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Abstract The problem of finding a rigid body transformation, which aligns a set of
data points with a given surface, using a robust M-estimation technique is considered.
A refined iterative closest point (ICP) algorithm is described where a minimization
problem of point-to-plane distances with a proposed constraint is solved in each iter-
ation to find an updating transformation. The constraint is derived from a sum of
weighted squared point-to-point distances and forms a natural trust region, which
ensures convergence. Only a minor number of additional computations are required
to use it. Two alternative trust regions are introduced and analyzed. Finally, numeri-
cal results for some test problems are presented. It is obvious from these results that
there is a significant advantage, with respect to convergence rate of accuracy, to use
the proposed trust region approach in comparison with using point-to-point distance
minimization as well as using point-to-plane distance minimization and a Newton-
type update without any step size control.
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1 Introduction

1.1 Survey of surface registration

Registration of surfaces that we consider is the problem of finding a rigid body trans-
formation, consisting of a rotation and translation, such that a set of data points fits
to a given surface under the transformation. Shape inspection is a common applica-
tion where a surface registration problem of this kind needs to be solved, see, e.g.,
[8, 9, 29, 53]. A set of data points representing a measured shape of an arbitrarily
oriented object is to be aligned with a computer-aided design (CAD) model, which
defines the nominal shape of the measured object. This makes it possible to identify
deviations between the measured shape and the nominal shape. Examples of shape
measurement methods for this kind of applications are found in, e.g., [11, 28, 31, 42,
43, 50]. The nominal shape defined by the CAD model is geometrically a composite
surface made up of finite simple surface-patches.

In order to find a best fit between a set of data points and a given surface, an initial
alignment is required to approximately establish a correspondence. Once an initial
alignment is determined, a refined alignment can be found using a local registration
technique. For determining the initial alignment, a global registration technique is
required to avoid ending up in a local minimum different from the global one. Global
registration techniques are typically using evaluations of various trial alignments.
Methods for reducing the number of trial alignments are discussed in, e.g., [3, 14, 18,
35]. However, we will here focus on local registration.

An algorithm that can be used to solve the local surface registration problem is the
iterative closest point (ICP) algorithm [7, 12, 41]. In general, there are two common
types of ICP-algorithms. These are based on point-to-point distance minimization [7]
and point-to-plane distance minimization [12]. The planes are the tangent planes at
the closest surface points to the data points.

The convergence for some different registration algorithms are discussed in [37].
Minimization of point-to-point distances gives an algorithm that converges to a local
minimum, and the sequence of values of the objective function over the iterations is
monotonically decreasing. Unfortunately, the asymptotic convergence is linear and
in general very slow. Minimization of point-to-plane distances using a Newton-type
update allows flat regions to slide along each other and gives quadratic asymptotic
convergence. Unfortunately, monotone convergence cannot be ensured without any
step size control procedure, where a number of evaluations of the objective function
are performed to find an appropriate step. If evaluations of the objective function are
computationally expensive, which is the case in surface registration problems, step
size control procedures will then also be expensive.

1.2 Robust estimation

Shape measurements using optical full-field methods from a single set of syn-
chronously captured images with short exposure are prone to have measurement
errors. The advantage of using these kinds of shape measurement methods is that
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the measurement can be done very quickly, which enables shape measurements of
moving objects. The disadvantage is that errors will be much more prominent. In
addition, when using optical full-field shape measurement methods the background
will be measured as well. Different filters can be used in order to more or less remove
the background from the representation of the measured shape. However, it cannot
be expected that used filters will remove all background. When processing data of
a measured shape from an optical full-field method, it is essential to use a robust
method, as considered in, e.g., [36, 41, 48, 54]. Least squares estimates are highly
sensitive to gross errors. The registration runs the risk of being spoiled by aberrant
and incorrect data if robust methods are not used.

Weighting of point-pairs is a robust registration method discussed in [19, 41]. The
method is based on assigning different weights to different point-pairs for solving a
weighted least squares problem. Lower weights are assigned to point-pairs that seem
to be outliers giving them less influence on the estimation. The weights are typically
defined from the distances between the points or some quality values of the data
points obtained from their source.

Rejection of point-pairs is a robust registration method, which is also discussed in
[41]. The rejection method is similar to weighting of point-pairs but the weights are
either one or zero. The rejected point-pairs can be point-pairs with an inner distance
greater than a given distance apart [49] or the n % of point-pairs with greatest distance
[38]. In the first case, a threshold distance must be determined and in the second
case an assumption about the amount of outliers must be done. Rejection of point-
pairs with a surface point on the boundary to the model, see [49], gives a geometry
dependent rejection method. When using a rejection method, “bad” data might be
used as “good” data and “good” data might be rejected as “bad” data.

Sparse ICP, see [10, 34], is yet another variant of a robust registration method
worth to be mentioned. It uses a sparsity inducing �p-norm formulation of the reg-
istration problem, where p ∈ [0, 1]. It is adapted for establish correspondences
between point sets representing partially overlapping scans with various degrees
of noise and outliers, and solving for the optimal transformation that brings these
correspondences into alignment.

A method using the Levenberg-Marquardt algorithm, LM-ICP, is presented in
[15]. It is applied directly on the squared sum of shortest distances, so the Levenberg-
Marquardt step is used for the update of the rigid body transformation. What is
required though is the partial derivatives of the residuals for all data points, which
either must be approximated at considerable computational cost, or estimated from
a precomputed customized data structure. A good point of the LM-ICP algorithm is
that it makes it is easy to introduce robust estimators.

M-estimation, which originates from robust statistics [23, 26, 40], is a technique
commonly used in robust regression but is also used in robust registration [27,
30, 47]. It is a generalization of least squares minimization where the squares are
replaced with a robust criterion function giving less influence of strongly deviating
data. In that way, it is very similar to the weighting of the point-pairs method but it
gives better control of the estimation since an objective function to be minimized is
defined.
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1.3 Trust region methods

Trust region is a term used in mathematical optimization to denote a subset of the
domain of an objective function, on which the objective function is approximated by
a model function, see, e.g., [2, 13, 17, 20, 45, 51]. Commonly, the model function
is a second-order approximation of the objective function. The main idea of trust
region methods originates from a modification of Newton’s method with a line search
procedure. Unlike line search procedures, where a search is carried out along a given
direction in the domain, trust region methods obtain the new iterate point by searching
in the trust region, which is normally a neighborhood of the current iterate point.

