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Abstract In this work, we have improved the order of the double-step Newton
method from four to five using the same number of evaluation of two functions and
two first order Fréchet derivatives for each iteration. The multi-step version requires
one more function evaluation for each step. The multi-step version converges with
order 3r + 5, r ≥ 1. Numerical experiments are done comparing the new meth-
ods with some existing methods. Our methods are also tested on Chandrasekhar’s
problem and the 2-D Bratu problem to illustrate the applications.
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1 Introduction

The construction of iterative methods for approximating the solution of systems of
nonlinear equations is an important and interesting task in numerical analysis and
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applied scientific branches. In order to solve many application problems, one need
to find an approximate solution of system of nonlinear equations F(x) = 0, where
F(x) = (f1(x), f2(x), ..., fn(x))T , x = (x1, x2, ..., xn)

T , fi : R
n → R,∀i =

1, 2, . . . , n, and F : D ⊂ R
n → R

n is a smooth map and D is an open and con-
vex set, where we assume that α = (α1, α2, ..., αn)

T is a zero of the systems and

x(0) =
(
x

(0)
1 , x

(0)
2 , ..., x

(0)
n

)T

is an initial guess sufficiently close to α. One of the

basic procedure for solving system of nonlinear equations is the classical one-step
second order Newton method (2NR) [14]. It is defined by

x(k+1) = G2NR(x(k)) = x(k) − [F ′(x(k))]−1F(x(k)), k = 0, 1, 2, ... (1)

where [F ′(x(k))]−1 is the inverse of the first Fréchet derivative F ′(x(k)) of the func-
tion F(x(k)). It is straightforward to see that this method requires the evaluation of
one function, one first derivative, and one matrix inversion per iteration. Traub [16]
suggested that multi-step iterative methods are better way to improve the order of
convergence free from second derivatives, such modifications of Newton’s method
have been proposed in the literature; for example see [1, 4, 6, 11, 15] and references
therein. The double-step third and fourth order Newton’s methods have been pro-
posed in the recent literature, see [9–11, 15].

Traub [16] proposed a two-step variant of Newton’s method (3T M) having con-
vergence order three by evaluating two functions, one Fréchet derivative, and its
inverse for

x(k+1) = G3T M(x(k)) = G2NR(x(k)) − [F ′(x(k)))]−1F(G2NR(x(k))). (2)

The double-step fourth order Newton method (4NR) is given by

x(k+1) = G4NR(x(k)) = G2NR(x(k)) − [F ′(G2NR(x(k)))]−1F(G2NR(x(k))), (3)

which was recently rediscovered by Noor et al. [11] using the variational itera-
tion technique, where two functions, two Fréchet derivatives, and their inverse were
evaluated. Recently, Abad et al. [1] combined the Newton and Traub methods to
obtain a three-step fourth order method (4ACT ), where two functions, two Fréchet
derivatives, and their inverse were evaluated

x(k+1) = G4ACT (x(k)) = G2NR(x(k)) − [F ′(G3T M(x(k)))]−1F(G2NR(x(k))). (4)

Again in [1], a different combination to get a three-step fifth order method (5ACT ),
where three functions, two Fréchet derivatives, and their inverse were evaluated for

x(k+1) = G5ACT (x(k)) = G3T M(x(k)) − [F ′(G2NR(x(k)))]−1F(G3T M(x(k))). (5)

In this paper, we have proposed a two-step fifth order method which is an improve-
ment over the double-step Newton method, which uses two functions and two Fréchet
derivative evaluations and only one inverse. A multi-step version with order 3r + 5,
r ≥ 1 for solving a system of nonlinear equations is also suggested which uses one
more additional functional evaluation only for each step. The rest of this paper is
organized as follows. In Section 2, we present new algorithms one having fifth order
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and the other a multi-step version having order 3r + 5, r ≥ 1. In Section 3, we study
the convergence analysis of the new methods. In Section 4, numerical examples and
their results are discussed comparing with some existing methods. In Section 5, two
application problems are solved using the present method and some existing methods.
A brief conclusion is given in Section 6.

