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Abstract In this paper, a class of nonlinear Riesz space-fractional Schrödinger
equations are considered. Based on the standard Galerkin finite element method in
space and Crank-Nicolson difference method in time, the semi-discrete and fully
discrete systems are constructed. By Brouwer fixed point theorem and fractional
Gagliardo-Nirenberg inequality, we prove the fully discrete system is uniquely solv-
able. Moreover, we focus on a rigorous analysis and consideration of the conservation
and convergence properties for the semi-discrete and fully discrete systems. Finally,
a linearized iterative finite element algorithm is introduced and some numerical
examples are given to confirm the theoretical results.

Keywords Nonlinear fractional Schrödinger equation · Finite element method ·
Crank-Nicolson scheme · Conservation · Unique solvability · Convergence

1 Introduction

Fractional calculus is considered as the generalization of the classical (or integer
order) calculus with a history of at least 300 years. It has turned out that derivatives
and integrals of non-integer order are very suitable for the description in many phe-
nomena. The growing number of fractional derivative applications in various fields
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of science and engineering indicate that there are significant demands for the mathe-
matical models of real objects. As the result of the non-local property of the fractional
derivatives, fractional differential equations are well used to describe the phenom-
ena in physics, chemistry, biology, engineering, and even economics [21, 24, 25, 28].
However, the analytical solutions to fractional differential equations are very difficult
to derive explicitly, although many considerable works have been carried on the the-
oretical analysis [11, 13, 36]. Therefore, there have been growing interests recently
in developing numerical methods for solving fractional differential equations. Until
now, various numerical methods are given for solving fractional differential equa-
tions such as finite difference methods [8, 19, 22, 41], spectral methods [18, 20],
collocation methods [38], finite element methods [5, 9], etc.

As is well known, the nonlinear Schrödinger equations (NLSs) play an important
role in quantum mechanics. During the past few decades, there are various numer-
ical methods in the numerical analysis and scientific computing for NLSs [2, 14,
15, 34]. In recent years, as the generalization of the standard nonlinear Schrödinger
equation, there have been growing interests in the analysis and computing for the
numerical solutions to nonlinear fractional Schrödinger equations (FSEs). For the
time-fractional Schrödinger equations, Mohebbi et al. [23] employed a meshless
technique based on collocation methods and radial basis functions, Khan et al. [16]
derived approximating solutions by homotopy analysis methods, and Wei et al. [35]
gave discrete solution via a rigorous analysis of implicit fully discrete local discontin-
uous Galerkin method. For the space-fractional Schrödinger equations, some fully or
linearly implicit difference methods were introduced and discrete conservation prop-
erties were analyzed in [30, 31, 33]. Two-dimensional problems were considered and
a fourth-order ADI scheme was presented in [40]. Some other classes of methods,
including HSS-like iteration method [26] and differential transform method [3], have
also been studied. To the best of our knowledge, however, the finite element method,
which is an important approach to solve partial differential equations, has not been
considered for such equations. Compared with finite difference methods, it has the
advantage of being able to utilize nonuniform meshes.

In this article, we are concerned with the Galerkin finite element method for the
following nonlinear fractional Schrödinger equation with the Riesz space fractional
derivative (1 < α ≤ 2)

iut − (−�)
α
2 u + f (u) = 0, − ∞ < x < +∞, 0 < t ≤ T , (1)

with the initial and Dirichlet boundary conditions given by

u(x, 0) = u0(x), − ∞ < x < +∞, (2)

lim|x|→∞ u(x, t) = 0, 0 < t ≤ T , (3)

where i2 = −1, f : C → C is locally Lipschitz and u0(x) is a given smooth
function. The Riesz fractional derivative is given as [37]

∂α

∂|x|α u(x, t) = −(−�)
α
2 u(x, t) = − 1

2cos(α
2π)

[xDα
Lu(x, t) + xD

α
Ru(x, t)], (4)
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where xD
α
Lu(x, t) and xD

α
Ru(x, t) are the left and right Riemann-Liouville fractional

derivatives defined as follows

xD
α
Lu(x, t) =

⎧
⎪⎨

⎪⎩

1
�(2−α)

(
d
dx

)2 ∫ x

−∞(x − s)1−αu(s, t)ds, 1 < α < 2,

d2

dx2
u(x, t), α = 2,

xD
α
Ru(x, t) =

⎧
⎪⎨

⎪⎩

1
�(2−α)

(

− d
dx

)2 ∫ +∞
x

(s − x)1−αu(s, t)ds, 1 < α < 2,

d2

dx2
u(x, t), α = 2.

The Riesz fractional derivative can also be given as the following equivalent
Fourier form [7]

− (−�)α/2u(x, t) := −F−1(|ξ |αũ(ξ, t)), (5)

where F is the Fourier transform and ũ is the fourier transform of u.
Generally speaking, we always assume Im(f (v), v) = 0, where (·, ·) be the inner

product on L2(R). In this paper, we are interested in a particular case

f (u) = β|u|2u, β ∈ R. (6)

For this case, Guo et al. [11] proved the existence and uniqueness of the global
smooth solution to the period boundary value problem, and derived fractional mass
and energy conservation

‖u‖ = ‖u0‖, E(t) = E(0), (7)

where

E(t) = ‖(−�)
α
4 u‖2 − β

2
‖u‖4

L4 . (8)