In trust region methods, a trial step is to be found where a maximal step length is
given. It is found by minimizing the model function that approximates the objective
function near the current iteration point so the step length restriction is satisfied.
That gives a trial step and by comparing the value of the objective function with its
approximation at that point, it is determined if the computed step can be accepted or
if a new trial step has to be found by changing the maximal step length.

The model function is computed at the current iteration point so it is assumed that
it approximates the objective function quite well near that point. Far away from the
current iteration point, there is no guarantee that the approximation is good enough
and that is why the trial step has to be judged so that convergence is ensured. The
problem of finding an appropriate step length is discussed in, e.g., [1, 25, 39, 52].
It is desired to determine an appropriate step length with as few evaluations of the
objective function as possible.

Applied to optimization problems, trust region methods perform often better
than Newton’s method with a line search procedure. The reason is because trust
region methods takes full advantage of the approximating model function, whereas
Newton’s method with line search utilizes only the minimizer of a second-order
approximation and a directional derivative. Trust region methods do not require
a positive definite Hessian, which is an essential property to achieve fast conver-
gence using Newton’s method. However, if the number of decision variables is
large, resolving the trust region problem can be costly, but this is not an issue in
our approach.

1.4 Proposed approach

A refined approach for updating the rigid body transformation, which combines the
advantages of the different convergence behaviors for both the point-to-point dis-
tance minimization and point-to-plane distance minimization ICP-algorithms using
a robust criterion, is proposed. The approach is a trust region method combined with
an M-estimation technique. We are describing how a better update of the transfor-
mation can be obtained than using point-to-point distance minimization but still have
the value of the objective function under control and ensure convergence.

The proposed trust region approach is to constraining the updating transformation
in its parameter space over a well-defined region, which is derived from an expression
of a sum of weighted squared point-to-point distances. A second-order approxima-
tion to a function of a sum of point-to-plane distances is minimized over the trust



Numer Algor (2017) 74:755–779 759

region for obtaining the updating transformation. A distinct difference with most of
the existing trust region methods, see, e.g., [13, 51], is that the proposed trust region
is defined from a function of the step instead of a norm of the step. The minimizer of
the sum of weighted squared point-to-point distances can be considered as a “center
point” of the proposed trust region. Convergence of the objective function is guar-
anteed without any additional function evaluations. Therefore, the sum of weighted
squared point-to-point distances forms a natural basis for defining a trust region in
registration problems.

Two different ways of bounding the proposed trust region are discussed, and that
is to use only information from the current iteration, and to use information from both
the current and the previous iteration. The significant difference with the methods
discussed in [1, 25, 39, 52] is that no additional evaluations of the objective function
is performed in order to determine the size of the trust region. Only a minor number
of additional computations are required to use it.

The robust surface registration method presented in this paper is a development of
the method presented in [5], where robust registration of arbitrary point sets is con-
sidered without any requirement of availability of surface normals. The new approach
originates from a similar but substantially improved idea where more information
about the surface is used. From an optimization point of view, much is different since
in this paper we are solving a constrained point-to-plane distance minimization prob-
lem to obtain the updating transformation, whereas in [5] a weighted least squares
problem is solved.

2 Robust registration of surfaces

2.1 Problem

The considered registration problem is to find a rigid body transformation, consisting
of a rotation matrix R ∈ R

3×3, i.e. RTR = I and det (R) = +1, and a translation
vector t ∈ R

3, such that a set of N data points, {pi}Ni=1 , fits to a set of surface points,
S, under the transformation. An M-estimate of the rigid body transformation using a
robust criterion function � : R → [0, ∞) is obtained by solving

min
R,t

f (R, t) , (1)

where

f (R, t) =
N∑

i=1

�(d(Rpi + t, S)) , (2)

and d is a distance operator defined by

d(p, S) = min
y∈S

‖p − y‖2 .

An essential property of a robust criterion function � is that it reduces undesired
influence of data with gross errors on the estimation. We make a formal definition
of a set of criterion functions Q that we are using. The derivative of � is denoted by
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ψ , i.e., ψ(r) = �′(r), which is the standard notation in robust statistics. A criterion
function � belongs to the set Q if and only if all of the following conditions are
fulfilled:

1. �(r) is an even function and C1-continuous on R, and �(0) = 0.
2. �(r) is monotonically increasing on [0, ∞).
3. ψ(r)/r is monotonically decreasing and bounded above on (0, ∞).

Since the function � is even and continuously differentiable, its derivative at zero
satisfies ψ(0) = 0 and the second derivative �′′(0) = ψ ′(0) exists for all � ∈ Q.
Criterion functions in Q are monotonically increasing on [0, ∞) so that ψ(r) ≥ 0
for all r ≥ 0.

A weight function w is defined as

w(r) =

⎧
⎪⎨

⎪⎩

ψ(r)

r
if r �= 0 ,

lim
r→0

ψ(r)

r
= ψ ′(0) if r = 0 .

(3)

From the definition of Q, it follows that the weight function w associated to � ∈ Q
is an even and non-negative function, which is bounded above and monotonically
decreasing on [0, ∞). A property of the function w is that w(r)r = ψ(r) holds for
all r ∈ R.