2 Development of the methods

We propose the following two-step method (5MBJ ):

x(k+1) = G5MBJ (x(k)) = G2NR(x(k)) − H1(x
(k))[F ′(x(k))]−1F(G2NR(x(k))),

H1(x
(k)) = 2I − τ(x(k)) + 5

4
(τ (x(k)) − I )2, (6)

τ(x(k)) = [F ′(x(k))]−1F ′ (G2NR(x(k))
)

,

where I is the n×n identity matrix. This method uses two functions and two Fréchet
derivative evaluations and only one inverse. We will show that this method is fifth
order. We further improve the 5MBJ method by an additional function evaluation to
get the multi-step version called (3r + 5)MBJ (r ≥ 1) method and it is given by

x(k+1) = G(3r+5)MBJ (x(k)) = μr(x
(k)),

μj (x
(k)) = μj−1(x

(k)) − H2(x
(k))[F ′(x(k))]−1F(μj−1(x

(k))), (7)

H2(x
(k)) = 2I − τ(x(k)) + 3

2
(τ (x(k)) − I )2,

μ0(x
(k)) = G5MBJ (x(k)), j = 1, 2, ..., r, r ≥ 1.

This multi-step version has order 3r +5, r ≥ 1. The case r = 0 is the 5MBJ method
given in (6).

3 Convergence analysis

The main theorem is going to be demonstrated by means of the n-dimensional Taylor
expansion of the functions involved. In the following, we use certain notations and
results found in [6]:

Let F : D ⊆ R
n −→ R

n be sufficiently Fréchet differentiable in D. Suppose the
qth derivative of F at u ∈ R

n, q ≥ 1, is the q-linear function F (q)(u) : Rn × · · · ×
R

n −→ R
n such that F (q)(u)(v1, . . . , vq) ∈ Rn. Given α + h ∈ R

n, which lies in a
neighborhood of a solution α of the nonlinear system F(x) = 0, Taylor’s expansion
can be applied (assuming Fréchet derivatives F ′(α) are nonsingular) to obtain

F(α + h) = F ′(α)

⎡
⎣h +

p−1∑
q=2

Cqhq

⎤
⎦ + O(hp) (8)
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where Cq = (1/q!)[F ′(α)]−1F (q)(α), q ≥ 2. It is noted that Cqhq ∈ R
n since

F (q)(α) ∈ L(Rn × · · · × R
n,Rn) and [F ′(α)]−1 ∈ L(Rn). Also, we can expand

F ′(α + h) in Taylor series

F ′(α + h) = F ′(α)

⎡
⎣I +

p−1∑
q=2

qCqhq−1

⎤
⎦ + O(hp) (9)

where I is the identity matrix. It is also noted that qCqhq−1 ∈ L(Rn). Denote e(k) =
x(k)−α, so the error at the (k+1)th iteration is e(k+1) = Le(k)p +O(e(k)p+1

), where
L is a p-linear function L ∈ L(Rn × · · · × R

n,Rn) called the error equation and p

is the order of convergence. Observe that e(k)p is (e(k), e(k), · · · , e(k)).
In order to prove the convergence order for the method (6), we need to recall some

important definitions and results from the theory of point of attraction.

Definition 3.01 (Point of Attraction) [13] Let G : D ⊂ R
n → R

n. Then, α is a
point of attraction of the iteration

x(k+1) = G(x(k)), k = 0, 1, ... (10)

if there is an open neighborhood S of α defined by

S(α) = {x ∈ R
n
∣∣∣ ‖x − α‖ < δ}, δ > 0,

such that S ⊂ D and, for any x(0) ∈ S, the iterates {x(k)} defined by (10) all lie in D

and converge to α.

Theorem 3.01 (Ostrowski Theorem) [14] Assume that G : D ⊂ R
n → R

n has a
fixed point α ∈ int (D) and G(x) is Fréchet differentiable on α. If

ρ(G′(α)) = σ < 1 (11)

then α is a point of attraction for x(k+1) = G(x(k)).

