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Abstract We present a preconditioner for saddle point problems. The proposed pre-
conditioner is extracted from a stationary iterative method which is convergent under
a mild condition. Some properties of the preconditioner as well as the eigenvalues
distribution of the preconditioned matrix are presented. The preconditioned system is
solved by a Krylov subspace method like restarted GMRES. Finally, some numerical
experiments on test problems arisen from finite element discretization of the Stokes
problem are given to show the effectiveness of the preconditioner.
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1 Introduction

We study the solution of the system of linear equations with the following block 2×2
structure

Au =
[

A BT

−B 0

][
x

y

]
=

[
f

g

]
≡ b, (1.1)
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where A ∈ R
n×n is a symmetric positive definite matrix, B ∈ R

m×n with rank(B) =
m < n. In addition, x, f ∈ R

n, and y, g ∈ R
m. We also assume that the matrices

A and B are large and sparse. According to Lemma 1.1 in [13], the matrix A is
nonsingular. Such systems are called saddle point problems and appear in a variety of
scientific and engineering problems; e.g., computational fluid dynamics, constrained
optimization, etc. The readers are referred to [3, 14] for more discussion on this
subject.

Several efficient iterative methods have been proposed during the recent decades
to solve the saddle point problems (1.1), such as SOR-like method [24], modified
block SSOR iteration [1, 2], generalized SOR method [10], Uzawa method [28],
parametrized inexact Uzawa methods [11], Hermitian and skew-Hermitian splitting
(HSS) iteration methods [4, 7, 8], and so on. However, in some situations, these iter-
ative methods may be less efficient than the Krylov subspace methods [28]. On the
other hand, when Krylov subspace methods are applied to the saddle point problem
(1.1), tend to converge slowly. But these methods can produce suitable precondi-
tioners for accelerating the rate of convergence of the Krylov subspace methods. In
general, favorable rates of convergence of Krylov subspace methods are often associ-
ated with a clustering of most of the eigenvalues of preconditioned matrices around 1
and away from zero [12]. In view of this, many preconditioners have been presented
in literature, e.g., block diagonal preconditioners [26, 30], constraint preconditioners
[9, 25], block triangular preconditioners [6, 18, 29, 31], parametrized block triangular
preconditioners [23], and HSS preconditioners [8, 13, 27].

In [7], Bai et al. proposed the HSS iteration method to solve non-Hermitian pos-
itive definite linear systems Ax = b which converges unconditionally to the unique
solution of the system. For a given initial guess x0, the HSS iteration can be written
as {

(αI + H) xk+ 1
2 = (αI − S) xk + b,

(αI + S) xk+1 = (αI − H) xk+ 1
2 + b,

k = 0, 1, 2, . . . , (1.2)

where α > 0 and A = H + S, in which H = (A + A∗)/2 and S = (A − A∗)/2,
where A∗ denotes the conjugate transpose of A.

Benzi and Golub in [13] have applied the HSS iteration method to the general-
ized saddle point problem (saddle point problems with nonzero (2, 2)-block). As they
mentioned, the convergence of the method to solve the saddle point problem is typi-
cally too slow for the method to be competitive. For this reason, they proposed using
a nonsymmetric Krylov subspace method like the GMRES algorithm or its restarted
version to accelerate the convergence of the iteration. Since the method has promising
performance and elegant mathematical properties, it has attracted many researchers
attention and many algorithmic variants and theoretical analysis of the HSS iteration
for saddle point problems have been presented. In [5], Bai et al. investigated the con-
vergence properties of the HSS iteration for the saddle point problem (1.1) with A

being non-Hermitian and positive semidefinite. In [15], Benzi and Guo proposed a
dimensional split (DS) preconditioner for the Stokes and the linearized Navier-Stokes
equations. The DS preconditioner is extracted from an HSS iteration method based
on the dimensional splitting of A. A modification of the DS preconditioner has been
presented by Cao et al. in [17]. Benzi et al. have presented a relaxed version of DS
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in [16]. Some variants of the HSS preconditioner including their relaxed versions
have also been presented in the literature (see, e.g., [19, 22, 32]). In this paper, we
present a new preconditioner which can be considered as a relaxed version of the
HSS preconditioner for the saddle point problem.