Cauchy’s function �Ca and Welsch’s function �We are examples of robust crite-
rion functions in Q. These functions, their derivatives, and corresponding weight
functions are as follows:

– Cauchy’s function

�Ca(r) = κ2
Ca
2 ln

(
1 +

(
r

κCa

)2
)

ψCa(r) = r

1+
(

r
κCa

)2

wCa(r) = 1

1+
(

r
κCa

)2

– Welsch’s function

�We(r) = κ2
We
2

(
1 − exp

(
− r2

κ2
We

))

ψWe(r) = r exp

(
− r2

κ2
We

)

wWe(r) = exp

(
− r2

κ2
We

)

The graphs of these criterion functions are shown in Fig. 1.
The two criterion functions have different robust properties in parameter estima-

tion with respect to handling data of occasional gross errors. Welsch’s function has
the strongest protection of high influence caused by this kind of undesired data, which
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Fig. 1 Two robust criterion functions, Cauchy’s function and Welsch’s function.

is almost excluded in the estimation. However, the protection against influence from
outliers using Cauchy’s criterion function is also strong.

To make the robust criterion functions comparable, the parameter κ is chosen in
such a way that the asymptotic variance

V (ψ, F ) =
∫

ψ2dF
( ∫

ψ ′dF
)2

,

(see, e.g., [22, 26, 32]) is close to one, given an assumption of normal distribution
N (0, 1) for the residuals. Here, F is the probability density function of the normal
distribution N (0, 1). The asymptotic variance V (ψ, F ) is always greater than one
for robust criterion functions. By choosing it to be 1.01, we get the following values
of the parameters:

κCa = 4.3040 ,

κWe = 4.7536 .
(4)

A scaling of the residuals is required to conform with the scale of the used criterion
function. That is to enable an accurate robust estimation.

2.2 Algorithm

Problem (1) using criterion functions in Q can be solved with the ICP-algorithm,
which is presented by Algorithm 1. It operates in two principal stages in each itera-
tion and that is to find the closest surface points to a set of data points, and to estimate
a rigid body transformation. The problem of finding the closest surface points is
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Algorithm 1 An ICP-algorithm using a robust criterion

Require: Data points {pi}Ni=1, surface points S and surface normals, �, ψ , ψ ′, w

Require: R(0) = I, t(0) = 0 (or a more appropriate initial rigid body transformation)
/* Operations are performed for i = 1, . . . , N */

k = 0, p(0)
i = R(0)pi + t(0)

repeat
k = k + 1
y(k−1)
i = C(p(k−1)

i , S)

wi = w
(‖p(k−1)

i − y(k−1)
i ‖2

)

if any wi > 0 then
Find an appropriate update (R†, t†) of the rigid body transformation
p(k)

i =R†p(k−1)
i + t†

R(k) =R†R(k−1)

t(k) =R†t(k−1) + t†

else /* all wi = 0 */
p(k)

i = p(k−1)
i

R(k) =R(k−1)

t(k) = t(k−1)

Terminate iterations
end if

until convergence
return R(k), t(k), {p(k)

i }Ni=1

considered in, e.g., [6, 21, 46], and the estimation of the updating rigid body transfor-
mation (R†, t†) is the main content in this paper. An initial rigid body transformation,
(R(0), t(0)), is required. In the testing phase, we use R(0) = I and t(0) = 0, but if
there is any prior knowledge that can be utilized, the algorithm benefits greatly from
it. In Algorithm 1, we use the notation C to denote a closest point operator. That is
y(k−1)
i = C(p(k−1)

i , S) is the closest surface point in S to a transformed data point,

p(k−1)
i = R(k−1)pi + t(k−1). If the closest surface point is not unique, y(k−1)

i can be
arbitrarily chosen from the set of closest surface points. The choice of termination
criterion, that is the determination when the solution is assumed to have converged,
can be done in many different ways. It depends on what is considered as a suffi-
ciently good solution. In our numerical experiments, see Section 5, we terminate the
iterations dependent of the transformation update (R†, t†). When it is close enough
to the identity transformation (I, 0), the current transformation (R(k), t(k)) and the
transformed data points are returned.

For a given criterion function � and a positive scale parameter σ∗, let �̃(r) =
�(r/σ∗) be a re-scaled criterion function. If the criterion function � is in the set Q,
then �̃ will also be in the set Q, and therefore, the problem

min
R,t

f̃ (R, t) , (5)
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Algorithm 2 Extension of Algorithm 1 using re-scaled residuals

repeat
· · ·
Estimate σk−1

wi = w
(‖p(k−1)

i − y(k−1)
i ‖2/σk−1

)

· · ·
until convergence

where

f̃ (R, t) =
N∑

i=1

�

(
d(Rpi + t, S)

σ∗

)
, (6)

can be solved using the ICP-algorithm given by Algorithm 1.
If the value of σ∗ is small and ψ is close or equal to zero for large residuals, the

criterion function �̃ will have a narrow descend at zero. It might result in a slow
convergence or convergence to a stationary point far from the global minimum, which
could even be a maximum. The remedy of this problem is to use a quite large value
of a scaling parameter σk−1, greater than σ∗, in the first iterations and then gradually
decrease its value to the desired value σ∗. An extended version of Algorithm 1 is given
by Algorithm 2, where a re-scaling of the residuals is used. In Algorithm 2, most of
the steps are the same as in Algorithm 1 and are therefore removed to make it shorter.

In [5], it is shown that the values f̃k of the objective function f̃ in (6) from iteration
k of Algorithm 2 satisfy

N∑

i=1

�

(
ri

σk

)
≤ f̃k ≤ σ 2

k

σ 2∗

N∑

i=1

�

(
ri

σk

)
, (7)

if σk ≥ σ∗ > 0 and � ∈ Q. When using re-scaled residuals, we cannot expect that
Algorithm 2 will have the same convergence properties as Algorithm 1, but if the
sequence of σk approaches to σ∗ Algorithm 2 will eventually behave like Algorithm 1,
which follows from (7).

After a scaling using an appropriate value of σk, the residuals of the “good” data,
which is the data that represents the surface quite well, that are entered into the cri-
terion function can be assumed to have approximately the same distribution in each
iteration k. For simplicity, we will not use the scaling parameter σk in the following
text until the numerical results section.