We state below a general result which has been proved in Babajee et al. [4],
showing that α is a point of attraction for a general iteration function G(x) =
P(x) − Q(x)R(x).

Theorem 3.02 (Babajee et al. Theorem) [4] Let F : D ⊂ R
n −→ R

n be suf-
ficiently Fréchet differentiable at each point of an open convex neighborhood D of
α ∈ D, which is a solution of the system F(x) = 0. Suppose that P,Q,R : D ⊂
R

n → R
n are sufficiently Fréchet differentiable functionals (depending on F ) at

each point in D with P(α) = α, Q(α) 
= 0, R(α) = 0.
Then, there exists a ball

S = S(α, δ) =
{
‖α − x‖ ≤ δ

}
⊂ S0, δ > 0,

on which the mapping

G : S → R
n, G(x) = P(x) − Q(x)R(x), ∀x ∈ S
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is well-defined; moreover, G is Fréchet differentiable at α, thus

G′(α) = P ′(α) − Q(α)R′(α).

Theorem 3.03 Let F : D ⊆ R
n −→ R

n be sufficiently Fréchet differentiable at
each point of an open convex neighborhood D of α ∈ R

n, that is a solution of the
system F(x) = 0. Let us suppose that F ′(x) is continuous and nonsingular in α,
and x(0) close enough to α. Then, the sequence {x(k)}k≥0 obtained using the iterative
expression (6) converges locally to α with order 5, where the error equation obtained
is

e(k+1) = G5MBJ (x(k)) − α = L1e
(k)5 + O(e(k)6),

L1 = 14C4
2 + 1

2
C2C3C2 + 12C2

2C3 − 27

2
C3C

2
2 (12)

Proof We first show that α is a point of attraction using Theorem 3.02. In this case,

P(x) = G2NR(x), Q(x) = H1(x)[F ′(x)]−1, R(x) = F(G2NR(x)).

Now, since F(α) = 0, we have

G2NR(α) = α − [F ′(α)]−1F(α) = α,

τ(α) = F ′(α)−1F ′(G2NR(α)) = [F ′(α)]−1F ′(α) = I, H1(α) = I,

P (α) = G2NR(α), P ′(α) = G′
2NR(α) = 0,

Q(α) = H1(α)[F ′(α)]−1 = I [F ′(α)]−1 = [F ′(α)]−1 
= 0,

R(α) = F(G2NR(α)) = F(α) = 0,

R′(α) = F ′(G2NR(α))G′
2NR(α) = 0,

G′(α) = P ′(α) − Q(α)R′(α) = 0,

so that ρ(G′(α)) = 0 < 1 and by Ostrowski’s theorem, α is a point of attraction of 6.
From (8) and (9), we obtain

F(x(k)) = F ′(α)
[
e(k) + C2e

(k)2 + C3e
(k)3 + C4e

(k)4 + C5e
(k)5

]
+O(e(k)6), (13)

and

F ′(x(k)) = F ′(α)
[
I + 2C2e

(k) + 3C3e
(k)2 + 4C4e

(k)3 + 5C5e
(k)4

]
+ O(e(k)5).

(14)
We have

[F ′(x(k))]−1 =
[
I + X1e

(k) + X2e
(k)2 + X3e

(k)3 + X4e
(k)4

]
[F ′(α)]−1+O(e(k)5),

(15)
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where X1 = −2C2, X2 = 4C2
2 − 3C3, X3 = −8C3

2 + 6C2C3 + 6C3C2 − 4C4, and
X4 = −5C5 + 9C2

3 + 8C2C4 + 8C4C2 + 16C4
2 − 12C2

2C3 − 12C3C
2
2 − 12C2C3C2.

Then,

[F ′(x(k))]−1F(x(k)) = e(k) − C2e
(k)2 + 2(C2

2 − C3)e
(k)3

+
(

− 3C4 − 4C3
2 + 4C2C3 + 3C3C2

)
e(k)4 (16)

+
(
6C2

3 + 8C4
2 − 8C2

2C3 − 6C2C3C2 − 6C3C
2
2

+6C2C4 + 4C4C2 − 4C5

)
e(k)5 + O(e(k)6).