Here, ‖ · ‖ denotes the L2 − norm and ‖ · ‖L4 denotes the L4 − norm.
In [2], Akrivis et al. constructed two fully discrete finite element schemes to

approximate the solutions of the classical (integer order) nonlinear Schrödinger
equations and gave detailed analysis of unique solvability, conservation, and con-
vergence properties. The main objective of this paper is to extent and develop
FEMs to solve the nonlinear space-fractional Schrödinger equations subject to initial-
boundary conditions.We construct semi-discrete scheme and fully discrete one which
not only satisfy mass conservation but also satisfy energy conservation in some sense.
Meanwhile, by virtue of the Brouwer fixed point theorem and fractional Gagliardo-
Nirenberg inequality, the existence and uniqueness of the solution to the fully discrete
scheme are proved rigorously. Moreover, through the application of some useful lem-
mas, we giveL2-norm convergence results of semi-discrete scheme and fully discrete
one. In order that we can implement the proposed scheme efficiently, we introduce a
linearized iterative finite element algorithm, based on which, we give some numerical
examples to examine the theoretical results.
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The remainder of this paper is arranged as follows. In Section 2, the definitions and
properties of fractional derivative spaces and fractional Sobolev space are introduced.
In Section 3, we obtain a semi-discrete variational scheme for nonlinear FSE (1)–(3),
whose solution keeps mass conservation and energy conservation, and then give a
L2-norm error estimate with respect to the semi-discrete solution of u(t). In Section
4, we construct an implicit Galerkin finite element fully discrete system based on
the standard Galerkin finite element method in space and Crank-Nicolson difference
method in time. The unique solvablility, mass conservation, and energy conservation
properties of fully discrete system are studied, and then L2-norm convergence result
is derived. In Section 6, a linearized iterative finite element algorithm is proposed.
In Section 7, some numerical examples are reported to confirm our theoretical anal-
ysis. The final section is the summary of the paper. Throughout the paper, we use C
and Ci many times to denote positive constants which may be different in different
situations.

2 Preliminaries

In this section, we recall some definitions and lemmas we will use thereafter. For the
cases of multi-dimensional spaces, these results can be similarly generalized [6].

Definition 1 (Left fractional derivative space [10, 27]). For μ > 0, we define the
semi-norm

|u|Jμ
L (R) := ‖xD

μ
Lu‖, (9)

and norm

‖u‖J
μ
L (R) :=

(

‖u‖2 + |u|2
J

μ
L (R)

) 1
2

, (10)

and let Jμ
L,0(R) denote the closure of C∞

0 (R) with respect to ‖ · ‖J
μ
L (R).

Definition 2 (Right fractional derivative space [10, 27]). For μ > 0, we define the
semi-norm

|u|Jμ
R (R) := ‖xD

μ
Ru‖, (11)

and norm

‖u‖J
μ
R (R) :=

(

‖u‖2 + |u|2
J

μ
R (R)

) 1
2

, (12)

and let Jμ
R,0(R) denote the closure of C∞

0 (R) with respect to ‖ · ‖J
μ
R (R).

Definition 3 (Symmetric fractional derivative space [10, 27]). For μ > 0 and μ �=
n − 1

2 , n ∈ N , we define the semi-norm

|u|Jμ
S (R) := ∣

∣(xD
μ
Lu, xD

μ
Ru)

∣
∣
1
2 , (13)
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and norm

‖u‖J
μ
S (R) :=

(

‖u‖2 + |u|2
J

μ
S (R)

) 1
2

, (14)

and let Jμ
S,0(R) denote the closure of C∞

0 (R) with respect to ‖ · ‖J
μ
S (R).

Analogously, we define above spaces and respective semi-norms and norms in
bounded domain � ⊂ R. The following definition gives the semi-norm and norm of
fractional Sobolev space.

Definition 4 (Fractional Sobolev space [10, 27]) For μ > 0, we define the semi-
norm

|u|Hμ(R) := ∥
∥|ξ |μũ(ξ)

∥
∥

L2(R)
, (15)

and norm

‖u‖Hμ(R) :=
(

‖u‖2 + |u|2Hμ(R)

) 1
2

, (16)

and let Hμ
0 (R) denote the closure of C∞

0 (R) with respect to ‖ · ‖Hμ(R), where ξ and
ũ are the Fourier transform parameter and the Fourier transform of u, respectively.

For bounded domain �, we define the fractional Sobolev space Hμ(�) as follows
[17]

Hμ(�) = {ν ∈ L2(�) : ∃ν̃ ∈ Hμ(R), ν̃|� = ν} (17)

with the semi-norm

|ν|Hμ(�) = inf
ν̃∈Hμ(R),ν̃|�=ν

|ν̃|Hμ(R), (18)

and norm

‖ν‖Hμ(�) = inf
ν̃∈Hμ(R),ν̃|�=ν

‖ν̃‖Hμ(R). (19)

As [10, 27], we have the following lemmas about their equivalent properties.

Lemma 1 If μ > 0 and μ �= n − 1
2 , n ∈ N , then J

μ
L (R), J

μ
R (R), J

μ
S (R) and

Hμ(R) are equal with equivalent norms and semi-norms, and J
μ
L,0(R), J

μ
R,0(R),

J
μ
S,0(R) and H

μ
0 (R) are equal with equivalent norms and semi-norms.