2.3 Parametrization

A rotation matrix R ∈ R
3×3 can be parameterized as

R(z) =
⎡

⎣
c2c3 s1s2c3 − c1s3 c1s2c3 + s1s3
c2s3 s1s2s3 + c1c3 c1s2s3 − s1c3
−s2 s1c2 c1c2

⎤

⎦ , (8)

where z = [z1, z2, z3, z4, z5, z6]T, and s and c with index 1,2,3 are abbreviations for
sin and cos of angles z1, z2, and z3, respectively. This parametrization of R rotates
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points in R
3 through the angle z1 about the x-axis, the angle z2 about the y-axis,

and the angle z3 about the z-axis, in that order. All rotation matrices in R
3×3 can

be represented by −π < z1, z3 ≤ π , and −π/2 ≤ z2 ≤ π/2. A translation vector
t ∈ R

3 can be parameterized as

t(z) = [z4, z5, z6]T, (9)

where z4, z5, and z6 are the translations in x, y, and z directions. Therefore, an
arbitrary rigid body transformation can be parameterized by z ∈ R

6, where −π <

z1, z3 ≤ π and −π/2 ≤ z2 ≤ π/2.
Let ϕ be an operator for obtaining the rigid body transformation (R, t) from a

given point z, which is written as [R, t] = ϕ(z) . We also introduce an operator ϑ for
obtaining the point z from a given rigid body transformation (R, t) such that

z = ϑ(R, t) ⇔ [R, t] = ϕ(z) , (10)

if −π < z1, z3 ≤ π and −π/2 < z2 < π/2.

3 Transformation update

3.1 Point-to-point distance minimization

If point-to-point distance minimization is used in Algorithm 1, see [5], no surface nor-
mals are required and the update of the transformation (R†, t†) = (R∗, t∗) is obtained
from

[
R∗, t∗

] = arg min
R,t

g(R, t) , (11)

where

g(R, t) =
N∑

i=1

wi‖Rp(k−1)
i + t − y(k−1)

i ‖2
2 . (12)

The minimization problem in (11) is a weighted rigid body transformation problem
considered in, e.g., [33]. There always exists a solution set for this problem since all
weights wi are non-negative. The global minimizer of g, (R∗, t∗), is usually unique.
A non-unique minimizer corresponds to a rotation about a line or a point.

Let

ŵ =
N∑

i=1

wi , p̄ = 1

ŵ

N∑

i=1

wip
(k−1)
i , ȳ = 1

ŵ

N∑

i=1

wiy
(k−1)
i ,

denote the sum of the weights and weighted mean values of the data points p(k−1)
i

and the closest surface points y(k−1)
i . In the expression of g in (12), we replace t with
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a new independent vector u using the change of variables t = −Rp̄ + ȳ + u. The
function g expressed in terms of R and u is then

g(R,−Rp̄ + ȳ + u) =
∑N

i=1
wi‖Rp(k−1)

i − Rp̄ + ȳ + u − y(k−1)
i ‖2

2 =
∑N

i=1
wi‖p(k−1)

i −p̄‖2
2+

∑N

i=1
wi‖y(k−1)

i − ȳ‖2
2 + ŵ‖u‖2

2 − 2trace(RC) , (13)

where

C =
N∑

i=1

[ wip
(k−1)
i

(
y(k−1)
i

)T ] − ŵp̄ȳT ∈ R
3×3 .

Obviously, the expression of g(R,−Rp̄ + ȳ + u) is minimized by u∗ = 0 and
by searching for a rotation matrix R that maximizes trace(RC). Finding this R∗ is
analogous to the un-weighted rigid body transformation problem, see, e.g., [4, 24,
44]. The rotation matrix R∗ can be obtained from a singular value decomposition
of C, which is C = U�VT, as R∗ = VUT. In some rare degenerate cases, this
may however produce a reflection matrix, i.e. det(VUT) = −1, which is corrected
by reevaluating the matrix as R∗ = V diag(1, 1, −1)UT. From the calculated R∗
and u∗ = 0, in the change of variables expression, we obtain the translation vector
t∗ = ȳ − R∗p̄.

The convergence of Algorithm 1 using point-to-point distance minimization is
ensured according to the proof of convergence in [5]. Unfortunately, the asymptotic
convergence is linear and in general very slow [37]. That is why another method for
finding an appropriate update of the rigid body transformation is needed.

3.2 Point-to-plane distance minimization

An alternative to point-to-point distance minimization in Algorithm 1 is to use point-
to-plane distance minimization. The considered planes, with unit normal ni , are the
tangent planes of the surface at the surface points yi . We assume that our surface is
G1-continuous, i.e., tangentially continuous, so a surface normal exists for each point
in S. Let

v(z) =
N∑

i=1

�
(
nT

i

(
R(z)pi + t(z) − yi

))
, (14)

be a function of point-to-plane distances. A second-order approximation to the
function v about z = 0, with the constant term excluded, is

q(z) = aTz + 1

2
zTHz , (15)

where a is the gradient and H is the Hessian of the function v(z) at z = 0. These
quantities are given by

a =
[
ATb
BTb

]
∈ R

6, H =
[
ATDA+E ATDB
BTDA BTDB

]
∈ R

6×6,

where



766 Numer Algor (2017) 74:755–779

A=
[
nT

i
∂R
∂zj

pi

]

i,j
∈ R

N×3, i = 1, . . . , N, j = 1, 2, 3 ,

b=
⎡

⎢⎣

ψ(r1)

...

ψ(rN )

⎤

⎥⎦∈ R
N, B =

⎡

⎢⎣

nT
1
...

nT
N

⎤

⎥⎦∈ R
N×3, D = diag

(
ψ ′(r1), . . . , ψ

′(rN )
)∈ R

N×N,

E=
N∑

i=1

ψ(ri)

⎡

⎢⎢⎢⎣

nT
i

∂2R
∂z2

1
pi nT

i
∂2R

∂z1∂z2
pi nT

i
∂2R

∂z1∂z3
pi

nT
i

∂2R
∂z2∂z1

pi nT
i

∂2R
∂z2

2
pi nT

i
∂2R

∂z2∂z3
pi

nT
i

∂2R
∂z3∂z1

pi nT
i

∂2R
∂z3∂z2

pi nT
i

∂2R
∂z2

3
pi

⎤

⎥⎥⎥⎦∈ R
3×3.