Also, we have

G2NR(x(k)) = α + C2e
(k)2 + 2

(
− C2

2 + C3

)
e(k)3 +

(
3C4 + 4C3

2

−4C2C3 − 3C3C2

)
e(k)4 +

(
− 6C2

3 − 8C4
2 + 8C2

2C3 (17)

+6C2C3C2 + 6C3C
2
2 − 6C2C4 − 4C4C2 + 4C5

)
e(k)5.

Expanding F(G2NR(x(k))) and F ′(G2NR(x(k))) about α in Taylor’s series respec-
tively given below

F(G2NR(x(k))) = F ′(α)
[
(G2NR(x(k)) − α) + C2(G2NR(x(k)) − α)2

+C3(G2NR(x(k)) − α)3 + ...
]

= F ′(α)
[
C2e

(k)2 + 2(−C2
2 + C3)e

(k)3 (18)

+
(
3C4 + 5C3

2 − 4C2C3 − 3C3C2

)
e(k)4

+
(

− 6C2
3 − 12C4

2 + 10C2
2C3 + 8C2C3C2

+6C3C
2
2 − 6C2C4

−4C4C2 + 4C5

)
e(k)5

]
,

F ′(G2NR(x(k))) = F ′(α)
[
I + 2C2(G2NR(x(k)) − α)

+3C3(G2NR(x(k)) − α)2 + ...
]

= F ′(α)
[
I + P1e

(k)2 + P2e
(k)3 + P3e

(k)4
]

+ O(e(k)5), (19)

where

P1 = 2C2
2 , P2 = 4C2C3 − 4C3

2 , andP3 = 8C4
2 + 6C2C4 − 8C2

2C3 + 3C3C
2
2 − 6C2C3C2.
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Using (15) and (19), we have

[F ′(x(k))]−1F ′(G2NR(x(k))) = I − 2C2e
(k) +

(
6C2

2 − 3C3

)
e(k)2

+
(
10C2C3 + 6C3C2 − 16C3

2 − 4C4

)
e(k)3 (20)

+
(

− 5C5 + 9C2
3 + 40C4

2 + 14C2C4 + 8C4C2

−28C2
2C3 − 15C3C

2
2 − 18C2C3C2

)
e(k)4

+O(e(k)5).

Then

H1(x
(k)) = 2I − τ(x(k)) + 5

4
(τ (x(k)) − I )2

= I + 2C2e
(k) −

(
C2
2 − 3C3

)
e(k)2 +

(
− 5

2
C2C3 + 3

2
C3C2

−14C3
2 + 4C4

)
e(k)3

+O(e(k)4). (21)

Using (15) and (18), we have

[F ′(x(k))]−1F(G2NR(x(k))) = C2e
(k)2 +

(
2C3 − 4C2

2

)
e(k)3

+
(
13C3

2 − 8C2C3 − 6C3C2 + 3C4

)
e(k)4 (22)

+
(

− 12C2
3 − 38C4

2 + 26C2
2C3 + 20C2C3C2

+18C3C
2
2 − 12C2C4 − 8C4C2 + 4C5

)
e(k)5

+O(e(k)6).

Then

H1(x
(k))[F ′(x(k))]−1F(G2NR(x(k)))

= C2e
(k)2 + (2C3 − 2C2

2)e
(k)3 + (3C4 + 4C3

2 − 4C2C3 − 3C3C2)e
(k)4

+
(

− 6C2
3 + 4C5 − 6C2C4 − 4C4C2 − 22C4

2 + 11

2
C2C3C2 + 8C2

2C3 (23)

+39

2
C3C

2
2 − 12C2

2C3

)
e(k)5 + O(e(k)6).