Lemma 2 If μ > 0 and μ �= n− 1
2 , n ∈ N , then J

μ
L (�), Jμ

R (�), Jμ
S (�), and Hμ(�)

are equal with equivalent norms and semi-norms, and J
μ
L,0(�), J

μ
R,0(�), J

μ
S,0(�),

and H
μ
0 (�) are equal with equivalent norms and semi-norms.

Lemma 3 [29]. For μ > 0, we have

(xD
μ
Lu, xD

μ
Ru) = cos(μπ)‖xD

μ
Lu‖2, (xD

μ
Lu, xD

μ
Ru) = cos(μπ)‖xD

μ
Ru‖2. (20)
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3 Semi-discrete variational scheme

In this section, we mainly discuss the conservation and convergence of semi-discrete
variational formulation. Assume that the solution of the system (1)–(3) is negligibly
small outside of the interval � = (a, b), i.e., u|x∈R\� = 0. Denote Sh to be a family
of partitions of � with grid parameter h, and associated with Sh define the finite-
dimensional subspace Xh := {v ∈ C(�̄) ∩ H

α/2
0 (�) : v|K ∈ Pm−1, ∀K ∈ Sh},

where Pm−1 denotes the space of polynomials with the order no more than m − 1.
In order to obtain the variational formulation of (1)–(3), we introduce the following
lemma first.

Lemma 4 [39]. For 1 < α ≤ 2, if u, v ∈ Jα
L(�)(or J α

R(�)), u|∂� = 0, v|∂� = 0,
then

(xD
α
Lu, v) = (xD

α/2
L u, xD

α/2
R v), (xD

α
Ru, v) = (xD

α/2
R u, xD

α/2
L v).

By above lemma, we know

(
(−�)

α
2 u, v

) = 1

2cos(α
2π)

[(xDα/2
L u, xD

α/2
R v) + (xD

α/2
R u, xD

α/2
L v)]. (21)

Hence, we get the following variational formulation of problem (1)–(3)

i(ut , v) − B(u, v) + (f (u), v) = 0, ∀v ∈ H
α
2
0 (�), (22)

with the initial condition given by

u(x, 0) = u0(x), x ∈ �, (23)

where

B(u, v) := 1

2cos(α
2π)

[
(xD

α/2
L u, xD

α/2
R v) + (xD

α/2
R u, xD

α/2
L v)

]
.

For convenience, we define the following semi-norm and norm

|u| α
2

:= B(u, u)
1
2 , ‖u‖ α

2
:= (‖u‖2 + |u|2α

2
)
1
2 . (24)

It is easy to note by Lemmas 2 and 3 that |u| α
2
and ‖u‖ α

2
are equivalent with

the semi-norms and norms of J
μ
L (�), J

μ
R (�), Hμ(�) and J

μ
S (�). Therefore, the

fractional item B(·, ·) has the following properties: there exist positive constants C1,

C2 such that for u, v ∈ H
α
2
0 (�), 1 < α ≤ 2

B(u, v) ≤ C1‖u‖ α
2
‖v‖ α

2
, (25)

B(u, u) ≥ C2‖u‖2α
2
. (26)
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Next, in order to get the desired conclusions by finite element method, one may
define first the semi-discrete approximation of u(t) in the customary way. Define
uh : [0, T ] → Xh as the semi-discrete approximation of the exact solution u(t),
satisfying

i(∂tuh, vh) − B(uh, vh) + (f (uh), vh) = 0, ∀vh ∈ Xh, (27)

with the discrete initial condition

uh(0) = u0h, (28)

where u0h ∈ Xh is an approximation of u0, such that

‖u0 − u0h‖ ≤ chm. (29)

Now, we have following conservation results of semi-discrete scheme (27)–(29).

Theorem 1 If f is defined as (6), then the semi-discrete scheme (27)–(28) is
conservative in the sense

Qh(t) = Qh(0), 0 ≤ t ≤ T , (30)

Eh(t) = Eh(0), 0 ≤ t ≤ T , (31)

where

Qh(t) := ‖uh(t)‖2, Eh(t) := |uh(t)|2α
2

− β

2
‖uh(t)‖4L4(�)

are the mass and energy, respectively.

Proof Let vh = uh in (27), we have

i(∂tuh, uh) − B(uh, uh) + (f (uh), uh) = 0.

Since Im{(f (uh), uh)} = 0, then take the imaginary part of above equation to
arrive at

Re{(∂tuh, uh)} = 0.

Using relation

d

dt
‖uh‖2 = (∂tuh, uh) + (uh, ∂tuh) = 2Re{(∂tuh, uh)} = 0,

we obtain (30) immediately.
Similarly, let vh = ∂tuh in (27), we have

i(∂tuh, ∂tuh) − B(uh, ∂tuh) + (f (uh), ∂tuh) = 0.

