of degree ≤ n that is convergent to ũ. The
transformation from � to B

d requires a special analytical calculation for its imple-
mentation. With sufficiently smooth problem parameters, the method is shown to
be rapidly convergent. For u ∈ C∞ (

�
)

and assuming ∂� is a C∞ boundary, the
convergence of ‖ũ − ũn‖H 1 to zero is faster than any power of 1/n. The error anal-
ysis uses a reformulation of the boundary value problem as an integral equation, and
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then it uses tools from nonlinear integral equations to analyze the numerical method.
Numerical examples illustrate experimentally an exponential rate of convergence. A
generalization to −�u + γ u = f (u) with a zero Neumann boundary condition is
also presented.

Keywords Elliptic · Nonlinear · Spectral method

1 Introduction

Consider the nonlinear problem

Lu (s) = f (s, u(s)) , s ∈ � (1)

u (s) = 0, s ∈ ∂� (2)

with L an elliptic operator over � and a homogeneous Dirichlet boundary condition.
Let � be an open, simply connected, and bounded region in R

d , and assume that its
boundary ∂� is sufficiently differentiable and is homeomorphic to S

d−1. Assume L

is a strongly elliptic operator of the form

Lu(s) ≡ −
d

∑

i,j=1

∂

∂si

(

ai,j (s)
∂u(s)

∂sj

)

+ γ (s) u (s) , s ∈ �, (3)

We present a spectral method for solving (1)–(2) based on multivariate polyno-
mial approximation over the unit ball Bd . Our numerical method is similar to that
presented in earlier papers for linear problems; see [2, 6]. However, the nonlinearity
in (1) leads to the solving of nonlinear algebraic systems. Moreover, the convergence
analysis requires a new approach as the standard variational analysis applies to only
the linear framework. We give a new error analysis that uses a reformulation of the
problem (1)–(2) and its numerical approximation using nonlinear integral equations;
see Section 3.

In (3), the functions ai,j (s), 1 ≤ i, j ≤ d, are assumed to be several times contin-
uously differentiable over �, and the d × d matrix

[

ai,j (s)
]

is to be symmetric and
to satisfy

ξTA(s)ξ ≥ αξTξ, s ∈ �, ξ ∈ R
d (4)

for some α > 0. Also assume the coefficient γ ∈ C
(

�
)

. Note that because the right-
hand function f is allowed to depend on u, an arbitrarily large multiple of u can be
added to each side of (1), thus justifying an assumption that

min
s∈�

γ (s) > 0. (5)

The problem (1)–(2) can be reformulated as a variational problem. Introduce

A (v, w) =
∫

�

⎡

⎣

d
∑

i,j=1

ai,j (s)
∂v(s)

∂si

∂w(s)

∂sj

⎤

⎦ ds

+
∫

�

γ (s) v (s) w (s) ds, v, w ∈ H 1
0 (�) ,

(6)
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(F (v)) (s) = f (s, v(s)) , s ∈ �, v ∈ H 1 (�) . (7)

Note that the Sobolev space Hm (�) is the closure of Cm
(

�
)

using the norm

‖g‖Hm(�) =
√

∑

|i|≤m

∥

∥Dig
∥

∥

2
L2(�)

, g ∈ Cm
(

�
)

, m ≥ 1

with i a multi-integer, i = (i1, . . . , id) , |i| = i1 + · · · + id , and

Dig (s) = ∂ |i|g (s)

∂s
i1
1 · · · ∂s

id
d

.

The space H 1
0 (�) is the closure of C1

0 (�) using ‖·‖H 1(�), where elements of
C1

0 (�) ⊆ C1
(

�
)

are zero on some open neighborhood of the boundary of �.
Noting (4) and (5), it can be assumed that A is a strongly elliptic operator on

H 1
0 (�), namely

A (v, v) ≥ c0 ‖v‖2
H 1(�)

, ∀v ∈ H 1
0 (�)

for some finite c0 > 0. Reformulate (1)-(2) as the following variational problem: find
u ∈ H 1

0 (�) for which

A (u, w) = (F (u) , w) , ∀w ∈ H 1
0 (�) . (8)

Throughout this paper, we assume the variational reformulation of the problem (1)–
(2) has a locally unique solution u ∈ H 1

0 (�). For analyses of the existence and
uniqueness of a solution to (1)–(2), see Zeidler [16, Section 28.5].

In the following Section 2, we define our spectral method for the case that � = B
d ;

and following that we show how to reformulate the problem (1)–(2) for a general
smooth region � as an equivalent problem over Bd . This follows the earlier devel-
opment in [2]. In Section 3, we present a convergence analysis for our numerical
method, an approach using results from the numerical analysis of nonlinear inte-
gral equations. Implementation of the method is discussed in Section 4, followed
by numerical examples in Section 5. An extension to a Neumann boundary value
problem is given in Section 6.

2 A spectral method

Begin with the special case � = B
d , and then move to a general region �. Let Xn

denote a finite-dimensional subspace of H 1
0

(

B
d
)

, and let
{

ψ1, . . . , ψNn

}

be a basis
of Xn. Later a basis is given by using polynomials of degree ≤ n over Rd , denoted
by 	d

n, with Nn the dimension of 	d
n. An approximating solution to (8) is sought by

finding un ∈ Xn such that

A (un, w) = (F (un) , w) , ∀w ∈ Xn. (9)
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More precisely, find

un (x) =
Nn
∑


=1

α
ψ
 (x) (10)

that satisfies the nonlinear algebraic system

Nn
∑


=1

α


∫

Bd

⎡

⎣

d
∑

i,j=1

ai,j (x)
∂ψ
(x)

∂xi

∂ψk(x)

∂xj

+ γ (x)ψ
 (x)ψk (x)

⎤

⎦ dx

=
∫

Bd

f

(

x,

Nn
∑


=1

α
ψ
 (x)

)

ψk(x) dx, k = 1, . . . , Nn.