Using (17) and (23) in (6), we have

e(k+1) = (14C4
2 + 1

2
C2C3C2 + 12C2

2C3 − 27

2
C3C

2
2)e

(k)5 + O(e(k)6), (24)

which proves fifth order convergence.

Theorem 3.04 Let F : D ⊆ R
n −→ R

n be sufficiently Fréchet differentiable at
each point of an open convex neighborhood D of α ∈ R

n that is a solution of the
system F(x) = 0. Let us suppose that x ∈ S = S(α, δ) and F ′(x) is continuous
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and nonsingular in α, and x(0) is close enough to α. Then α is a point of attraction
of the sequence {x(k)} obtained using the iterative expression (7). Furthermore, the
sequence converges locally to α with order 3r + 5, where r is a positive integer and
r ≥ 1.

Proof In this case,

P(x) = μj−1(x), Q(x) = H2(x)F (x)−1, R(x) = F(μj−1(x)), j = 1, ..., r.

We can show by induction that

μj−1(α) = α, μ′
j−1(α) = 0, ∀ j = 1, ..., r

so that

P(α) = μj−1(α) = α, H2(α) = I, Q(α) = I [F ′(α)]−1 = [F ′(α)]−1 
= 0,

R(α) = F(μj−1(α)) = F(α) = 0,

P ′(α) = μ′
j−1(α) = 0, R′(α) = F ′(μj−1(α))μ′

j−1(α) = 0,

G′(α) = P ′(α) − Q(α)R′(α) = 0.

So ρ(G′(α)) = 0 < 1 and by Ostrowski’s theorem, α is a point of attraction of
(7). A Taylor expansion of F(μj−1(x

(k))) about α yields

F(μj−1(x
(k))) = F ′(α)

[
(μj−1(x

(k)) − α) + C2(μj−1(x
(k)) − α)2 + ...

]
(25)

Also, let

H2(x
(k)) = 2I − τ(x(k)) + 3

2
(τ (x(k)) − I )2 (26)

= I + 2C2e
(k)+3C3e

(k)2 +
(
−C2C3 − 20C3

2 + 3C3C2 + 4C4

)
e(k)3 + ...

Using (15) and (26), we have

H2(x
(k))[F ′(x(k))]−1=

[
I +L2 e(k)3+...

]
[F ′(α)]−1, L2=−20C3

2−C2C3+3C3C2

(27)
Using (27) and (25), we have

H2(x
(k))[F ′(x(k))]−1F(μj−1(x

(k))) =
(
I + L2 e(k)3 + ...

)
×

(
(μj−1(x

(k)) − α)

+C2(μj−1(x
(k)) − α)2 + ...

)

= μj−1(x
(k)) − α + L2 e(k)3(μj−1(x

(k)) − α)

+C2(μj−1(x
(k)) − α)2 + ... (28)

Using (28) in (7), we obtain

μj (x
(k)) − α = μj−1(x

(k)) − α −
(
μj−1(x

(k)) − α + L2 e(k)3(μj−1(x
(k)) − α)

+C2(μj−1(x
(k)) − α)2 + ...

)

= −L2 e(k)3(μj−1(x
(k)) − α) + ... (29)
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As we know that μ0(x
(k)) − α = O(e(k)5) and from (29), for j = 1, 2, ...

μ1(x
(k)) − α = −L2(e

(k)(3))
(
μ0(x

(k)) − α
)

+ ...

= −L2L1e
(k)8 + ...

μ2(x
(k)) − α = −L2(e

(k)(3))
(
μ1(x

(k)) − α
)

+ ...

= −L2(−L2L1)e
(k)11 + ...

= L2
2L1e

(k)11 + ...

Proceeding by induction, we have

μr(x
(k)) − α = (−L2)

rL1 (e(k)(3r+5)
) + O(e(k)(3r+6)

), r ≥ 1. (30)

Remark : Multi-step version (3r+5)MBJ (r ≥ 0) methods are constructed from 4+
r evaluation of F and F ′ together. Only one inverse evaluation of Fréchet derivatives
F ′ at (x(k)) is used for the proposed method (7).