Taking the real parts in the above equation, we immediately conclude

Re{B(uh, ∂tuh)} = Re{(f (uh), ∂tuh)}. (32)
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Notice that

d

dt
B(uh, uh)

= 1

2cos(α
2π)

d

dt

{

(xD
α/2
L uh, xD

α/2
R uh) + (xD

α/2
R uh, xD

α/2
L uh)

}

= 1

2cos(α
2π)

{

(xD
α/2
L (∂tuh), xD

α/2
R uh) + (xD

α/2
L uh, xD

α/2
R (∂tuh))

+(xD
α/2
R (∂tuh), xD

α/2
L uh) + (xD

α/2
R uh, xD

α/2
L (∂tuh))

}

= 1

2cos(α
2π)

{

2Re(xD
α/2
L uh, xD

α/2
R (∂tuh)) + 2Re(xD

α/2
R uh, xD

α/2
L (∂tuh))

}

= 2Re{B(uh, ∂tuh)},

and

β

2

d

dt
‖uh‖4L4(�)

= β

2

(∫

�

∂tuh · ūh · uh · ūhd� +
∫

�

uh · ∂t ūh · uh · ūhd�

+
∫

�

uh · ūh · ∂tuh · ūhd� +
∫

�

uh · ūh · uh · ∂t ūhd�

)

= β

(∫

�

|uh|2 · ūh · ∂tuhd� +
∫

�

|uh|2 · uh · ∂t ūhd�

)

= 2Re{(f (uh), ∂tuh)}.
Therefore, by (32), we have

d

dt
B(uh, uh) = β

2

d

dt
‖uh‖4L4(�)

,

which implies (31).

Next, our task is to derive the semi-discrete approximating property by using the
technique in [2]. To this end, we need introduce the following inverse inequality.

Lemma 5 [2]. For any discrete function vh ∈ Xh, the inequality

|vh|∞ ≤ Ch− 1
2 ‖vh‖ (33)

holds.

As in the case of the classical nonlinear Schrödinger equation (see [2]), we
suppose that, if u is the solution of (1)–(3), there holds

lim
h→0

sup
0≤t≤T

inf
vh∈Xh

{|u(t) − vh|∞ + h− 1
2 ‖u(t) − vh‖} = 0. (34)
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Define

ϒδ := {
y ∈ C : |y − u(x, t)| < δ, ∃(x, t) ∈ �̄ × [0, T ]},

and function ϕh : [0, T ] → Xh, such that

{
i(∂tϕh, vh) − B(ϕh, vh) + (fδ(ϕh), vh) = 0, ∀vh ∈ Xh, t ∈ [0, T ],
ϕh(0) = u0h,

(35)

where fδ : C → C is a global Lipschitz continuous function coincide with f

on ϒδ [2]. In order to find a bound for ‖u(t) − uh(t)‖, we shall firstly estimate
‖u(t) − ϕh(t)‖. For achieving this goal, we give the definition of Ritz Projection

Ph : H
α
2
0 (�) → Xh, satisfying

B(Phu, vh) = B(u, vh), vh ∈ Xh. (36)

By [4], we know there exists a constant C > 0 satisfying the following

approximating properties: if u ∈ Hm(�) ∩ H
α
2
0 (�), α/2 < η ≤ m

‖u − Phu‖ ≤ Chη‖u‖η, α �= 3/2; (37)

‖u − Phu‖ ≤ Chη−κ‖u‖η, α = 3/2, 0 < κ < 1/2. (38)

Split

u − ϕh = (u − Phu) + (Phu − ϕh) := ρ + θ.

We firstly discuss the case of α �= 3/2. Let v = vh ∈ Xh in (22) and take a
subtraction of (22) and (35) to arrive at

i(θt , vh) − B(θ, vh) = −i(ρt , vh) + (fδ(ϕh) − fδ(u), vh), (39)

where is due to B(ρ, vh) = 0 and the coincidence of f and fδ on ϒδ . Set vh = θ in
(39), and take imaginary parts to obtain

Re{(θt , θ)} = Re{−(ρt , θ)} + Im{(fδ(ϕh) − fδ(u), θ)}. (40)

Then, by Cauchy-Schwarz inequality and the global Lipschitz property of fδ , we
have

Re{(θt , θ)} ≤ (‖ρt‖ + L(‖ρ‖ + ‖θ‖))‖θ‖,
where L is the Lipschitz constant. Hence, we have

d

dt
‖θ‖ ≤ ‖ρt‖ + L(‖ρ‖ + ‖θ‖). (41)

By (37), we know that

‖ρ‖ ≤ Chm‖u‖m, ‖ρt‖ ≤ Chm‖ut‖m.
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Above inequalities and (41) yield

d

dt
‖θ‖ ≤ C

(‖θ‖ + hm
)
, (42)

where C > 0 is a constant depending on L, u, and ut . By (42) and Gronwall’s
Lemma, we conclude

‖θ(t)‖ ≤ C(θ(0) + hm). (43)

By using Triangle inequality and (29), we obtain

‖u(t) − ϕh(t)‖ ≤ C(‖u0 − u0h‖ + hm) ≤ Chm, (44)

where C is a constant independent of h. By Lemma 5 and Triangle inequality, we get
following one for any vh ∈ Xh

|u(t) − ϕh(t)|∞ ≤ |ρ|∞ + |θ |∞
≤ |u(t) − vh(t)|∞ + |vh(t) − Phu(t)|∞ + |θ |∞
≤ |u(t) − vh(t)|∞ + h− 1

2 ‖vh(t) − Phu(t)‖ + h− 1
2 ‖θ‖

≤ |u(t) − vh(t)|∞ + h− 1
2 ‖vh(t) − u(t)‖ + h− 1

2 ‖u(t)

−Phu(t)‖ + h− 1
2 ‖θ‖.