Computationally, the gradient and the Hessian are acquired from these expressions
after substantially simplifications. The submatrices above are not explicitly created.

The update of the rigid body transformation using point-to-plane distance min-
imization is obtained from the minimum of the second-order approximation q, so
this approach is a Newton-type method. The minimizer of q, i.e., a full Newton step,
is denoted by zN. The asymptotic convergence using point-to-plane distance min-
imization is quadratic [37]. Unfortunately, the ICP-algorithm using point-to-plane
distance minimization is not guaranteed to converge without line search or some
other procedure of step size control, which is computational expensive for registration
problems.

4 Trust region

4.1 Derivation

The trust region will be derived from the sum of weighted squared point-to-point
distances. Let

p̂ =
N∑

i=1

wi‖p(k−1)
i − p̄‖2

2 , ŷ =
N∑

i=1

wi‖y(k−1)
i − ȳ‖2

2 ,

and from our change of variables in Subsection 3.1 we have that t + Rp̄ − ȳ = u.
From the latter expression in (13), it follows that the function g can be written as

g(R, t) = p̂ + ŷ + ŵ‖t + Rp̄ − ȳ‖2
2 − 2trace(RC) . (16)

For given ŵ, p̄, ȳ, and C, a function h = h(z) is defined as

h(z) = ŵ‖t(z) + R(z)p̄ − ȳ‖2
2 − 2trace

(
R(z)C

)
. (17)

Note that the function h consists of the terms in (16) that depends on R and t, which
are here parameterized by z. The rigid body transformation (R∗, t∗) gives the min-
imum value of h, written as h∗ = h(z∗), where z∗ = ϑ(R∗, t∗). The value of h

evaluated at the identity transformation (I, 0) is written as h◦ = h(0).
We define a region �α ⊂ R

6 such that

z ∈ �α ⇔ h(z) ≤ (1 − α)h∗ + αh◦, (18)
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where α satisfies 0 ≤ α < 1. If α = 0 we have that �α = {z∗}. The boundary of �α

is a level surface in R
6 where h(z) = (1−α)h∗ +αh◦. If 0 < α < 1 and h∗ < h◦, the

normal to the boundary of �α is given by the gradient ∇h(z). Further, if α′′ ≤ α′, we
have that �α′′ ⊆ �α′ .

4.2 Convergence analysis

We will here explain how convergence of Algorithm 1, with respect to the value of
the objective function f , is ensured using the region �α . First, we need to establish
some properties of the ingoing parts.

A quadratic approximation to �(s) about s = r is

η(s, r) =
{

�(r) − ψ(r)
2 r + ψ(r)

2r
s2 if r �= 0 ,

ψ ′(0)
2 s2 if r = 0 ,

(19)

which satisfies η(r, r) = �(r) and ∂
∂s

η(s, r) = ψ(r) at s = r . It follows from (3) and
(19) that the quadratic approximation η can be written as

η(s, r) = �(r) − ψ(r)

2
r + w(r)

2
s2. (20)

In [5], it is proved that for all criterion functions � ∈ Q, the associated quadratic
approximation η(s, r) fulfills

η(s, r) ≥ �(s) ∀s, r ∈ R , (21)

which holds with equality if s = r .
Let si(z) = ‖R(z)p(k−1)

i + t(z) − y(k−1)
i ‖2 be a function of z quantifying the

residual between a transformed data point and its associated closest surface point, and
let ri = si(0) here be a fixed value of si . It follows from (20) that the minimization
problems

min
z

N∑

i=1

η(si(z), ri) , (22)

and

min
z

N∑

i=1

w(ri)s
2
i (z) , (23)

must share the same solution set and have the same properties since the objective
functions differ only with a constant factor of one half and a sum, which is indepen-
dent of z. There always exist a solution set for these minimization problems since the
weight function w is non-negative. The minimization problem in (23) is the same as
the minimization problem in (11) if R and t are parameterized by z. Since the differ-
ence between h and g is constant, g and η are linear related if s = si and r = ri , and
η(r, r) = �(r), the following equivalences must hold

h(z) ≤ h(0) ⇔ g(R, t) ≤ g(I, 0)

⇔ ∑N
i=1 η(si(z), ri) ≤ ∑N

i=1 η(ri, ri) = ∑N
i=1 �(ri) .

(24)
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In a minimum of the function f , let the transformed data points and associated
closest surface points be given. Further, let ri = ri(z) be the point-to-point distance
between a transformed data point, dependent of z, and its associated closest surface
point. We consider the derivatives of ri with respect to zj , j = 1, . . . , 6, as zero if
ri = 0. The function g in (12), in terms of the point-to-point distances ri , can be
written as g = g(z). The optimality condition for g is

∇g = 2
N∑

i=1

wiri∇ri = 0 . (25)

Assume now that the set of surface points S is a finite countable set of points. In the
neighborhood of the minimum of f , the point-to-surface distances can be considered
as the point-to-point distances ri(z), and the function f can locally be written as a
function of z in terms of ri . The optimality condition for f is

∇f =
N∑

i=1

ψ(ri)∇ri = 0 . (26)

At a stationary point of f , these two optimality conditions are equivalent, which
follows from the identity w(ri)ri = ψ(ri), thus validating our choice of weight
function. Also, note that after applying (11), the condition ∇g = 0 will be fulfilled.

The derivatives of ri with respect to zj , j = 1, . . . , 6, do not exist if ri = 0 but
it does not cause any trouble though, since ψ is continuous and ψ(0) = 0. Thus,
the terms of ∇g and ∇f for the zero residuals vanish. An assumption about a finite
countable set of surface points is done. If for example the set of surface points S

consists of points on a continuous surface, this assumption is not fulfilled. However,
points on a continuous surface can be considered as a finite countable set of points,
where the points are evenly distributed over the surface and the number of points are
arbitrary large.