4 Numerical examples

The numerical experiments have been carried out using the MATLAB software for the
examples given below. The approximate solutions are calculated correctly to 1000
digits by using variable precision arithmetic. We use the following stopping criterion
for the iteration scheme:

errmin = ‖x(k+1) − x(k)‖2 < 10−100. (31)

We have used the approximated computational order of convergence pc given by

pc ≈ log (‖x(k+1) − x(k)‖2/‖x(k) − x(k−1)‖2)
log (‖x(k) − x(k−1)‖2/‖x(k−1) − x(k−2)‖2) . (32)

Let M be the number of iterations required for reaching the minimum residual
(errmin).

Test Problem 1 (TP1) We consider the following nonlinear system:

F(x1, x2) = (x1 + exp(x2) − cos(x2), 3x1 − x2 − sin(x2)).

The Jacobian matrix is given by F ′(x) =
(
1 exp(x2) + sin(x2)

3 −1 − cos(x2)

)
. The starting

vector is x(0) = (1.5, 2)T and the exact solution is α = (0, 0)T .
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Test Problem 2 (TP2) We consider the following nonlinear system:⎧⎪⎪⎨
⎪⎪⎩

x2x3 + x4(x2 + x3) = 0,
x1x3 + x4(x1 + x3) = 0,
x1x2 + x4(x1 + x2) = 0,
x1x2 + x1x3 + x2x3 = 1.

(33)

We solve this system using the initial approximation x(0) = (0.5, 0.5, 0.5, −0.2)T .
The solution of this system is α ≈ (0.577350, 0.577350, 0.577350, −0.288675)T .

The Jacobian matrix which has 12 non-zero elements is given by

F ′(x) =

⎛
⎜⎜⎝

0 x3 + x4 x2 + x4 x2 + x3
x3 + x4 0 x1 + x4 x1 + x3
x2 + x4 x1 + x4 0 x1 + x2
x2 + x3 x1 + x3 x1 + x2 0

⎞
⎟⎟⎠ . (34)

Test Problem 3 (TP3) We consider the following nonlinear system:{
xixi+1 − 1 = 0, i = 1, 2, 3, ...15,
x15x1 − 1 = 0.

(35)

The solution is α = (1, 1, 1, ..., 1)T . We choose the starting vector
x(0) = (1.5, 1.5, 1.5, ..., 1.5)T . The Jacobian matrix has 30 non-zero elements and it
is given by

F ′(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2 x1 0 0 ... 0 0
0 x3 x2 0 ... 0 0
.

.

.

0 0 0 0 ... x15 x14
x15 0 0 0 ... 0 x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Table 1 shows the results for the test problems (TP1, TP2, TP3), from which we
conclude that 8MBJ and 11MBJ methods are the most efficient methods out of the
methods compared with least number of iterations and residual error.

Table 1 Comparison of different methods for system of nonlinear equations

Methods TP1 TP2 TP3

M errmin pc M errmin pc M errmin pc

2NR 10 1.0385e−103 1.99 8 3.9287e−145 2.00 9 8.9692e−179 1.99

3T M 7 9.6505e−104 2.99 6 8.8773e−236 3.01 6 5.7903e−142 2.99

4NR 6 5.3845e−207 3.99 5 2.9883e−291 4.03 5 8.9692e−179 3.99

4ACT 6 2.8073e−309 3.99 5 3.8694e−283 4.03 5 2.0352e−203 3.99

5ACT 6 0 4.99 4 5.7140e−121 5.12 5 0 4.99

5MBJ 6 1.0954e−315 4.99 4 5.0835e−102 5.15 5 1.3994e−304 4.99

8MBJ 5 0 7.80 4 0 8.80 4 3.6805e−226 7.53

11MBJ 4 4.5504e−104 10.89 4 0 12.00 4 0 10.51
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5 Applications

5.1 Chandrasekhar’s equation

Consider the quadratic integral equation related to Chandrasekhar’s work [5, 8]

x(s) = f (s) + λx(s)