Throughout the paper, for a matrix X, ρ(X) and X∗ stand for the spectral radius
and conjugate transpose of X, respectively. For a vector x ∈ C

n, ‖x‖2 denotes the
Euclidian norm of x. For a given matrix A ∈ R

n×n and a vector r ∈ R
n, the Krylov

subspace Km(A, r) is defined as Km(A, r) = span{r, Ar, . . . , Am−1r}.
This paper is organized as follows. In Section 2, we present our preconditioner.

Some properties of the preconditioner are presented in Section 3. Implementation
of the proposed preconditioner is presented in Section 4. Numerical experiments are
given in Section 5. The paper is ended by some concluding remarks in Section 6.

2 A review of the HSS preconditioner and its relaxed version

In this section, we first briefly review the HSS iteration method and the induced
HSS preconditioner for the saddle point problem. Then, a relaxed version of the HSS
(RHSS) preconditioner, proposed by Cao et al. in [19], is presented. Next, we give a
new relaxed HSS (REHSS) preconditioner and investigate some of its properties.

2.1 The HSS preconditioner for the saddle point problem

According to the HSS iteration, the matrix A is split as

A = H + S,

where

H = 1

2

(
A + AT

)
=

[
A 0
0 0

]
and S = 1

2

(
A − AT

)
=

[
0 BT

−B 0

]
.

Obviously, both of the matrices αI +H and αI +S are nonsingular. In this case, the
HSS iteration for the saddle point problem (1.1) is written as{

(αI + H) xk+ 1
2 = (αI − S) xk + b,

(αI + S) xk+1 = (αI − H) xk+ 1
2 + b.

(2.1)

Computing xk+ 1
2 from the first equation and substituting it in the second equation

yields the iteration
xk+1 = �HSSxk + c,

where
�HSS = (αI + S)−1 (αI − H) (αI + H)−1 (αI − S) ,

and
c = 2α (αI + S)−1 (αI + H)−1 b.

It is known that there is a unique splitting A = Mα − Nα , with Mα being
nonsingular, which induces the iteration matrix �HSS , i.e.,

�HSS = M−1
α Nα = I − M−1

α A,
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where

Mα = 1

2α
(αI + H) (αI + S) , Nα = 1

2α
(αI − H) (αI − S) . (2.2)

Benzi et al. in [13] have shown that for all α > 0, the HSS iteration is convergent
unconditionally to the unique solution of the saddle point problem (1.1). As we know,
the HSS iteration serves the preconditioner Mα for the system (1.1) which is called
the HSS preconditioner. Since the pre-factor 1

2α in the HSS preconditioner Mα has
no effect on the preconditioned system, the HSS preconditioner can be written in the
form

PHSS = 1

α
(αI + H) (αI + S) = 1

α

[
A + αI 0

0 αI

][
αI BT

−B αI

]

=
[

A + αI BT + 1
α
ABT

−B αI

]
. (2.3)

The difference between the HSS preconditioner PHSS and the coefficient matrixA is

RHSS = PHSS − A =
[

αI 1
α
ABT

0 αI

]
. (2.4)

2.2 The RHSS preconditioner

From (2.4), we see that as α tends to zero, the diagonal blocks tend to zero while the
nonzero off-diagonal block becomes unbounded. Hence, it is sought an appropriate α

to balance the weight of both parts. To do so, Cao et al. in [19] consider the following
relaxed HSS (RHSS) preconditioner for the saddle point problem (1.1)

PRHSS = 1

α

[
A 0
0 αI

][
αI BT

−B 0

]
=

[
A 1

α
ABT

−B 0

]
. (2.5)

In this case, the difference between the RHSS preconditioner and the matrix A is
given by

RRHSS = PRHSS − A =
[
0

(
1
α
A − I

)
BT

0 0

]
. (2.6)

Here, we see that as the parameter α tends to zero, the (1, 2)-block of RRHSS

becomes unbounded.
From (2.6), we have A = PRHSS − RRHSS which produces the RHSS iteration

PRHSSxk+1 = RRHSSxk + b, k = 0, 1, . . . ,

where x0 is an initial guess. Hence, the iteration matrix of the RHSS iteration is
given by �RHSS = P−1

RHSSRRHSS . In [19], it was shown that ρ (�RHSS) < 1 for all
0 < α < 2

μ1
and the optimal value of α is αopt = 2/(μ1+μm), whereμ1 and μm are,

respectively, the largest and smallest eigenvalues of the matrix
(
BBT

)−1 (
BA−1BT

)
.