Therefore, via (34), (37), and (43), we have

lim
h→0

|u(t) − ϕh(t)|∞ = 0, 0 ≤ t ≤ T , (45)

which shows there exists h0 > 0 such that for h ≤ h0, ϕh(x, t) ∈ ϒδ for (x, t) ∈
�̄ × [0, T ]. Equation (45) also implies ϕh = uh. Hence, by (44), we get

‖u(t) − uh(t)‖ ≤ Chm. (46)

By (38), we immediately get the error estimate for the case of α = 3/2.
The following theorem follows immediately from what we have discussed above.

Theorem 2 Suppose that u is the exact solution to (1)–(3), uh is the solution of
semi-discrete scheme (27)–(28) and u0h satisfies (29). Then

max
0≤t≤T

‖u(t) − uh(t)‖ ≤ Chm, α �= 3

2
, (47)

and

max
0≤t≤T

‖u(t) − uh(t)‖ ≤ Chm−κ , α = 3/2, 0 < κ <
1

2
(48)

hold.

4 Fully discrete scheme

In this section, we first introduce the fully discrete scheme and then give its rigorous
analysis of the conservation, unique solvability, and convergence properties. Assume
that Un ∈ Xh is the approximation of u(x, t) with t = tn. Let t = t

n+ 1
2
in (22).
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We discretize (22) by CN scheme in temporal direction, and finite element method in
spatial direction. Then, we get the fully discrete scheme of variational formulation,
which is to find Un+1 ∈ Xh, such that

i(δtU
n+ 1

2 , vh) − B(Un+ 1
2 , vh) + (f (Un+ 1

2 ), vh) = 0, ∀vh ∈ Xh, 0 ≤ n ≤ N − 1,
(49)

with the initial condition
U0 = Phu

0, (50)

where δtU
n+1/2 = (Un+1 − Un)/τ , Un+1/2 = (Un + Un+1)/2. Akrivis et al. [2]

show that the scheme (49)–(50) hold

‖Un‖ = ‖U0‖, 1 ≤ n ≤ N,

for α = 2. However, the energy conservative does not keep all the time. Accordingly,
we are interested in another fully discrete scheme, which is to find Un+1 ∈ Xh, such
that for 0 ≤ n ≤ N − 1

i(δtU
n+ 1

2 , vh)−B(Un+ 1
2 , vh)+ β

2

(

(|Un+1|2 +|Un|2)Un+ 1
2 , vh

)

= 0, ∀vh ∈ Xh,

(51)
with the same initial condition given by (50).

4.1 Conservation

The semi-discrete scheme (27)–(28) satisfies two conservation laws given by The-
orem 1. We would like to prove that the fully discrete scheme (51) with initial
condition (50) is also keep these invariant quantities. This subsection is devoted to
considering the conservation properties of the discrete solution Un(0 ≤ n ≤ N).

Lemma 6 For the fully discrete solution Un ∈ Xh, 0 ≤ n ≤ N , we have

Re
{
B(Un+ 1

2 , δtU
n+ 1

2 )
} = 1

2τ

(
|Un+1|2α

2
− |Un|2α

2

)
. (52)

Proof Using the definition of B(·, ·), we get

B
(
Un+ 1

2 , δtU
n+ 1

2

)

= 1

2cos(α
2π)

[(

xD
α/2
L Un+ 1

2 , xD
α/2
R δtU

n+ 1
2

)
+

(

xD
α/2
R Un+ 1

2 , xD
α/2
L δtU

n+ 1
2

)]

= 1

4τcos(α
2π)

[(

x
D

α/2
L Un+1, xD

α/2
R Un+1) − (

x
D

α/2
L Un+1, xD

α/2
R Un

)

+ (

x
D

α/2
L Un, xD

α/2
R Un+1) − (

x
D

α/2
L Un, xD

α/2
R Un

) + (

x
D

α/2
R Un+1, xD

α/2
L Un+1)

− (

x
D

α/2
R Un+1, xD

α/2
L Un

) + (

x
D

α/2
R Un, xD

α/2
L Un+1) − (

x
D

α/2
R Un, xD

α/2
L Un

)]

= 1

2τ

(
|Un+1|2α

2
− |Un|2α

2

)
+ 1

2τ

(

B(Un,Un+1) − B(Un+1, Un)

)

.
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It is easy to note that B(Un, Un+1) is conjugate with B(Un+1, Un), hence, we have

Re
{
B

(
Un+ 1

2 , δtU
n+ 1

2

)}
= 1

2τ

(
|Un+1|2α

2
− |Un|2α

2

)
.

This completes the proof.

Theorem 3 The fully discrete scheme (51) with the initial condition (50) is conser-
vative in the sense

Qn = Q0, 0 ≤ n ≤ N, (53)

En = E0, 0 ≤ n ≤ N, (54)

where

Qn := ‖Un‖2, En := |Un|2α
2

− β

2
‖Un‖4

L4(�)

are the mass and energy, respectively, in the fully discrete sense.

Proof Let vh = Un+ 1
2 in (51), we have for 0 ≤ n ≤ N − 1,

i(δtU
n+ 1

2 , Un+ 1
2 ) − B(Un+ 1

2 , Un+ 1
2 ) + β

2

(

(|Un+1|2 + |Un|2)Un+ 1
2 , Un+ 1

2

)

= 0.