(11)

As notation, we generally use the variable x when considering B
d and the variable s

when considering �.
To obtain a space for approximating the solution u of (1)–(2), proceed as follows.

Denote by 	d
n, the space of polynomials in d variables that are of degree ≤ n: p∈ 	d

n

if it has the form

p(x) =
∑

|i|≤n

aix
i1
1 x

i2
2 . . . x

id
d ,

i = (i1, . . . , id), |i| = i1 + · · · id . As the approximation space over Bd , choose

Xn =
{(

1 − |x|2
)

p(x) | p∈ 	d
n

}

⊆ H 1
0

(

B
d
)

(12)

Let Nn = dimXn = dim 	d
n. For d = 2, Nn = (n + 1) (n + 2) /2. Practical

implementation of the numerical method (9)–(11) is discussed in Section 4.

2.1 Transformation of the domain �

For the more general problem (1)–(2) over a general region �, we reformulate it as
a problem over Bd . Begin by reviewing some ideas from [2], to which the reader is
referred for additional details.

Assume the existence of a function

� : Bd 1−1−→
onto

� (13)

with � a twice-differentiable mapping, and let � = �−1 : �
1−1−→
onto

B
d
. For v ∈

L2 (�), let

ṽ(x) = v (� (x)) , x ∈ B
d

(14)

and conversely for ṽ ∈ L2
(

B
d
)

,

v(s) = ṽ (� (s)) , s ∈ �. (15)

Assuming v ∈ H 1 (�), it is straightforward to show

∇x ṽ (x) = J (x)T ∇sv (s) , s = �(x)
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with J (x) the Jacobian matrix for � over the closed unit ball B
d
,

J (x) ≡ (D�) (x) =
[

∂�i(x)

∂xj

]d

i,j=1
, x ∈ B

d
. (16)

To use our method for problems over a region �, it is necessary to know explicitly
the functions � and J . The creation of such a mapping � is taken up in [5] for cases
in which only a boundary mapping is known, from S

d−1 ≡ ∂Bd to ∂�, a common
way to define the region �.

Assume
det J (x) �= 0, x ∈ B

d
. (17)

Similarly,
∇sv(s) = K(s)T∇x ṽ(x), x = �(s)

with K(s) the Jacobian matrix for � over �. By differentiating the identity

� (� (x)) = x, x ∈ B
d

it follows that
K (� (x)) = J (x)−1 .

Assumptions about the differentiability of ṽ (x) can be related back to assumptions
on the differentiability of v(s) and �(x).

Lemma 1 Let � ∈ Cm
(

B
d
)

. If v ∈ Ck
(

�
)

, then ṽ ∈ Cq
(

B
d
)

with q =
min {k, m}. Similarly, if v ∈ Hk (�), then ṽ ∈ Hq

(

B
d
)

.

A proof is straightforward using (14). A converse statement can be made as regards
ṽ, v, and � in (15). Moreover, the differentiability of � over Bd is exactly the same
as that of � over �.

2.2 Reformulation from � to B
d

Applying this transformation to the equation (1), it follows that

−
d

∑

i,j=1

∂

∂xi

(

det (J (x)) ãi,j (x)
∂ũ(x)

∂xj

)

+ γ̃ (x) ũ(x)

= ˜f (x, ũ(x)) , x ∈ B
d, (18)

where

˜f (x, ũ(x)) = det (J (x)) f (� (x) , ũ(x)) , x ∈ B
d (19)

γ̃ (x) = det (J (x)) γ (� (x)) (20)

and

˜A (x) = J (x)−1 A(� (x))J (x)−T

≡ [

ãi,j (x)
]d

i,j=1 . (21)
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A derivation of this is given in [2, Thm. 3]. With (18), also impose the Dirichlet
condition

ũ(x) = 0, x ∈ B
d . (22)

The problem of solving (18)–(22) is completely equivalent to that of solving
(1)–(2). Also, the differential operator in (18) will be strongly elliptic. As noted ear-
lier, the creation of such a mapping � is discussed at length in [5] for extending a
boundary mapping ϕ : Sd−1 → ∂� to a mapping � satisfying (13) and (17).

3 Error analysis

In [14], Osborn converted a finite element method for solving an eigenvalue problem
for an elliptic partial differential equation to a corresponding numerical method for
approximating the eigenvalues of a compact integral operator. He then used results
for the latter to obtain convergence results for his finite element method. We use his
construction to convert the numerical method for (8) to a corresponding method for
finding a fixed point of a completely continuous nonlinear integral operator, and this
latter numerical method will be analyzed using the results given in [12, Chap. 3] and
[1].

Important results about polynomial approximation have been given recently by
Li and Xu [10], and they are critical to our convergence analysis.

Theorem 2 (Li and Xu) Let r ≥ 2. Given v ∈ Hr
(

B
d
)

, there exists a sequence of
polynomials pn∈ 	d

n such that

‖v − pn‖H 1(Bd) ≤ εn,r ‖v‖Hr(Bd) , n ≥ 1. (23)

The sequence εn,r = O
(

n−r+1
)

and is independent of v.

Theorem 3 (Li and Xu) Let r ≥ 2. Given v ∈ H 1
0

(

B
d
) ∩ Hr

(

B
d
)

, there exists a
sequence of polynomials pn ∈ Xn such that

‖v − pn‖H 1(Bd) ≤ εn,r ‖v‖Hr(Bd) , n ≥ 1. (24)

The sequence εn,r = O
(

n−r+1
)

and is independent of v.