Numer Algor (2017) 74:781–795 785

3 The REHSS preconditioner

As we mentioned when α tends to zero, the (1, 2)-block in both of the matrices
RHSS and RRHSS become unbounded. To overcome this problem, we consider the
following splitting for the matrix A as

A = PREHSS − RREHSS =
[

A ABT

−B αI

]
−

[
0 (A − I )BT

0 αI

]
, (3.1)

where α > 0. As α tends to zero the (2, 2)-block of RREHSS tends to zero and
in contrast with the HSS and the RHSS preconditioners the (1, 2)-block remains
bounded. This means that, for small values of α the REHSS preconditioner should
be closer to the coefficient matrix A than the HSS and the RHSS preconditioners.

From the REHSS splitting (3.1), we state the REHSS iteration as[
A ABT

−B αI

]
uk+1 =

[
0 (A − I )BT

0 αI

]
uk +

[
f

g

]
,

to solve the saddle point problem (1.1). In this case, the iteration matrix of the REHSS
iteration is given by

�REHSS = P−1
REHSSRREHSS =

[
A ABT

−B αI

]−1[
0 (A − I )BT

0 αI

]
. (3.2)

The next theorem provides a sufficient condition for the convergence of the REHSS
iteration.

Theorem 1 Let Q = B
(
1
2A

−1 − I
)

BT . If δ = λmax(Q), then for every α >

max{δ, 0}, it holds that ρ(�REHSS) < 1.

Proof We have

PREHSS = M1M2 =
[

A 0
0 I

][
I BT

−B αI

]
,

where

M2 =
[

I BT

−B αI

]
=

[
I 0

−B I

][
I 0
0 αI + BBT

][
I BT

0 I

]
.

Therefore,

P−1
REHSS = M−1

2 M−1
1

=
[

I −BT

0 I

][
I 0

0
(
αI + BBT

)−1

][
I 0
B I

][
A−1 0
0 I

]
(3.3)

=
[

A−1 − BT S−1BA−1 −BT S−1

S−1BA−1 S−1

]
,

where S = αI + BBT . Hence, we get

P−1
REHSSA =

[
I Ã

0 Â

]
, (3.4)
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where Ã = A−1BT − BT S−1BA−1BT and Â = S−1BA−1BT . As a result, we
obtain

�REHSS = P−1
REHSSRREHSS = P−1

REHSS (PREHSS − A)

= I − P−1
REHSSA =

[
0 −Ã

0 I − Â

]
.

Hence, if λ is an eigenvalue of the matrix �REHSS , then λ = 0 or λ = 1 − μ,
where μ is an eigenvalue of the matrix Â. Therefore, there exists a vector x �= 0 such
that

Âx =
(
αI + BBT

)−1
BA−1BT x = μx.

Without loss of generality, we assume that ‖x‖2 = 1. Since BT x �= 0, we have

μ = x∗BA−1BT x

α + x∗BBT x
> 0.

Hence, |λ| < 1 if and only if

x∗BA−1BT x

α + x∗BBT x
< 2.

which is equivalent to

α > x∗B
(
1

2
A−1 − I

)
BT x = x∗Qx. (3.5)

Therefore, a sufficient condition to have |λ| < 1 is

α > max‖x‖2=1
x∗Qx = λmax(Q) = δ.

It is necessary to mention that the matrix Q is symmetric and hence all of its
eigenvalues are real.

Corollary 1 Assume that

λmin(A) >
1

2
κ(B)2, (3.6)

where κ(B) and λmin(A) stand for the spectral condition number and smallest
eigenvalue of A. Then, for every α > 0, it holds that ρ(�REHSS) < 1.