∫ 1

0
k(s, t)x(t)dt, (36)

which arise in the study of the radiative transfer theory, the transport of neutrons and
the kinetic theory of the gases. Equation 36 is also studied by Argyros [2, 3] and along
with some conditions for the kernel k(s, t) in [7]. We consider the maximum norm for
the kernel k(s, t) as a continuous function in s, t ∈ [0, 1] such that 0 < k(s, t) < 1
and k(s, t)+k(t, s) = 1. Moreover, we assume that f (s) ∈ C[0, 1] is a given function
and λ is a real constant. Note that finding a solution for (36) is equivalent to solving
the equation F(x) = 0, where F : C[0, 1] → C[0, 1] and

F(x)(s) = x(s) − f (s) − λx(s)

∫ 1

0
k(s, t)x(t)dt, x ∈ C[0, 1], s ∈ [0, 1]. (37)

In particular, we consider f (s) = 1, λ = 1/4, and k(s, t) = s
s+t

in above
equation, we have

F(x)(s) = x(s) − 1 − x(s)

4

∫ 1

0

s

s + t
x(t)dt, x ∈ C[0, 1], s ∈ [0, 1]. (38)

Finally, we approximate numerically a solution for F(x) = 0, where F(x) is given
in (38) by means of a discretization procedure. We solve the integral (38) by the
Gauss-Legendre quadrature formula:

∫ 1

0
f (t)dt ≈ 1

2

m∑
j=1

βjf (tj ), (39)

where βj are the weights and tj are the knots tabulated in Table 2 for m = 8.
Denote xi for the approximations of x(ti), i = 1, 2, ...8, we obtain the following
nonlinear system:

xi ≈ 1 + 1

8
xi

8∑
j=1

aij xj , where aij = tiβj

8(ti + tj )
, i = 1, ...8. (40)

For this application, we use the following stopping criterion

errmin = ‖x(k+1) − x(k)‖2 < 10−5,

the initial approximation assumed is x(0) = {1, 1, ..., 1}t for obtaining the
solution of this problem given by x∗ = {1.02171973146..., 1.07318638173
..., 1.12572489365...,1.16975331216...,1.20307175130...,1.22649087463...,1.241
52460059..., 1.24944851669...}t . Table 3 compares the iteration numbers and their
errors for this application. The results show that the proposed method 5MBJ is
better than 2NR and some other methods.
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Table 2 Weights and knots for the Gauss-Legendre formula (m = 8)

j tj βj

1 0.0198550717512... 0.101228536290...

2 0.101666761293... 0.222381034453...

3 0.237233795041... 0.313706645877...

4 0.408282678752... 0.362683783378...

5 0.591717321247... 0.362683783378...

6 0.762766204958... 0.31370664587...

7 0.898333238706... 0.222381034453...

8 0.980144928248... 0.101228536290...

5.2 The 2-D Bratu problem

We consider the solution of the Bratu problem in two dimensions

∂2U

∂x2
+ ∂2U

∂y2
+ λexp(U) = 0, x, y ∈ D = [0, 1] × [0, 1] (41)

subject to the boundary conditions

U(x, y) = 0, x, y ∈ D. (42)

The 2-D planar Bratu problem has two known, bifurcated, exact solutions for val-
ues of λ < λc, one solution for λ = λc, and no solutions for λ > λc. The exact
solution to (41) is known and can be presented here as

U(x, y) = 2 ln

⎡
⎣ cosh ( θ

4 ) cosh
(
(x − 1

2 )(y − 1
2 )θ

)

cosh
(
(x − 1

2 )
(

θ
2

))
cosh

(
(y − 1

2 )
(

θ
2

))
⎤
⎦, (43)

where θ is a constant to be determined, which satisfies the boundary conditions and
is carefully chosen and assumed to be the solution of the differential (41). The fol-
lowing procedure found in [12], for how to obtain the critical value of λ. Substituting