These two results are Theorems 4.2 and 4.3, respectively, in [10]. For the second
theorem, also see the comments immediately following [10, Thm. 4.3].

For the convergence analysis, we follow closely the development in Osborn [14,
Section 4(a)]. We omit the details, noting only those different from [14, Section 4(a)].
Taking f to be a given function in L2

(

B
d
)

, the element u ∈ H 1
0 (�) for which

A (u, w) = (f,w) , ∀w ∈ H 1
0 (�) ,

can be written as u = T f with T : L2
(

B
d
) → H 1

0

(

B
d
) ∩ H 2

(

B
d
)

and bounded,

‖T f ‖H 2(Bd) ≤ C ‖f ‖L2(Bd) , f ∈ L2

(

B
d
)

.
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The operator is the ‘Green’s integral operator’ for the associated Dirichlet problem.
More generally, for r ≥ 0, T : Hr

(

B
d
) → H 1

0

(

B
d
) ∩ Hr+2

(

B
d
)

,

‖T f ‖Hr+2(Bd) ≤ Cr ‖f ‖Hr(Bd) , f ∈ Hr
(

B
d
)

.

In addition, T is a compact operator on L2
(

B
d
)

into H 1
0

(

B
d
)

, and more generally, it
is compact from Hr

(

B
d
)

into H 1
0

(

B
d
)∩Hr+1

(

B
d
)

. With our assumptions, T is self-
adjoint on L2

(

B
d
)

, although Osborn allows more general non-symmetric operators
L. The same argument is applied to the numerical method (9) to obtain a solution
un = Tnf with Tn having properties similar to T and also having finite rank with
range in Xn.

The major assumption of Osborn is that his finite element method satisfies an
approximation inequality (see [14, (4.7)]), and the above theorems of Li and Xu are
the corresponding statements for our numerical method. The argument in [14, Section
4(a)] then shows

‖T − Tn‖L2→L2
≤ c

n2
. (25)

Our variational problems (8) and (9) can now be reformulated as

u = T F (u) , (26)

un = TnF (un) , (27)

and we regard these as equations on some subset of L2
(

B
d
)

, dependent on the
form of the function f defining F . The operator F of (7) is sometimes called the
Nemytskii operator; see [12, Chap. 1, Section 2] for its properties.

It is necessary to assume that F is defined and continuous over some open subset
D ⊆ L2

(

B
d
)

:

v ∈ D =⇒ f (·, v) ∈ L2
(

B
d
)

,

vn → v inL2
(

B
d
) =⇒ f (·, vn) → f (·, v) inL2

(

B
d
)

.
(28)

These are somewhat restrictive. As an example in one variable, if b (·, v) = v2 and
if v ∈ L2 (0, 1) then b (·, v) may not belong to L2 (0, 1). The function v (s) ≡ 1/ 3

√
s

is in L2 (0, 1), whereas v (s)2 = 1/
3
√

s2 does not belong to L2 (0, 1). An analysis of
when (28) is true can be based on [13]. Generally, if f (·, v) is bounded by a linear
function of v, then (28) is true. Experimentally, the spectral method (9) works well
for cases with f (·, v) increasing at greater than a linear rate in v.

The operators T and Tn are linear, and the Nemytskii operator F provides the
nonlinearity. The reformulation (26)–(27) can be used to give an error analysis of the
spectral method (9). The mapping T F is a compact nonlinear operator on an open
domain D of a Banach space X , in this case L2

(

B
d
)

. Let V ⊆ D be an open set
containing an isolated fixed point solution u∗ of ( 26). We can define the index of
u∗ (or more properly, the rotation of the vector field v − T F (v) as v varies over the
boundary of V ); see [12, part II].

More generally, let K be a completely continuous operator, and let it have an
isolated fixed point u∗ of nonzero index. This fixed point is stable in the sense that
small compact perturbations of K, say ˜K, lead to one or more fixed points for ˜K
with those fixed points all close to u∗. For an overview of the concepts of index
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and rotation, see [1, Properties P1-P5, pp. 801-802]. Property P4 gives a way of
computing the index of u∗, and Property P5 gives further intuition as to the stability
implications of a fixed point having a nonzero index.

Theorem 4 Assume the problem (8) with � = B
d has a solution u∗ that is unique

within some open neighborhood V of u∗; further assume that u∗ has nonzero index.
Then for all sufficiently large n, (9) has one or more solutions un within V , and all
such un converge to u∗ as n → ∞.

Proof This is an application of the methods of [12, Chap. 3, Sec. 3] or [1, Thm. 3].
A sufficient requirement is the norm convergence of Tn to T , given in (25); [1, Thm.
3] uses a weaker form of (25).

The most standard case of a nonzero index involves a consideration of the Frechet
derivative of F ; see [4, §5.3]. In particular, the linear operatorF ′ (v) is given by

(

F ′ (v) w
)

(x) = ∂f (x, z)

∂z

∣

∣

∣

∣

z=v(x)

× w(x)

Theorem 5 Assume the problem (8) with � = B
d has a solution u∗ that is unique

within some open neighborhood V of u∗; and further assume that I − T F ′ (u∗) is
invertible over L2

(

B
d
)

. Then u∗ has a nonzero index. Moreover, for all sufficiently
large n, there is a unique solution u∗

n to (27) within V , and u∗
n converges to u∗ with

∥

∥u∗ − u∗
n

∥

∥

L2(Bd)
≤ c

∥

∥(T − Tn)F
(

u∗)∥
∥

L2(Bd)

≤ c

n2

∥

∥F
(

u∗)∥
∥

L2(Bd)
. (29)

Proof Again, this is an immediate application of results in [12, Chap. 3, Sec. 3] or
[1, Thm. 4].