Proof From [28, Theorem 1.22], we have

x∗BA−1BT x ≤ λmax(A
−1)x∗BBT x ≤ 1

λmin(A)
λmax(BBT )x∗x = σmax(B)2

λmin(A)
,

x∗BBT x ≥ λmin(BBT )x∗x = σmin(B)2,
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where σmin(B) and σmax(B) stand for the smallest and largest singular values of B.
From these inequalities and (3.5), we deduce

x∗Qx = 1

2
x∗BA−1BT x − x∗BBT x ≤ 1

2

σmax(B)2

λmin(A)
− σmin(B)2 = θ.

It follows from this equation that δ ≤ θ , where δ was defined in Theorem 1. Hence,
if α > max{0, θ}, then the convergence of the REHSS iteration is achieved. Now, if
θ < 0 then for every α > 0, we get ρ(�REHSS) < 1. Obviously, θ < 0 is equivalent
to the condition (3.6).

The next theorem analyses the behavior of P−1
REHSSA.

Theorem 2 (a) For α > 0, the preconditioned matrix P−1
REHSSA has eigenvalue 1

of algebraic multiplicity at least n. The remaining eigenvalues are μi , where μi

are the eigenvalues of the m × m matrix Â = (
αI + BBT

)−1
BA−1BT .

(b) Let (μ, [x; y]) be an eigenpair of P−1
REHSSA. Then, x �= 0 and μ is either equal

to 1 or can be written as μ = (αb̂ + ĉ)/â, where

â=x∗ (
αI + BT B

)
A

(
αI + BT B

)
x, b̂ = x∗ (

BT B
)

x, ĉ = x∗ (
BT B

)2
x.

Moreover, when α → 0, then μ is either equal to 1 or

1

μmax(A)
� μ � 1

μmin(A)
,

where μmin(A) and μmin(A) are the smallest and largest eigenvalues of A,
respectively.

Proof Part (a) follows immediately from (3.4). To prove (b), let (μ, [x; y]) be an
eigenpair of P−1

REHSSA. Therefore,

A
[

x

y

]
= μPREHSS

[
x

y

]
,

which is equivalent to

Ax + BT y = μAx + μABT y,

−Bx = −μBx + μαy. (3.7)

Hence

(μ − 1) Ax + (μA − I ) BT y = 0, (3.8)

μαy = (μ − 1) Bx. (3.9)

Premultiplying both sides of (3.9) by BT yields

μαBT y = (μ − 1) BT Bx. (3.10)
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Multiplying both sides of (3.8) by μα and substituting (3.10) in it, gives

μα (μ − 1) Ax + (μA − I ) (μ − 1) BT Bx = 0.

We show that x �= 0. Otherwise, from (3.7), we get μ = 0 or y = 0. In fact, neither
of them can be zero. So x �= 0. Without loss of generality, let ‖x‖2 = 1. Hence,

μ2A
(
αI + BT B

)
x − μ

(
A

(
αI + BT B

)
+ BT B

)
x + BT Bx = 0. (3.11)

Multiplying x∗ (
αI + BT B

)
to both sides of (3.11), yields

âμ2 −
(
â + αb̂ + ĉ

)
μ +

(
αb̂ + ĉ

)
= 0.

The roots of this quadratic equation are μ = 1 and

μ = αb̂ + ĉ

â
= αb̂ + ĉ

α2x∗Ax + α
(
x∗BT BAx + x∗ABT Bx

) + x∗BT BABT Bx
.

To prove the last part of theorem, we show that if Bx = 0, then μ = 1. If Bx = 0,
then it follows from (3.9) that y = 0. Substituting this in (3.8), yields (μ−1)Ax = 0.
Now, since Ax �= 0, we conclude that μ = 1. Therefore, if α → 0, then μ = 1
or

μ = x∗ (
BT B

)2
x

x∗BT BABT Bx
= (BT Bx)∗(BT Bx)

(BT Bx)∗A(BT Bx)
= z∗z

z∗Az
,

where z = BT Bx. Since, A is symmetric positive definite we have

1

μmax(A)
� z∗z

z∗Az
� 1

μmin(A)
,

which completes the proof.

Theorem 3 The degree of the minimal polynomial of the preconditioned matrix
P−1

REHSSA is at most m + 1. Thus, the dimension of the Krylov subspace

Kn(P−1
REHSSA, b) is at most m + 1.