(55)
We note that Im

{β
2

(
(|Un+1|2 + |Un|2)Un+ 1

2 , Un+ 1
2
)} = 0 and Im

{
B(Un+ 1

2 ,

Un+ 1
2 )

} = 0, thus, take the imaginary part of (55) to arrive at

(δtU
n+ 1

2 , Un+ 1
2 ) = ‖Un+1‖2 − ‖Un‖2 = 0, (56)

which implies (53). Let vh = δtU
n+ 1

2 in (51), then we have for 0 ≤ n ≤ N − 1,

i(δtU
n+ 1

2 , δtU
n+ 1

2 )−B(Un+ 1
2 , δtU

n+ 1
2 )+ β

2

(

(|Un+1|2+|Un|2)Un+ 1
2 , δtU

n+ 1
2

)

= 0.

(57)

Take the real parts of (57) to arrive at

Re
{
B(Un+ 1

2 , δtU
n+ 1

2 )
} = β

2
Re

{(

(|Un+1|2 + |Un|2)Un+ 1
2 , δtU

n+ 1
2

)}

. (58)

By Lemma 6, we have

1

2τ

(
|Un+1|2α

2
− |Un|2α

2

)
= β

4τ

(
‖Un+1‖4

L4(�)
− ‖Un‖4

L4(�)

)
. (59)

Thus, (54) is valid and the proof is complete.

Remark 1 It is noted from Theorem 3 that the numerical solution of fully discrete
scheme (51) is long-time bounded, i.e., there exists some constant C > 0, such that

‖Un‖ ≤ C, 0 ≤ n ≤ N. (60)
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4.2 Solvability and uniqueness

In order to ensure well-posedness of the algorithm, in this subsection, we show that
the fully discrete scheme (51) with the initial condition (50) is uniquely solvable.
Akrivis et al. in [2] use Brouwder fixed point theorem and integer Gagliardo-
Nirenberg inequality to prove the unique solvability of classical NLS. To extent the
method to the nonlinear FSE, we need use fractional Gagliardo-Nirenberg inequality
shown in Lemma 8.

Lemma 7 (Brouwder fixed point theorem [1]). Let (H , < ·, · >) be a finite dimen-
sional inner product space, ‖ · ‖ be the associated norm, and f : H → H be
continuous. Assume, moreover, that there exists λ > 0 such that for every z ∈ H
with ‖z‖ = λ there holds Re(f (z), z) ≥ 0. Then, there exists a z∗ ∈ H such that
g(z∗) = 0 and ‖z∗‖ ≤ λ.

Lemma 8 (Fractional Gagliardo-Nirenberg inequality [12]). Assume d is the dimen-
sional number. Let 1 ≤ p1, p2 < ∞, 0 < θ < p < ∞, 0 < s < d and
1 < p1 < d/s. We have

‖u‖Lp ≤ B
θ
p ‖(−�)s/2u‖

θ
p

Lp1 ‖u‖
p−θ
p

Lp2 , (61)

with

θ

(
1

p1
− s

d

)

+ p − θ

p2
= 1,

and

B = 2−sπ−s/2�((d − s)/2)

�((d + s)/2)

(
�(d)

�(d/2)

)s/d

.

Lemma 9 [2]. For ∀z1, z2 ∈ C, we have

∣
∣
∣
∣|2z1 − z|2z1 − |2z2 − z|2z2

∣
∣
∣
∣ ≤ 4

(

|z1| + |z2| + 1

2
|z|

)2

|z1 − z2|. (62)

Remark 2 By Lemma 8, for d = 1, letting s = α/2, p = 4, p1 = p2 = 2, we have
θ = 2/α and thus, according to the equivalent quality between norm and norm, we
get

‖u‖4
L4 ≤ B1‖(−�)α/4u‖ 2

α ‖u‖4− 2
α ≤ C|u|

2
α
α
2
‖u‖4− 2

α , (63)

where B1 and C are positive constants dependent of α.

Theorem 4 The solution of fully discrete finite element scheme (51) with initial
condition (50) is uniquely solvable.
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Proof Rewrite (51) as following one by using the relations δtU
n+1/2 = (Un+1 −

Un)/τ and Un+1/2 = (Un+1 + Un)/2

i
(
Un+ 1

2 , vh) − i(Un, vh

)
− 1

2
τB(Un+ 1

2 , vh)+ 1

4
βτ

(

(|2Un+ 1
2 −Un|2+|Un|2)Un+ 1

2 , vh

)

= 0.

(64)

For convenience, we denote � : Xh → Xh, such that

(�(ω), vh) = 1

2
B(ω, vh) − β

4

(

(|2ω − Un|2 + |Un|2)ω, vh

)

, ∀ω ∈ Xh.

Now, we first consider the existence of the solution to the following equation

Un+ 1
2 = Un − iτ�(Un+ 1

2 ). (65)

In order to prove the solvability of fully discrete scheme (50)–(51), we just need
prove the solution of (65) with initial condition (50) exists. For achieving this result,
we let F : Xh → Xh

F (ω) = ω − Un + iτ�(ω). (66)

By Lemma 7, we intend to conclude Re{(F (w), w)} ≥ 0. We note that
Im{(�(ω), ω)} = 0 and thus

Re{(F (ω), ω)} = ‖ω‖2 − Re{(Un, ω)}
≥ ‖ω‖2 − ‖Un‖ · ‖ω‖
= ‖ω‖(‖ω‖ − ‖Un‖).

Setting ‖ω‖ = ‖Un‖, which is a constant by Theorem 4.1, we get

Re{(F (ω), ω)} ≥ 0.