Remark To give some intuition to our assumption that I − T F ′ (u∗) is invertible,
consider a rootfinding problem for a real-valued function f (x) with x ∈ R, letting
α denote the root being sought. Then our invertibility assumption is the analogue of
assuming f ′ (α) �= 0.

To improve upon this last result (29), we need to bound ‖(T − Tn) g‖L2(Bd) when

g ∈ Hr
(

B
d
)

for some r ≥ 1. Adapting the proof of [14, (4.9)] to our polynomial
approximations and using Theorem 3,

‖(T − Tn) g‖H 1(Bd) ≤ c

nr+1
‖g‖Hr(Bd).

Using the conservative bound

‖v‖L2(Bd) ≤ ‖v‖H 1(Bd) ,

we have
‖(T − Tn) g‖L2(Bd) ≤ c

nr+1
‖g‖Hr(Bd). (30)
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Corollary 6 For some r ≥ 0, assume F (u∗) ∈ Hr
(

B
d
)

. Then

∥

∥u∗ − u∗
n

∥

∥

L2(Bd)
≤ O

(

n−(r+1)
)

∥

∥F
(

u∗)∥
∥

Hr(Bd)
. (31)

We conjecture that this bound and (30) can be improved to O
(

n−(r+2)
)

. For the
case r = 0, an improved result is given by (29).

A nonhomogeneous boundary condition Consider replacing the homogeneous
boundary condition (2) with the nonhomogeneous condition

u (s) = g (s) , s ∈ ∂�,

in which g is a continuously differentiable function over ∂�. One possible approach
to solving the Dirichlet problem with this nonzero boundary condition is to begin by
calculating a differentiable extension of g, call it G : � → R, with

G ∈ C2 (�
)

,

G (s) = g (s) , s ∈ ∂�.

With such a function G, introduce v = u − G where u satisfies (1)–(2). Then v

satisfies the equation

Lv (s) = f (s, v(s) + G(s)) − LG (s) , s ∈ �, (32)

v (s) = 0, s ∈ ∂�. (33)

This problem is in the format of (1)–(2).
Sometimes finding an extension G is straightforward; for example, g ≡ 1 over ∂�

has the obvious extension G (s) ≡ 1. Often, however, we must compute an extension.
We begin by first obtaining an extension G using a method from [5], and then we
approximate it with a polynomial of some reasonably low degree. For example, see
the construction of least squares approximants in [3].

4 Implementation

We consider how to set up the nonlinear system of (9)–(11) and how to solve it.
Because we intend to apply the method to problems defined initially over a region �

other than B
d , we re-write (9)–(11) for this situation. The transformed equation we

are considering is the equation (18). We look for a solution

ũn (x) =
Nn
∑


=1

α
ψ
 (x) ,
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and un (s) is to be the equivalent solution considered over �: ũn (x) ≡ un (� (x)),
x ∈ B

d . The coefficients {α
|
 = 1, 2, . . . , Nn} are the solutions of

Nn
∑

k=1

αk

∫

Bd

⎡

⎣

d
∑

i,j=1

det J (x) ãi,j (x)
∂ψk(x)

∂xj

∂ψ
(x)

∂xi

+ γ̃ (x)ψk(x)ψ
(x)

+γ̃ (x)ψk(x)ψ
(x)] dx

=
∫

Bd

˜f

(

x,

Nn
∑

k=1

αkψk (x)

)

ψ
 (x) dx, 
 = 1, . . . , Nn.

(34)

For the definitions of γ̃ , ˜f , and ˜A (x) ≡ [

ãi,j (x)
]d

i,j=1, recall (19)–(21).
When solving the nonlinear system (34), it is necessary to have an initial guess

ũ
(0)
n (x) = ∑Nn


=1 α
(0)

 ψ
 (x). In our examples, we begin with a very small value

for n (say n = 1), use ũ
(0)
n = 0, and then solve (34) by some iterative method.

Then increase n, using as an initial guess the final solution obtained with a preceding
n. This has worked well in our computations, allowing us to work our way to the
solution of (34) for much larger values of n. For the iterative solver, we have used the
MATLAB program fsolve, but will work in the future on improving it.

4.1 Planar problems

The dimension of 	2
n is

Nn = 1

2
(n + 1) (n + 2) .

For notation, we replace x with (x, y). We create a basis for Xn by first choosing
an orthonormal basis for 	2

n, say
{

ϕm,k|k = 0, 1, . . . , m; m = 0, 1, . . . , n
}

. Then
define

ψm,k (x, y) =
(

1 − x2 − y2
)

ϕm,k (x, y) . (35)

How do we choose the orthonormal basis {ϕ
(x, y)}N
=1 for 	2
n? Unlike the situation

for the single variable case, there are many possible orthonormal bases over B2, the
unit disk in R

2. We have chosen one that is convenient for our computations. These
are the “ridge polynomials” introduced by Logan and Shepp [11] for solving an
image reconstruction problem. A choice that is more efficient in calculational costs
is given in [3], but we continue to use the ridge polynomials because we are re-using
and modifying computer code written previously for use in [2, 3, 6], and [7].