Proof Let χ be the characteristic polynomial of the preconditioned matrix
P−1

REHSSA. By using (3.4), we have

χ(x) = (x − 1)n
m∏

i=1

(x − μi) ,

where μi , for i = 1, . . . , m, are the eigenvalues of the matrix Â. Let

p(x) = (x − 1)
m∏

i=1

(x − μi) .
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Therefore,

p(P−1
REHSSA) =

(
P−1

REHSSA − I
) m∏

i=1

(
P−1

REHSSA − μiI
)

=
[
0 Ã

0 Â − Im

] m∏
i=1

[
(1 − μi)In Ã

0 Â − μiIm

]

=

⎡
⎢⎢⎢⎢⎣
0 Ã

m∏
i=1

(Â − μiIm)

0 (Â − Im)

m∏
i=1

(Â − μiIm)

⎤
⎥⎥⎥⎥⎦.

Since for i = 1, . . . , m, μi is an eigenvalue of the matrix Â, we have
m∏

i=1

(Â − μiIm) = 0,

and so p(P−1
REHSSA) = 0. Therefore, the degree of the minimal polynomial of

the preconditioned matrix P−1
REHSSA is at most m + 1. Hence, by [28, Proposi-

tion 6.1], the dimension of the Krylov subspace Kn(P−1
REHSSA, b) is also at most

m + 1.

4 Implementation of PREHSS

We use the restarted version of the GMRES (denoted by GMRES(m)) in conjunction
with the preconditioner PREHSS to solve the saddle point problem (1.1). At each step
of applying the preconditioner PREHSS within the GMRES(m) algorithm, we need
to compute a vector of the form z = P −1

REHSSr for a given vector r = [r1; r2] where
r1 ∈ R

n and r2 ∈ R
m. Let z = [z1; z2], where z1 ∈ R

n and z2 ∈ R
m. Now, form

(3.4), we can compute the vector z via[
z1
z2

]
=

[
I −BT

0 I

][
I 0

0
(
αI + BBT

)−1

][
I 0
B I

][
A−1 0
0 I

][
r1
r2

]
.

We can use Algorithm 1 to compute the vector z.

Algorithm 1 Computation of z = P −1
REHSSr

1. Solve Aw1 = r1 for w1.
2. Solve (αI + BBT )w2 = Bw1 + r2 for w2.
3. z2 := w2.
4. z1 := w1 − BT w2.
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Both of the matrices A and αI + BBT are symmetric positive definite. Hence,
we can solve the systems appeared in steps 1 and 2 of Algorithm 4 exactly by
the Cholesky factorization or approximately by the conjugate gradient (CG) or the
preconditioned conjugate gradient (PCG) iterative method.

5 Numerical experiments

In this section, we present some numerical experiments to illustrate the effective-
ness of the preconditioner PREHSS for the saddle point problem (1.1). The restarted
GMRES method [28] with restarting frequency 30, i.e., GMRES (30), is applied to
the left preconditioned saddle point problem (1.1) in conjunction with the precondi-
tioner PREHSS and the corresponding numerical results are compared with those of
the preconditioners PHSS and PRHSS in terms of iteration counts and CPU timings.
All runs are performed in MATLAB 2014 on an Intel core i7 (12G RAM) Windows 8
system.

In all the tests, the initial vector is set to be a zero vector and the right-hand side
vector b = [f ; g] ∈ R

n+m is chosen such that the exact solution of the saddle point
problem (1.1) is a vector of all ones. We use the stopping criterion

‖Prk‖2 � 10−12 ‖Pb‖2 ,

where rk = b − Auk is the residual at the kth iteration and P is one of the pre-
conditioners PHSS , PRHSS , or PREHSS . The maximum number of the iterations and
the maximum elapsed CPU time are set to be kmax = 500 and tmax = 3600 s,
respectively. Throughout this section, “IT” and “CPU” stand for the numbers of the
restarts in GMRES(m) and the CPU time, respectively. In all the tables, a dagger (†)
shows that the method has not converged in at most kmax iterations. Similarly, a “‡”
shows that the method has not converged after elapsing tmax seconds. At each step
of applying the preconditioners PHSS , PRHSS , and PREHSS , we need to solve two
sub-systems with symmetric positive definite coefficients matrix (see Algorithm 1
and [19, Algorithm 3.3 and Algorithm 3.4]) and all of these systems are solved by
the Cholesky factorization.