(43) in (41), simplifying and collocating at the point x = 1

2
and y = 1

2
because

it is the midpoint of the interval. Another point could be chosen, but low-order

Table 3 Comparison of iteration and errors for Chandrasekhar’s equation

M 2NR 3T M 4NR 4ACT 5ACT 5MBJ

1 4.9e-001 5.1e-001 5.1e-001 5.1e-001 5.1e-001 5.1e-001

2 1.6e-002 9.8e-004 1.5e-005 1.4e-005 1.7e-006 5.9e-006

3 1.5e-005 5.3e-012 3.8e-016 2.2e-016 – –

4 1.2e-011 – – – – –
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Fig. 1 Variation of θ for different values of λ

approximations are likely to be better if the collocation points are distributed
somewhat evenly throughout the region. Then, we have

θ2 = λ cosh2
(

θ

4

)
. (44)

Differentiating (44) with respect to θ and setting
dλ

dθ
= 0, the critical value λc

satisfies

θ = 1

4
λc cosh

(
θ

4

)
sinh

(
θ

4

)
. (45)

By eliminating λ from (44) and (45), we have the value of θc for the critical λc

satisfying
θc

4
= coth

(
θc

4

)
(46)

and θc = 4.798714561. We then get λc = 7.027661438 from (45).

Table 4 Comparison of number of λ’s for the 2-D Bratu problem for N = 10

Method M = 2 M = 3 M = 4 M = 5 Mλ

2NR 0 101 520 79 3.96

3T M 18 633 49 0 3.04

4NR 101 599 0 0 2.85

4ACT 101 599 0 0 2.85

5ACT 200 500 0 0 2.71

5MBJ 121 579 0 0 2.82

8MBJ 514 186 0 0 2.26
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Table 5 Comparison of number of λs for the 2-D Bratu problem for N = 20

Method M = 2 M = 3 M = 4 M = 5 Mλ

2NR 1 212 487 0 3.69

3T M 39 661 0 0 2.94

4NR 213 487 0 0 2.69

4ACT 213 487 0 0 2.69

5ACT 419 281 0 0 2.40

5MBJ 217 483 0 0 2.69

8MBJ 700 0 0 0 2

Figure 1 illustrates this critical value of λc. The differential (41) is usually dis-
cretized by using the finite-difference five-point formula with the step size h, the
resulting nonlinear equations are

F(Ui,j ) = −(4Ui,j − λh2exp(Ui,j )) + Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 (47)

where Ui,j is U at (xi, yj ), xi = ih, yj = jh, i, j = 1, 2, ...N . Equation 47 rep-
resents a set of N × N nonlinear equations in Ui,j which are then solved by using
iterative methods. We use N = 10 and N = 20 to test 700 λs in the interval (0, 7]
(interval width = 0.01). For each λ, we let Mλ be the minimum number of iterations
for which ‖U(k+1)

i,j − U
(k)
i,j ‖2 < 1e − 11, where the approximation U

(k)
i,j is calcu-

lated correctly to 14 decimal places. Let Mλ be the mean of iteration number for the
700 λs.

Tables 4 and 5 give the results for the 2-D Bratu problem, where M represents
number of iterations for convergence. It can be observed from the Table 5 that the
proposed method 8MBJ is convergent for all the grid points in two iterations. Also
the method 8MBJ is the most efficient method among the compared methods for
the cases N = 10 and N = 20 because it has the lowest mean iteration number.

6 Conclusion

In this work, we have proposed a two-step fifth order method which is an improve-
ment to the double-step Newton method and also proposed a multi-step version of
the two-step fifth order method. The main advantages of the proposed schemes are
the following: (i) they do not use second order Fréchet derivative and (ii) evaluate
only one inverse of first order Fréchet derivative. Also, we have verified that the root
α is a point of attraction for the proposed schemes in the sense of Ostrowski [14].
The proposed new methods and their theoretical results are validated through exam-
ples whose results are tabulated. The performance of our methods are compared with
Newton’s method and some existing methods. For practical applications, the new
methods are verified on Chandrasekhar’s equation and the 2-D Bratu problem which
gives encouraging results compared to some existing methods.
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