We summarize here the results needed for our work. For general, d ≥ 2, let

Vn =
{

P∈ 	d
n | (P,Q) = 0 ∀Q ∈ 	d

n−1

}

,

the polynomials of degree n that are orthogonal to all elements of 	d
n−1. Then

	d
n = V0 ⊕ V1 ⊕ · · · ⊕ Vn (36)

is a decomposition of 	d
n into orthonormal subspaces. It is standard to construct

orthonormal bases of each Vn and to then combine them to form an orthonormal basis
of 	d

n using this decomposition.
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For d = 2, Vn has dimension n + 1, n ≥ 0. As an orthonormal basis of Vn, we use

ϕn,k(x, y) = 1√
π

Un (x cos (kh) + y sin (kh)) , (x, y) ∈ D, h = π

n + 1
(37)

for k = 0, 1, . . . , n. The function Un is the Chebyshev polynomial of the second kind
of degree n:

Un(t) = sin (n + 1) θ

sin θ
, t = cos θ, −1 ≤ t ≤ 1, n = 0, 1, . . .

The family
{

ϕn,k

}n

k=0 is an orthonormal basis of Vn.
As a basis of 	2

n, we order
{

ϕm,k

}

lexicographically based on the ordering in (37)
and (36):

{ϕ
}Nn


=1 = {

ϕ0,0, ϕ1,0, ϕ1,1, ϕ2,0, . . . , ϕn,0, . . . , ϕn,n

}

.

From (35), the family
{

ψm,k

}

is ordered the same.

To calculate the first-order partial derivatives of ψn,k(x, y), we need U
′
n(t). The

values of U
′
n(t) and U ′

n(t) are evaluated using the standard triple recursion relations

Un+1(t) = 2tUn(t) − Un−1(t),

U
′
n+1(t) = 2Un(t) + 2tU

′
n(t) − U

′
n−1(t).

For the numerical approximation of the integrals in (34), which are over B2, the
unit disk, we use the formula

∫

B2
g(x, y) dx dy ≈ 2π

2q + 1

q
∑

l=0

2q
∑

m=0

ĝ

(

rl,
2π m

2q + 1

)

ωlrl (38)

with ĝ (r, θ) ≡ g (r cos θ, r sin θ). Here, the numbers rl and ωl are the nodes and
weights of the (q + 1)-point Gauss-Legendre quadrature formula on [0, 1]. Note that

∫ 1

0
p(x)dx =

q
∑

l=0

p(rl)ωl,

for all single-variable polynomials p(x) with deg (p) ≤ 2q + 1. The formula (38)
uses the trapezoidal rule with 2q + 1 subdivisions for the integration over B2 in the
azimuthal variable. This quadrature (38) is exact for all polynomials g ∈ 	2

2q .

4.2 The three-dimensional case

We change our notation, replacing x ∈ B
3 with (x, y, z). In R

3, the dimension of 	3
n

is

Nn =
(

n + 3

3

)

= 1

6
(n + 1) (n + 2) (n + 3) .
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Here, we choose orthonormal polynomials on the unit ball as described in [8],

ϕn,j,k(x) = 1

hn,j,k

C
j+k+ 3

2
n−j−k (x)(1 − x2)

j
2 ×

Ck+1
j

(

y√
1 − x2

)

(1 − x2 − y2)k/2C
1
2
k

(

z
√

1 − x2 − y2

)

, (39)

j, k = 0, . . . , n, j + k ≤ n, n ∈ N.

The function ϕn,j,k(x) is a polynomial of degree n, hn,j,k is a normalization con-
stant, and the functions Cλ

i are the Gegenbauer polynomials. The orthonormal base
{ϕn,j,k}n,j,k and its properties can be found in [8, Chapter 2].

We can order the basis lexicographically. To calculate these polynomials, we use
a three-term recursion whose coefficients are given in [3].

For the numerical approximation of the integrals in (34), we use a quadrature
formula for the unit ball B3,

∫

B3
g(x) dx =

∫ 1

0

∫ 2π

0

∫ π

0
ĝ(r, θ, φ) r2 sin(φ) dφ dθ dr ≈ Qq [g],

Qq [g] :=
2q
∑

i=1

q
∑

j=1

q
∑

k=1

π

q
ωj νkĝ

(

ζk + 1

2
,
π i

2q
, arccos(ξj )

)

.

Here, ĝ(r, θ, φ) = g(x) is the representation of g in spherical coordinates. For the
θ integration, we use the trapezoidal rule, because the function is 2π−periodic in θ .
For the r direction, we use the transformation

∫ 1

0
r2v(r) dr =

∫ 1

−1

(

t + 1

2

)2

v

(

t + 1

2

)

dt

2

= 1

8

∫ 1

−1
(t + 1)2v

(

t + 1

2

)

dt

≈
q

∑

k=1

1

8
ν′
k

︸︷︷︸

=:νk

v

(

ζk + 1

2

)

,

where the ν′
k and ζk are the weights and the nodes of the Gauss quadrature with q

nodes on [−1, 1] with respect to the inner product

(v, w) =
∫ 1

−1
(1 + t)2v(t)w(t) dt.

The weights and nodes also depend on q but we omit this index. For the φ direction,
we use the transformation

∫ π

0
sin(φ)v(φ) dφ =

∫ 1

−1
v(arccos(φ)) dφ ≈

q
∑

j=1

ωjv(arccos(ξj )),

where the ωj and ξj are the nodes and weights for the Gauss–Legendre quadrature on
[−1, 1]. For more information on this quadrature rule on the unit ball in R

3, see [15].
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Finally, we need the gradient to approximate the integral in (34). To do this,
one can modify the three-term recursion in [3] to calculate the partial derivatives of
ϕn,j,k(x).

5 Numerical examples

We begin with a planar example. Consider the problem

−�u (s, t) = f (s, t, u (s, t)) , (s, t) ∈ �,

u (s, t) = 0, (s, t) ∈ ∂�.
(40)

Note the change in notation, from s ∈ R
2 to (s, t) ∈ R

2.