Theorem 1 The ICP-algorithm, given by Algorithm 1, converges globally to a sta-
tionary point of the objective function f in (2) and the sequence of function values
fk over the iterations k = 1, 2, . . . is monotonically decreasing to the value at the
stationary point for all criterion functions � ∈ Q if the update of the transformation
(R†, t†) satisfies ϑ(R†, t†) ∈ �α , where 0 ≤ α < 1.

Proof The convergence is ensured for α = 0 according to the proof of convergence in
[5] since in that case (R†, t†) = (R∗, t∗). It remains to proof convergence for 0 < α <

1. For all quantities with index i, we let i = 1, . . . , N without writing it explicitly.
The parameter values of the update of the transformation is written as z†, i.e., z† =
ϑ(R†, t†).

In iteration k, the set of data points {p(k−1)
i } from iteration k − 1 is given and the

set of corresponding closest surface points y(k−1)
i = C(p(k−1)

i , S) is then obtained.
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Residuals r
(k−1)
i = ‖p(k−1)

i − y(k−1)
i ‖2 and weights wi = w(r

(k−1)
i ) are calculated,

and the value fk−1 of the objective function f is

fk−1 =
N∑

i=1

�(r
(k−1)
i ) .

Since η(r
(k−1)
i , r

(k−1)
i ) = �(r

(k−1)
i ) for all residuals, it follows that

N∑

i=1

η(r
(k−1)
i , r

(k−1)
i ) = fk−1 .

If all weights wi are zero, a maximum is reached and we will not obtain any
better solution using the ICP-algorithm as given by Algorithm 1. The iterations are
then terminated and the current transformation is returned. If any of the weights
wi are greater than zero, the updating rigid body transformation (R†, t†) satisfy-
ing ϑ(R†, t†) ∈ �α is applied to p(k−1)

i giving the update of the data points

p(k)
i = R†p(k−1)

i + t† and new residuals s
(k)
i = ‖p(k)

i − y(k−1)
i ‖2 are calculated. Since

0 < α < 1, we have that h(z†) ≤ (1 − α)h∗ + αh◦ ≤ h◦ = h(0) and it follows from
(24) that

N∑

i=1

η(s
(k)
i , r

(k−1)
i ) ≤

N∑

i=1

η(r
(k−1)
i , r

(k−1)
i ) ,

is satisfied. Let

ek =
N∑

i=1

�(s
(k)
i ) ,

and according to (21), see [5], we have that η(s
(k)
i , r

(k−1)
i ) ≥ �(s

(k)
i ) for all i and thus

ek ≤
N∑

i=1

η(s
(k)
i , r

(k−1)
i ) ,

which gives that ek ≤ fk−1 .
In the next iteration, i.e., iteration k+1, the closest surface points y(k)

i = C(p(k)
i , S)

are found, and the residuals r
(k)
i = ‖p(k)

i − y(k)
i ‖2 and the new weights wi = w(r

(k)
i )

are calculated, which gives the value fk of f as

fk =
N∑

i=1

�(r
(k)
i ) .

The points y(k)
i are the closest surface points to p(k)

i so it is clear that

‖p(k)
i − y(k)

i ‖2 ≤ ‖p(k)
i − y(k−1)

i ‖2 ,

i.e., r(k)
i ≤ s

(k)
i , holds for all i. Since � is a monotone increasing function for positive

residuals, we have that fk ≤ ek . The equality is satisfied if and only if ‖p(k)
i −

y(k−1)
i ‖2 = d(p(k)

i , S) for all i, i.e., if and only if all points y(k−1)
i are closest surface

points to the data points p(k)
i .
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To summarize, we can conclude that

0 ≤ fk ≤ ek ≤ fk−1 ,

is fulfilled. The lower bound is zero since a sum of non-negative values cannot be
negative. It gives that the sequences of fk and ek are monotonically decreasing and
bounded below. Thus, the sequences will converge to a real value, which is the same
for both sequences.

Since 0 ≤ α < 1, the function g will eventually be minimized and the updating
transformation will satisfy (R†, t†) = (R∗, t∗). There are just two possibilities for the
transformation (R∗, t∗) that do not change the values of fk and ek to their updates in
the subsequent iteration. One of these possibilities is that the transformation is equal
to the identity transformation, (R∗, t∗) = (I, 0), and that occurs when the function
g has a unique minimum. For this transformation, all residuals are preserved so that
si = ri for all i. The other possibility is that the transformation (R∗, t∗) rotates the
data points around a line or a point and that occurs when the function g does not have
a unique minimum. The residuals associated with positive weights are preserved also
for this transformation. However, residuals corresponding to weights that are equal
to zero can change but all terms of both ∇g and ∇f corresponding to the zero-valued
weights are zero and unaffected by these changes.

The function g is eventually minimized so ∇g = 0, the residuals associated with
positive weights are preserved, and the identity w(ri)ri = ψ(ri) holds. Thus, from
the optimality conditions (25) and (26), the gradient of f satisfies ∇f = 1

2∇g = 0
and the condition of a stationary point for f is fulfilled. Suppose that the sequence
of fk will converge to a value that is larger than the value of the objective function f

at the stationary point. Then, this would contradict the operation of the closest point
operator C. We can do the conclusion that the ICP-algorithm, given by Algorithm 1,
converges globally to a stationary point of the objective function f in (2).

Theorem 1 is similar to the convergence theorem given in [5] but it improves the
possibilities to find good updates of the transformation in comparison to the robust
ICP-algorithm based on point-to-point distance minimization. From Theorem 1, we
know that the ICP-algorithm, given by Algorithm 1, converges to a stationary point
for all criterion functions in Q if the update of the transformation (R†, t†) satisfies
ϑ(R†, t†) ∈ �α , where 0 ≤ α < 1. This is an essential property of an optimization
algorithm. There is a possibility that the ICP-algorithm will return a transformation
(R, t) that gives a maximum of f . It can happen if the used criterion function � has a
constant value for inputs of large magnitude, and all initial residuals ‖p(0)

i −y(0)
i ‖2 are

of such significant size. The value of the criterion function � cannot be larger than its
value at these residuals and therefore, the objective function f attains a maximum. It
can also happen, but it is extremely unlikely, that the ICP-algorithm will end up in a
saddle point after some iterations. We cannot exclude that possibility, but it will only
happen in some very rare cases.