Consider the Stokes problem (see [20] or [21, page 221]){ −
u + ∇p = f,
∇.u = 0,

(5.1)

in � = [−1, 1] × [−1, 1], where �, ∇, u, and p stand for the Laplace operator,
the gradient operator, velocity, and pressure of the fluid, respectively, with suitable
boundary condition on ∂�. It is known that many discretization schemes for (5.1)
will lead to saddle point problems of the form (1.1). We consider Q2-P1 finite ele-
ment discretizations on uniform grids on the unit square of the tree standard model
problems (see [20, 21])

1. The leaky lid-driven cavity problem;
2. The channel domain problem;
3. The colliding flow problem.
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Table 1 The size of the matrices A and B for different of grids

Channel domain problem Lid driven cavity and colliding flow problem

Grid n m nnz(A) nnz(B) n m nnz(A) nnz(B)

16 × 16 578 192 6698 2084 578 190 6178 1967

32 × 32 2178 768 29,546 10,142 2178 766 28,418 9868

64 × 64 8450 3072 124,550 45,062 8450 3070 122,206 44,516

128 × 128 33,282 12,288 511,152 192,174 33,282 12,286 506,376 191,084

256 × 256 132,098 49,152 2,070,764 791,738 132,098 49,150 2,061,140 789,560

We use the IFISS software package developed by Elman et al. [20] to generate
the linear systems corresponding to 16 × 16, 32 × 32, 64 × 64, 128 × 128, and
256 × 256 meshes. The IFISS software provides the matrices Ast and Bst for the
matrices A and B, respectively. For the channel domain problem, the matrix Bst is
of full rank, but for the colliding flow and lid-driven cavity problem is rank deficient.
Therefore, in these cases, we drop two first rows of Bst to get a full rank matrix.
Generic information of the test problems, including n, m, nnz(A) and nnz(B), are
given in Table 1 where nnz stand for the number of the nonzero entries of a matrix.
We present the numerical results for different values of α (α = 10−4, 10−2, 1, 102).

Numerical results for the leaky lid-driven cavity, the channel domain, and the col-
liding flow problems are, respectively, presented in Tables 2, 3, and 4. In all the

Table 2 Numerical results lid driven cavity problem on 2r × 2r grid

α = 10−4 α = 10−2 α = 1 α = 102

r Preconditioner IT CPU IT CPU IT CPU IT CPU

PHSS 4 0.04 5 0.06 13 0.16 106 1.46

4 PRHSS 3 0.02 3 0.02 3 0.02 4 0.04

PREHSS 3 0.02 3 0.02 3 0.02 3 0.02

PHSS 8 0.37 9 0.45 144 8.45 † –

5 PRHSS 5 0.19 5 0.20 5 0.21 9 0.43

PREHSS 5 0.21 4 0.12 3 0.07 3 0.07

PHSS 14 3.87 47 14.21 † – † –

6 PRHSS 8 1.97 8 2.03 9 2.29 27 8.10

PREHSS 11 3.08 3 0.47 3 0.42 3 0.39

PHSS 38 76.32 † - † – † –

7 PRHSS 15 30.85 14 25.95 17 33.46 79 160.91

PREHSS 9 17.30 3 3.86 3 3.69 3 3.86

PHSS 115 2064.44 - ‡ – ‡ – ‡

8 PRHSS 37 641.50 28 471.97 38 648.74 – ‡

PREHSS 5 67.63 3 33.11 3 31.91 3 27.43
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Table 3 Numerical results for channel domain problem on 2r × 2r grid