As an illustrative region �, we use the mapping � : B2 → �, (s, t) = �(x, y),

s = x − y + ax2,

t = x + y,
(41)

with 0 < a < 1. It can be shown that � is a 1-1 mapping from the unit disk B
2
. In

particular, the inverse mapping � : � → B
2

is given by

x = 1

a

[−1 + √
1 + a (s + t)

]

y = 1

a

[

at − (−1 + √
1 + a (s + t)

)]

(42)

In Fig. 1a, the mapping for a = 0.95 is illustrated by giving the images in � of the
circles r = j/10, j = 1, . . . , 10 and the radial lines θ = jπ/10, j = 1, . . . , 20. An
alternative polynomial mapping �II of degree 2 for this region is computed using the
integration/interpolation method of [5, Section 3]; and �II = � on the boundary. ∂�

−1 −0.5 0 0.5 1 1.5 2
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−0.5

0

0.5

1

s
1

s
2

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

s
1

s
2

Fig. 1 Illustrations of mappings on B
2 for the region � given by (41)
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as defined by (41). It is illustrated in Fig. 1b. This boundary mapping �II results in
better error characteristics for our spectral method as compared to the transformation
�.

As discussed earlier, we solve the nonlinear system (34) for a lower value of the
degree n, usually with an initial guess associated with u

(0)
n = 0. As we increase n, we

use the approximate solution from a preceding n to generate an initial guess for the
new value of n. We use the MATLAB program fsolve to solve the nonlinear system.
In the future, we plan to look at other numerical methods that take advantage of the
special structure of (34). To estimate the error, we use as a true solution a numerical
solution associated with a larger value of n.

For a particular case, consider

f (s, t, z) = cos (π st)

1 + z2
. (43)

A graph of the solution is shown in Fig. 2, along with numerical results for n =
5, 6, . . . , 20, with the solution u25 taken as the true solution. We use both the mapping
� of (41) and the mapping �II . Using either of the mappings, � or �II , the graphs
indicate an exponential rate of convergence for the mappings {un}. The mapping �II

is better behaved, as can be seen by visually comparing the distortion in the graphs
of Fig. 1. This is the probable reason for the improved convergence of the spectral
method when using �II in comparison to �.

As a second planar example, we consider the stationary Fisher equation where the
function f in (40) is given by

f (s, t, u) = 100u(1 − u), (s, t) ∈ �.

Fisher’s equation is used to model the spreading of biological populations, and from
f , we see that u = 0 and u = 1 are stationary points for the time-dependent equation
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Fig. 2 The solution u to (40) with right side (43) and its error
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on an unbounded domain; see [9, Chap. 17]. The original Fisher equation does not
contain the term 100, but for small domains the Fisher equation might have no non-
trivial solution and the factor 100 corresponds to a scaling by a factor 10 to guarantee
the existence of a nontrivial solution on the domain �. The domain � is the interior
of the curve

ϕ(t) = (3 + cos(t) + 2 sin(t)) (cos t, sin t) . (44)

We studied this domain in earlier papers (see [5]) where we called this domain a
‘Limacon domain’. In the article [5], we also describe how we use equation (44) to

create a domain mapping � : B2 → � by two dimensional interpolation. Similar
to the previous example, we calculate the numerical solutions un for n = 1, . . . , 40,
where we use the coefficients of un−1 as a starting value u

(0)
n for n = 2, . . . , 40,

and for u
(0)
1 , we use coefficients which are non zero (all equal to 10), so the iteration

of fsolve does not converge to the trivial solution. As a reference solution, we
calculated u45; see Fig. 3.

The shape of the solution is very much like we expect it, the function is close to 1
inside the domain � and drops off very steeply to the boundary value 0. By looking
at the reference solution in Fig. 3, we also see that the function will be harder to
approximate by polynomials than the function in the previous example, because of
the sharp drop off. This becomes clear when we look at the convergence, also shown
in Fig. 3. The final error is in the range of 10−3–10−4 with a polynomial degree of
40, so the error is in the same range as in the previous example where we only used
polynomials up to degree 20 for the approximation. Still the graph suggests that the
convergence is exponential as predicted by (31) for the L2 norm.

6420
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Fig. 3 The reference solution and maximum error for Fisher’s equation
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Fig. 4 For the problem (46), the convergence of the errors ‖u − un‖∞

A three-dimensional example In the following, we present a three-dimensional

example. We use the mapping � : B3 → �, (s, t, v) = �(x, y, z), defined by

s = x − y + ax2,

t = x + y,

v = 2z + bz2,

(45)

where a = b = 0.5. We have used this mapping in a previous article, see [2], where
one finds plots of the surface ∂�. On �, we solve

−�u (s, t, v) = f (s, t, v, u (s, t, v)) , (s, t, v) ∈ �

u (s, t, v) = 0, (s, t, v) ∈ ∂�
(46)

where f is defined by

f (s, t, v, u) = cos(6x + y + z)

1 + u2
, (s, t, v) ∈ �.

We calculated approximate solutions u1, . . . , u20 and used u25 as a reference solu-

tion. In Fig. 4, we see the convergence in the maximum norm on a grid in B
3
. As in

our previous examples, the graph suggests that we have exponential convergence.