In general, we can expect that the ICP-algorithm will reach a local minimum. If
for example the initial orientation of the data points is turned the wrong way, being
upside-down, or having some other apparent misalignment in comparison with the
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surface points in S, the ICP-algorithm will probably not end up in the global min-
imum. The same thing can also happen if the surface has many similar repeating
geometrical features. However, if the initial rigid body transformation, (R(0), t(0)),
is carefully chosen, we can expect that the achieved stationary point is the global
minimum.

4.3 Adaptive extension

The advantage of using the region �α is that convergence can always be ensured for
all updating transformations (R†, t†) satisfying ϑ(R†, t†) ∈ �α without any unnec-
essary evaluations of the objective function f . Unfortunately, there is a risk that
after some iterations the region �α will be limited to a small neighborhood about
ϑ(R∗, t∗). Thus, using an updating transformation satisfying ϑ(R†, t†) ∈ �α might
be quite conservative. The full Newton step zN would be far outside of the region,
which severely impacts the asymptotic convergence rate.

To remedy this, introduce for k ≥ 2

β = ‖z†k−1‖2

‖z†k−1‖2 + ‖zN
k−1 − z†k−1 − zN

k ‖2
, (27)

where zN
k and zN

k−1 are the full Newton steps in iteration k and k − 1, and z†k−1 is the
used parameter update in iteration k − 1. The value of β is describing how much a
second-order approximation q to f has changed in an update from iteration k − 1 to
iteration k. If ‖z†k−1‖2 > 0, we have β ∈ (0, 1]. A value of β that is equal to one
indicates that q is unchanged from the previous iteration, and for a significant change
of q we get a value of β close to zero. In the iterations of the ICP-algorithm far from
an optimum of f, we can expect significantly changes of q giving values of β close to
zero. In the iterations close to an optimum of f, just minor changes of q are expected,
which give values of β close to one. Using β, we define a region � ⊂ R

6 in iteration
k ≥ 2 such that

z ∈ � ⇔ h(z) ≤ max
{
h
(
z∗k + β(zN

k − z∗k)
)
, h

(
z∗k − β(z†k−1 + z∗k)

)}
. (28)

In the first iteration, i.e., k = 1, we let � = �α , where α = 1.
Schematic illustrations of the regions that constrain a rigid body transformation

(R, t) in its parameter space are given in Fig. 2. The advantage of using the region �

is that it allows the algorithm to use full Newton steps close to the solution where the
second-order approximation q(z) will not change so much. This however invalidates
the required properties for the proof of convergence (see Theorem 1). The approach
has been seen to work very well in practice, though.

A value of β close to one indicates that the ICP-algorithm is near the optimum,
and a full Newton step will probably be very useful. If the value of β is close to zero,
it gives an indication that the ICP-algorithm is far from the optimum and the full
Newton step will probably not be reliable so it must be damped. However, β will be
one if and only if the optimum of the second-order approximation q(z) is unchanged
between two iterations, which is not likely. That is why a full Newton step will not
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Fig. 2 Schematic illustrations of different regions in R
6 where z∗ = ϑ(R∗, t∗). The index k and k − 1 in

b represents the iteration number. b �α . a �

be utilized if only h
(
z∗k +β(zN

k −z∗k)
)

is used. The way the region � is defined makes
a full Newton step possible under good conditions.

4.4 Application

The way we propose to update the transformation in the ICP-algorithm is to solve the
constrained minimization problem

z† = arg min
z∈ �α or �

aTz + 1
2 z

THz ,

[R†, t†]=ϕ(z†) ,

(29)

and evaluate the rigid body transformation (R†, t†) from the obtained solution z†. The
choice of constraint, �α or �, depends on which region that is used and forms a
natural trust region for registration problems. The trust region subproblem in (29),
with q(z) as a model function, is a modification of the point-to-plane distance min-
imization and the Newton-type update described in Subsection 3.2. It combines the
best properties of point-to-point distance minimization and point-to-plane distance
minimization.

The way we are solving the constrained minimization problem in (29) is by using
a reciprocal barrier function of the constraint. A feasible point in both �α and � is z∗,
and this point is used as an initial choice of z. The model function q(z) together with
the barrier function is minimized using Newton’s method, see, e.g., [16] for more
information about possible optimization methods.

The constrained minimization problem in (29) does not have to be solved with
any high accuracy, since it will just give an update of the parameters in an iterative
process. Computations of �α or � can be done at a very low cost when the required
quantities are given. The acquirement of these quantities is the principal additional
computational cost compared to the cost for obtaining a Newton-type update without
any step size control, as described in Subsection 3.2. The computational cost to obtain
these required quantities is small in comparison to the cost of finding closest surface
points and obtaining the Hessian and the gradient. When solving the minimization
problem in (29) having all necessary quantities, there is no need to use the N data
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points nor the N corresponding closest surface points and surface normals. Therefore,
only a minor number of additional computations are required to use the trust regions
�α or �.

5 Numerical results

5.1 Test problems

The robust criterion functions �Ca and �We, and the non-robust least squares criterion
function �LS(r) = r2, are used to estimate rigid body transformations in different
surface registration problems. Our surface registration problems can be formulated
as (5), where S is a set of surface points and most of the data points represent the
shape of the surface quite well.