By Lemma 7, we complete the proof of the existence of discrete solution.
Next, we proceed to prove the uniqueness of the discrete solution Un+1. Assume

that there are two solutions X, Y ∈ Xh to solve the fully discrete scheme (50)–(51).
Then by (65), we get

‖X − Y‖2 = −iτ (�(X) − �(Y), X − Y ). (67)

By definition, we have

(�(X) − �(Y),X − Y ) = 1

2
B(X,X − Y ) − β

4

(

(|2X − Un|2 + |Un|2)X,X − Y

)

−
(
1

2
B(Y,X − Y ) − β

4
((|2Y − Un|2 + |Un|2)Y,X − Y )

)

= 1

2
B(X − Y,X − Y ) − β

4
(g(X, Y ),X − Y )

−β

4
(|Un|2(X − Y ),X − Y ),
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where

g(X, Y ) := |2X − Un|2X − |2Y − Un|2Y.

It is straight to note that B(X − Y, X − Y )/2 and −β(|Un|2(X − Y ),X − Y )/4
are real numbers. Hence, by taking the real parts of (67), we have

‖X − Y‖2 = −Im

{
βτ

4
(g(X, Y ), X − Y )

}

. (68)

By virtue of Hölder inequality, we get

‖X − Y‖2 ≤ |β|τ
4

‖g(X, Y )‖
L

4
3 (�)

‖X − Y‖L4(�). (69)

Then, take the imaginary part of (67) to arrive at

|X − Y |2α
2

= β

2
Re

{

(g(X, Y ), X − Y )

}

+ β

2
(|Un|2(X − Y ),X − Y ). (70)

Similarly, by virtue of Hölder inequality, we get

|X − Y |2α
2

≤ β

2
‖g(X, Y )‖

L
4
3 (�)

‖X − Y‖L4(�) + β

2
(|Un|2(X − Y ),X − Y ). (71)

According to Lemma 9 and Hölder inequality, we conclude

‖g(X, Y )‖
L

4
3 (�)

=
(∫

�

|g(X, Y )| 43 dx

) 3
4

≤ 4

(∫

�

(|X| + |Y | + 1

2
|Un|) 8

3 |X − Y | 43 dx

) 3
4

≤ 4

(∫

�

(|X| + |Y | + 1

2
|Un|)4dx

) 1
2
(∫

�

|X − Y |4dx

) 1
4

≤ C‖X, Y,Un‖2
L4(�)

‖X − Y‖L4(�), (72)

where ‖X, Y,Un‖L4(�) := max(‖X‖L4(�), ‖Y‖L4(�), ‖Un‖L4(�)) and C is a positive
constant. Suppose the initial condition U0 satisfies

|U0| α
2

≤ C̄, (73)

where C̄ > 0 is a constant independent of h and τ . In fact, since U0 = Phu
0 and

u0 ∈ H
α
2
0 (�), then taking vh = Phu

0 in (36), we easily yield (73).
Next, we consider two cases: β ≥ 0 and β < 0. For β ≥ 0, by (53) and (63), we

have

‖Un‖4
L4(�)

≤ c̃|Un|
2
α
α
2
, (74)
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where c̃ > 0 is a constant dependent of d and α. Then, by (54) and (73), we obtain

|Un|2α
2

− c̃β

2
|Un|

2
α
α
2

− C ≤ 0.

We note that |Un| α
2
is impossible to be an infinite real number, thus we conclude

|Un| α
2

≤ C′, (75)

where C′ is a positive constant. For β < 0, by (54) and (74), we have

‖Un‖4
L4(�)

≤ c̃|Un|
2
α
α
2

≤ C. (76)

By the similar analysis as (74)–(76), we conclude ‖X, Y,Un‖4
L4(�)

≤ C. Next,
use (63) again to arrive at

‖X − Y‖4
L4(�)

≤ C|X − Y |
2
α
α
2
‖X − Y‖4− 2

α . (77)

Then, by (69) and (72), we get

‖X − Y‖4− 2
α ≤ C|β|2− 1

α τ 2−
1
α ‖X − Y‖4−

2
α

L4(�)
. (78)

By Hölder inequality and (76), we obtain
∫

�

|Un|2|X − Y |2dx ≤ ‖Un‖2
L4(�)

‖X − Y‖2
L4(�)

≤ C‖X − Y‖2
L4(�)

.

According to (71) and (72), we have

|X − Y |
2
α
α
2

≤ C|β| 1α ‖X − Y‖
2
α

L4(�)
. (79)

Equations (77)–(79) yield

‖X − Y‖4
L4(�)

≤ C|β|2τ 2−1/α‖X − Y‖4
L4(�)

. (80)

By (80), we can get X = Y , which implies the solution of fully discrete scheme is
unique.

This completes the proof.

In the last part, we analyze the error between the finite element approximation
given by (50)–(51) and the true solution. By the similar method as the integer order
Schrödinger-type equation [2], we obtain a prior error estimate for the approximation
given in Theorem 5.

Theorem 5 Suppose that the exact solution u of the system (1)–(3) is sufficiently
smooth in bounded domain �. Let τ = o(h1/4). Then there exists a unique discrete
solution Un such that

max
0≤n≤N

‖un − Un‖ ≤ C(τ 2 + hm), α �= 3

2
, (81)
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and

max
0≤n≤N

‖un − Un‖ ≤ C(τ 2 + hm−κ), α = 3

2
, 0 < κ <

1

2
, (82)

where un = u(x, tn) and C > 0 is a constant independent of h and τ .