In our final Fig. 5, we show the graph of the reference solution u25 on B
3 ∩ Pν

where Pν is a plane in R
3 normal to the vector ν. We have used several normal

vectors ν1 = (0, 0, 1)T , so Pν1 is the xy–plane, ν2 = (0, 0, 1)T , so Pν2 is the xz–
plane, ν3 = (1, 0, 0)T , so Pν3 is the yz–plane, and ν4 = (1, 1, 1)T , so Pν4 is a
diagonal plane. Figure 5 shows that the solution reflects the periodic character of the
nonlinearity f . In the yz–plane, the oscillation of f is much slower which is also
visible in the plot along the yz–plane.
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Fig. 5 The solution ũ (x, y, z) over P ∩B
3 with P a plane passing through the origin and orthogonal to ν

6 A Neumann boundary value problem

Consider the boundary value problem

− �u (s) + γ (s) u (s) = f (s, u(s)) , s ∈ �, (47)

∂u (s)

∂ns

= 0, s ∈ ∂�, (48)
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with ns the exterior unit normal to ∂� at the boundary point s. Later, we discuss
an extension to a nonzero normal derivative over ∂�. A necessary condition for the
unknown function u∗ to be a solution of (47)–(48) is that it satisfy

∫

�

f
(

s, u∗ (s)
)

ds =
∫

�

γ (s) u∗ (s) ds. (49)

With our assumption that (47)–(48) has a locally unique solution u∗, (49) is satisfied.
Proceed in analogy with the earlier treatment of the Dirichlet problem. Use

integration by parts to show that for arbitrary functions u ∈ H 2 (�) , v ∈ H 1 (�),
∫

�

v(s) [−�u(s) + γ (s)u] ds

=
∫

�

[�u(s) · �v(s) + γ (s)u(s)v(s)] ds −
∫

∂�

v (s)
∂u(s)

∂ns

ds. (50)

Introduce the bilinear functional

A (v1, v2) =
∫

�

[�v1(s) · �v2(s) + γ (s)v1(s)v2(s)] ds.

The variational form of the Neumann problem (47)–(48) is as follows: find u ∈
H 1 (�) such that

A (u, v) = (F (u) , v) , ∀v ∈ H 1 (�) (51)

with, as before, the operator F defined by

(F (u)) (s) = f (s, u (s)).

The theory for (51) is essentially the same as for the Dirichlet problem in its
reformulation (8).

Because of changes that take place in the normal derivative under the transfor-
mation s = �(x), we modify the construction of the numerical method. In the
actual implementation, however, it will mirror that for the Dirichlet problem. For the
approximating space, let

Xn =
{

q | q ◦ � = p for somep ∈ 	d
n

}

.

For the numerical method, we seek u∗
n ∈ Xn for which

A
(

u∗
n, v

) = (

F
(

u∗
n

)

, v
)

, ∀v ∈ Xn. (52)

A similar approach was used in [6] for the linear Neumann problem.
To carry out a convergence analysis for (52), it is necessary to compare conver-

gence of approximants in Xn to that of approximants from 	d
n. For simplicity in

notation, we assume � ∈ C∞
(

B
d
)

. Begin by referring to Lemma 1 and its discus-

sion in Section 2.1, linking differentiability in Hm (�) and Hm
(

B
d
)

. In particular,
for m ≥ 0,

c1,m ‖v‖Hm(�) ≤ ‖̃v‖Hm(Bd) ≤ c2,m ‖v‖Hm(�) , v ∈ Hm (�) , (53)

with ṽ = v ◦ �, with constants c1,m, c2,m > 0.
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Also recall Theorem 2 concerning approximation of functions ṽ ∈ Hr
(

B
d
)

and
link this to approximation of functions v ∈ Hr (�).

Lemma 7 Let � ∈ C∞
(

B
d
)

. Assume v ∈ Hr (�) for some r ≥ 2. Then there exist

a sequence qn ∈ Xn, n ≥ 1, for which

‖v − qn‖H 1(�) ≤ εn,r ‖v‖Hr(�) , n ≥ 1. (54)

The sequence εn,r = O
(

n−r+1
)

and is independent of v.

Proof Begin by applying Theorem 2 to the function ṽ (x) = v (� (x)). Then there is
a sequence of polynomials pn∈ 	d

n for which

‖̃v − pn‖H 1(Bd) ≤ εn,r ‖̃v‖Hr(Bd) , n ≥ 1.

Let qn = pn ◦ �−1. The result then follows by applying (53).

The theoretical convergence analysis now follows exactly that given earlier for the
Dirichlet problem. Again, we use the construction from [14, Section 4(a)], but now
use the integral operator T arising from the zero Neumann boundary condition. As
with the Dirichlet problem, it is necessary to have A be strongly elliptic, and for that
reason and without any loss of generality, assume

min
s∈�

γ (s) > 0.

The solution of (51) can be written as u = T F (u) with T : L2
(

B
d
) → H 2

(

B
d
)

and bounded. Use Theorem 2 in place of Theorem 3 for polynomial approximation
error, as in the derivation of (29). Theorems 4 and 5, along with Corollary 6 are valid
for the spectral method for the Neumann problem (47)–(48).

6.1 Implementation

As in Section 4, we look for a solution to (51) by looking for

un (s) =
Nn
∑


=1

α
ψ
 (s) (55)

with {ψ
 | 1 ≤ j ≤ Nn} a basis for Xn. The system associated with (51) that is to be
solved is

Nn
∑


=1

α


∫

�

⎡

⎣

d
∑

i,j=1

ai,j (s)
∂ψ
(s)

∂si

∂ψk(s)

∂sj
+ γ (s) ψ
 (s) ψk (s)

⎤

⎦ ds

=
∫

�

f

(

s,

Nn
∑


=1

α
ψ
 (s)

)

ψk(s) ds, k = 1, . . . , Nn.

(56)
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For such a basis {ψ
}, we begin with an orthonormal basis for 	n, say {ϕj | 1 ≤
j ≤ Nn}, and then define

ψ
 (s) = ϕ
 (x) with = �(x) , 1 ≤ 
 ≤ N.