α = 10−4 α = 10−2 α = 1 α = 102

r Preconditioner IT CPU IT CPU IT CPU IT CPU

PHSS 5 0.05 6 0.06 7 0.07 17 0.21

4 PRHSS 3 0.02 3 0.03 3 0.02 4 0.03

PREHSS 3 0.02 3 0.02 3 0.02 3 0.02

PHSS 9 0.48 10 0.50 13 0.72 47 2.84

5 PRHSS 5 0.22 5 0.22 5 0.20 9 0.47

PREHSS 5 0.21 3 0.09 3 0.07 3 0.06

PHSS 21 5.94 13 3.46 28 8.39 498 154.59

6 PRHSS 8 2.08 8 2.06 8 1.96 21 6.15

PREHSS 6 1.45 3 0.40 3 0.40 3 0.38

PHSS 48 96.57 15 28.06 83 169.45 320 1089.81

7 PRHSS 17 32.79 16 30.53 15 28.83 86 178.10

PREHSS 5 7.45 3 2.84 3 2.65 3 2.52

PHSS 169 3093.67 20 336.76 – ‡ – ‡

8 PRHSS 42 758.74 37 654.38 34 603.85 – ‡

PREHSS 4 40.52 3 24.29 3 22.11 2 16.03

Table 4 Numerical results for the colliding flow problem on 2r × 2r grid

α = 10−4 α = 10−2 α = 1 α = 102

r Preconditioner IT CPU IT CPU IT CPU IT CPU

PHSS 4 0.04 5 0.05 13 0.16 90 1.17

4 PRHSS 3 0.02 3 0.02 3 0.02 4 0.03

PREHSS 3 0.02 3 0.02 3 0.02 3 0.02

PHSS 8 0.37 9 0.43 115 7.10 † –

5 PRHSS 5 0.20 5 0.22 5 0.19 9 0.44

PREHSS 5 0.21 4 0.13 3 0.09 3 0.08

PHSS 14 3.91 53 16.24 † – † –

6 PRHSS 8 2.01 8 2.05 8 2.21 28 8.55

PREHSS 11 3.15 3 0.48 3 0.43 3 0.4

PHSS 39 87.20 † – † – † –

7 PRHSS 15 29.54 14 27.68 17 35.07 111 250.86

PREHSS 9 16.61 3 4.11 3 3.81 3 4.4

PHSS 123 2222.41 – ‡ – ‡ – ‡

8 PRHSS 39 700.77 31 548.88 38 690.25 – ‡

PREHSS 5 70.94 3 35.25 3 33.79 3 27.73
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Fig. 1 Eigenvalues distribution of the matrices A and P−1
REHSSA for the cavity problem on 32 × 32 grid

with different values of α (α = 0.01, 0.1, 1)

tables “IT” stands for the number of restarts in the GMRES(30) algorithm and “CPU”
denotes the elapsed CPU time for the convergence. As the numerical results show
almost for all the three test problems, the preconditioner PREHSS is more effective
than the preconditioners PHSS and PRHSS in terms of the iteration counts and CPU
time. The exceptions are the test problems with α = 10−4 and r = 5, 6 (see Tables 2,
3, and 4) where the results of the PRHSS preconditioner are slightly better than those
of the PREHSS preconditioner. As we see, the GMRES(30) method for the precon-
ditioned system with preconditioner PREHSS always converges, whereas it does not
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converge for other two preconditioners. Another observation which can be posed
here is that, despite preconditioners PHSS and PRHSS , the behavior of the precondi-
tioned iteration corresponding to the preconditioner PREHSS is not very sensitive to
the choice of α.

In Fig. 1, the eigenvalues distribution of the matrices A and the preconditioned
matrix P−1

REHSSA for the cavity problem on 32 × 32 grid, with different values of
α ( α = 0.1, α = 1, and α = 10) are displayed. We see that the eigenvalues of
preconditioned matrices are well-clustered.

In Fig. 2, the number of iterations and the CPU time of GMRES(30) for solving the
preconditioned system with the preconditioners PREHSS , PHSS , and PRHSS for the
channel domain problem with 128× 128 grid for different values of α are presented.
As we see, for this example, the PREHSS is superior to the preconditioners PHSS and
PRHSS , in terms of the iterations count and the CPU time.

6 Concluding remarks

We have presented a new relaxed version of the Hermitian and skew-Hermitian split-
ting preconditioner say REHSS for the saddle point problem (1.1). Some properties of
the preconditioner have been presented. From numerical point of view, the proposed
preconditioner has been compared with two recently proposed preconditioners HSS
and RHSS. Numerical results showed that the REHSS preconditioner is in general
superior to the HSS and RHSS preconditioners. Moreover, the REHSS preconditioner
is not very sensitive to the involving parameter.
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