Six different G1-continuous surfaces, see Fig. 3, are used in the numerical exper-
iment. The first four surfaces might seem to have sharp edges and corners but they
are actually rounded. From each of these six surfaces, we have sampled 1,000,000
points. A local second-order surface approximation is used at each of these points to
represent the surface as a set of surface points S. From the surfaces, we are also sam-

pling a set of Ng = 1,000 (“good”) non-disturbed data points {pi}Ng
i=1, and Nb = 500

(“bad”) disturbed data points {pi}Ng+Nb
i=Ng+1, where the disturbance are randomly gener-

ated from a normal distribution in the 3D space. All these N = Ng + Nb data points
are transformed by a rigid body transformation to their initial positions. The data
points in their initial positions are also shown in Fig. 3.

5.2 Experiment

The ICP-algorithm with re-scaled residuals, given by Algorithm 2, and the trust
regions �α and � are used to solve the introduced test problems. Point-to-point
distance minimization (11), as considered in [5], and point-to-plane distance mini-
mization using a full Newton step, without any step size control, are also used in this
experiment as a comparison.

Theorem 1 tells that the convergence of Algorithm 1 is ensured for �α , where
0 ≤ α < 1. If α = 1, convergence cannot be ensured for �α but by using α = 1
in combination with point-to-plane distance minimization (29) it is very likely that
convergence is achieved. In order to make a clear distinction between the result when
using (29) and the trust region �α , and the result when using point-to-point distance
minimization, we are here using α = 1, and the region �α is simply written as �1.

If the magnitude of any of the updating rotational parameters exceeds π/4, the
whole vector z† is re-scaled such that this condition is fulfilled. It gives an obvious
improvement of the comparative point-to-plane distance minimization without any
step size control. The search for the closest point in S to an arbitrary data point, writ-
ten as the operator C, is done by first finding the closest point among all the 1,000,000
sampled surface points in S. The corresponding local second-order surface approxi-
mation is then used to find an even better approximation of the closest point on the
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Fig. 3 Surfaces and data points. a Rounded tetrahedron. b Rounded cube. c Rounded cuboid. d Rounded
cuboid. e Torus. f Swept

surface from which the required surface normal is computed. When using an update
obtained from the trust region subproblem (29), a minimization problem has to be
solved. As a starting point in this iterative process, we are using z∗ = ϑ(R∗, t∗)
which is known to be feasible. The constrained minimization problem in (29) is
solved approximately by using a barrier method with a reciprocal barrier function.
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The computational time to solve this problem is about five microseconds, which is
far less than the computational time for the other computations in each iteration.

The scaling σk should be chosen so that the algorithm converges fast to a minimum
without getting stuck at a maximum outside the region of convergence. During the
iterations, the value of σk should approach to σ∗ from above. However, the value of
σ∗ might not be known. The way we chose the scaling σk is to let

σk = 1.90 median
(
{ri}Ni=1

)
, (30)

which adapts the scaling to the current distribution of the residuals. If the residuals
ri are positive observations from a normal distribution N (0, 1), about 80 % of the
residuals will be less than σk . Using the median in the estimation of σk provides less
vulnerability to outliers than if the scaling were based on the actual upper residuals.
We can also be sure that not all weights wi are equal to zero so that the algorithm
will not get stuck at a maximum.

The aim of the experiment is to test the performance of the proposed methods and
to make a comparison with the other methods. In iteration k, we are using

�k = 1

Ng

Ng∑

i=1

r2
i , (31)

as a measure of accuracy, which is the mean squared residual between the (“good”)
non-disturbed data points and the surface. It is non-negative and should eventually
approach to a value close to zero. Since the search for the closest surface point is
just approximate by the usage of the 1,000,000 sampled surface points and the corre-
sponding local second-order surface approximation, we cannot expect that the value
of �k will be exactly zero. The values of the parameters κ in (4) are used to make the
criterion functions comparative. The iterations are terminated when ‖z†k‖2 < 10−4.
Figure 4 shows the result from the numerical experiment.

5.3 Conclusions

In Fig. 4, we can see that the robust methods using the proposed trust regions manage
to find good solutions with respect to the measure of accuracy �k given in (31) despite
the large residuals in the “bad” data. Welsch’s criterion function �We gives the best
result but Cauchy’s criterion function �Ca is not far behind. We can also see that all
least squares methods fail.

As expected, the point-to-point distance minimization by updating the transforma-
tion using (11) gives a slow convergence. Point-to-plane distance minimization and
a trust region, �α or �, give much faster convergence. We can also see in Fig. 4
that the comparative method using point-to-plane distance minimization and a New-
ton type update without any step size control gives an extremely unreliable output. It
fails in test problems 1, 4, 5, and 6 for at least one of Cauchy’s and Welsch’s criterion
functions.

The convergence of �k for surface 3 and 4, see Fig. 4c, d, are much slower com-
pared to the other ones. Surface 3 is drawn-out in one direction, which gives slow
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Fig. 4 Observed values of �k in iteration k, given by (31), for the a rounded tetrahedron, b rounded cube,
c rounded cuboid, d rounded cuboid, e torus, and f swept. The values marked “Pnt2pnt, XX” are obtained
with point-to-point distance minimization (11). The values marked “Pnt2pln, XX” (and nothing else) are
obtained with point-to-plane distance minimization and a full Newton step. The values marked “Pnt2pln,
XX, �1/�” are obtained with (29). The robust criterion functions �Ca and �We and the non-robust least
squares criterion function are used in the tests

convergence in that direction. Surface 4 is flattened; it is almost a plane giving the
same difficulties of convergence as points on a plane, which is slow convergence
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in two directions and one rotation. The other surfaces have more distinct shapes
resulting in faster convergence. It is obvious that the shape of the surface has a
significant impact on the convergence behavior for the ICP-algorithm.

Using an extension of the trust region �α , like for example �, to obtain a faster
convergence seems to be a good idea since the trust region �α will be quite small
after some iterations. By setting the value of β according to (27), we get an adapted
size of the trust region dependent on how much the second-order approximation q

changes between two successive iterates. From our numerical experiment, we can
conclude that using the robust criterion function, and the trust region � to constrain
the updating transformation, gives the best observed convergence with respect to the
measure of accuracy �k .
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