The function ũn (x) ≡ un (� (x)), x ∈ B
d ,is to be the equivalent solution considered

over B
d . Using the transformation of variables s = �(x) in the system (56), the

coefficients {α
|
 = 1, 2, . . . , Nn} are the solutions of

Nn
∑

k=1

αk

∫

Bd

⎡

⎣

d
∑

i,j=1

ãi,j (x)
∂ϕk(x)

∂xj

∂ϕ
(x)

∂xi

+ γ (� (x))ϕk(x)ϕ
(x)

⎤

⎦ det J (x) dx

=
∫

Bd

f

(

x,

Nn
∑

k=1

αkϕk (x)

)

ϕ
 (x) det J (x) dx, 
 = 1, . . . , Nn.

(57)
For the equation (47), the matrix A (s) is the identity, and therefore from (21),

˜A (x) = J (x)−1 J (x)−T .

The system (57) is much the same as (34) for the Dirichlet problem, differing only
by the basis functions being used for the solution ũn. We use the same numerical
integration as before, and also the same orthonormal basis for 	d

n.

6.2 Numerical example

Consider the problem

−�u (s, t) + u (s, t) = f (s, t, u (s, t)) , (s, t) ∈ �,
∂u (s)

∂ns

= 0, (s, t) ∈ ∂�,
(58)

with � the elliptical region

( s

a

)2 +
(

t

b

)2

≤ 1.

The mapping of B2 onto � is simply

�(x, y) = (ax, by) , (x, y) ∈ B
2
.

As before, note the change in notation, from s ∈ � to (s, t) ∈ �, and from x ∈ B
2 to

(x, y) ∈ B
2.

The right side f is given by

f (s, t, u) = −eu + f1 (s, t) (59)

with the function f1 determined from the given true solution and the equation (58) to
define f (s, t, u). In our case,

u (s, t) =
(

1 −
( s

a

)2 −
(

t

b

)2
)2

cos
(

2s + t2
)

. (60)

Easily this has a normal derivative of zero over the boundary of �.
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Fig. 6 The solution u to (58) with right side (59) and true solution (60)

The nonlinear system (57) was solved using fsolve from MATLAB, as earlier in
Section 5. Our region � uses (a, b) = (2, 1). Figure 6 contains the approximate solu-
tion for n = 18 and also shows the maximum error over �. Again, the convergence
appears to be exponential.

6.3 Handling a nonzero Neumann condition

Consider the problem

− �u (s) + γ (s) u (s) = f (s, u(s)) , s ∈ �, (61)

∂u (s)

∂ns

= g(s), s ∈ ∂� (62)

with a nonzero Neumann boundary condition. Let u∗ (s) denote the solution we are
seeking. A necessary condition for solvability of (61)–(62) is that

∫

�

f
(

s, u∗ (s)
)

ds =
∫

�

γ (s) u∗ (s) ds −
∫

∂�

g (s) ds. (63)

There are at least two approaches to extending our spectral method to solve this
problem.

First, consider the problem

− �v (s) = c0, s ∈ �, (64)

∂v (s)

∂ns

= g(s), s ∈ ∂�, (65)

with c0 a constant. From (63), solvability of (64)–(65) requires
∫

�

c0 ds = −
∫

∂�

g (s) ds (66)
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to be satisfied. To achieve this, choose

c0 = −1

Vol (�)

∫

∂�

g (s) ds.

A solution v∗ (s) exists, although it is not unique. The solution of (64)–(65) can be
approximated using the method given in [6]. Then introduce

w = u − v∗.
Substituting into (61)–(62), the new unknown function w∗ satisfies

−�w (s)+γ (s)w (s) = f
(

s, w(s) + v∗ (s)
)−γ (s) v∗ (s)−c0, s ∈ �, (67)

∂w (s)

∂ns

= 0, s ∈ ∂�. (68)

The methods of this section can be used to approximate w∗, and then use u∗ =
w∗ + v∗.

A second approach is to use (50) to reformulate (61)–(62) as the problem of
finding u = u∗ for which

A (u, v) = (F (u) , v) + 
 (v) , ∀v ∈ H 1 (�) (69)

with


 (v) =
∫

∂�

v (s) g (s) ds.

Thus, we seek

un (s) =
Nn
∑


=1

α
ψ
 (s)

for which
A (un, v) = (F (u) , v) + 
 (v) , ∀v ∈ Xn. (70)

The first approach, that of (61)–(68), is usable, and the convergence analysis fol-
lows from combining this paper’s analysis with that of [6]. Unfortunately, we do
not have a convergence analysis for this second approach, that of (69)–(70), as the
Green’s function approach of this paper does not seem to extend to it.
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12. Krasnoseľskii, M.: Topological methods in the theory of nonlinear integral equations. Pergamon Press

(1964)
13. Marcus, M., Mizel, V.: Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Rat.

Mech. Anal. 45, 294–320 (1972)
14. Osborn, J.: Spectral approximation for compact operators. Math. Comput. 29, 712–725 (1975)
15. Stroud, A.: Approximate calculation of multiple integrals. Prentice-Hall, Inc. (1971)
16. Zeidler, E.: Nonlinear functional analysis and its applications: II/B. Springer-Verlag (1990)


	A spectral method for nonlinear elliptic equations
	Abstract
	Introduction
	A spectral method
	Transformation of the domain 
	Reformulation from  to Bd

	Error analysis
	A nonhomogeneous boundary condition

	Implementation
	Planar problems
	The three-dimensional case

	Numerical examples
	A three-dimensional example

	A Neumann boundary value problem
	Implementation
	Numerical example
	Handling a nonzero Neumann condition

	References