Proof First, we suppose that α �= 3/2. Denote H : C × C → C ,

H(z1, z2) = β

4
(|z1|2 + |z2|2)(z1 + z2).

For given δ > 0, we let

ϒ̃δ = {
(z1, z2) ∈ C ×C : |z1 −u(x, t)| < δ, |z2 −u(y, s)| < δ, ∃ (x, t), (y, s) ∈ �̄×[0, T ]},

andHδ : C ×C → C be a globally Lipschitz continuous function which is equivalent
to H on ϒ̃δ . Define �n, 0 ≤ n ≤ N , in Xh by

{
i(δt�

n+ 1
2 , vh) − B(�n+ 1

2 , vh) + (Hδ(�
n+1, �n), vh) = 0, ∀vh ∈ Xh, 0 ≤ n ≤ N − 1,

�0 = u0h.

(83)

We note by Theorem 4 that �n(0 ≤ n ≤ N) is the unique solution to (83). For
convenience, we split

�n − un = (�n − Phu
n) + (Phu

n − un) := θn + ρn. (84)

By (83) and (1), we get

i(θn+1 − θn, vh) − τ

2
B(θn+1 + θn, vh) = i

4∑

k=1

Yk, ∀vh ∈ Xh, (85)

where

Y1 := (ρn − ρn+1, vh),

Y2 := (
τu

n+ 1
2

t − (un+1 − un), vh

)
,

Y3 := i

[

τB(un+ 1
2 , vh) − τ

2

(

B(un+1, vh) + B(un, vh)

)]

,

Y4 := i τ

(

Hδ(�
n+1, �n) − fδ(u

n+ 1
2 ), vh

)

.

By Cauchy-Schwarz inequality, Taylor’s Theorem, and (37), we have

‖Y1‖ ≤ C1τhm‖vh‖,
‖Y2‖ ≤ C2τ

3‖vh‖,
‖Y3‖ ≤ τ‖(−�)

α
2 ((un+1 + un)/2 − un+ 1

2 )‖ · ‖vh‖
≤ C3τ

3‖vh‖,
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where Ck(k = 1, 2, 3) > 0 are constants independent of h and τ . For Y4, we estimate
it by the following way

Y4 = τ(Hδ(�
n+1, �n) − fδ(u

n+ 1
2 ), vh)

= τ

(

Hδ(�
n+1, �n) − Hδ(u

n+1, un), vh

)

+τ

(

Hδ(u
n+1, un) − β

2
|un+ 1

2 |2(un + un+1), vh

)

+τ

(
β

2
|un+ 1

2 |2(un + un+1) − fδ(u
n+ 1

2 ), vh

)

:=
3∑

i=1

τ(Li, vh).

For Li(i = 1, 2, 3), we have

‖L1‖ ≤ L̃(‖�n − un‖ + ‖�n+1 − un+1‖) ≤ C(L̃)(‖θn‖ + ‖θn+1‖ + hm),

‖Lj‖ ≤ C(u, β)τ 2, j = 2, 3,

where C(L̃) > 0 is a constant dependent of Lipschitz constant L̃ and C(u, β) > 0 is
constant dependent of u and β. Hence, we obtain

‖Y4‖ ≤ C4τ(‖θn‖ + ‖θn+1‖ + τ 2 + hm)‖vh‖,

where C4 > 0 is constant depending on u, β, and L̃ but independent of h and τ . Let
vh = (θn + θn+1)/2 in (85) and take the imaginary part to arrive at

‖θn+1‖ ≤ ‖θn‖ + Ĉτ (‖θn‖ + ‖θn+1‖ + τ 2 + hm). (86)

From (86), we get the following inequality when τ is chosen sufficiently small

‖θn‖ ≤ C(τ 2 + hm),

where C = (e2ĈT /(1−Ĉ/2) − 1)/2Ĉ. Then, triangle inequality yields

‖�n − un‖ ≤ C(τ 2 + hm). (87)

Next, we proceed to get the conclusion (81). By similar deduction as (45), we get
the following inequality for any vh ∈ Xh,

|un − �n|∞ ≤ |un − vh|∞ + |vh − Phu
n|∞ + |Phu

n − �n|∞
≤ |un − vh|∞ + Ch− 1

2 (‖vh − un‖ + ‖un − Phu
n‖) + |θn|∞

≤ |un − vh|∞ + Ch− 1
2 ‖vh − un‖ + Chm− 1

2 + Ch− 1
2 τ 2.



Numer Algor (2017) 74:499–525 517

According to (34) and given condition τ = o(h1/4), we can see that for sufficient
small h > 0,

|un − �n|∞ ≤ δ

2
, ∀ 0 ≤ n ≤ N, (88)

which implies �n ∈ ϒ̃δ . Then, by (83), we get �n = Un. Now, it would be straight
to get (81) from (87) by substituting �n by Un.

By (38), the stated result for α = 3/2 follows analogously. Thus, we complete the
proof.

5 Iterative algorithm

It is noted that the discrete scheme (51) with initial condition (50) is a fully implicit
method. In order to solve the discrete problem, we propose a linearized iterative
algorithm to compute the solution of the fully discrete finite element scheme in this
section.

As [33], we define the following algorithm, that is to find Un+1(s+1) ∈ Xh, such
that for 0 ≤ n ≤ N − 1, s ≥ 0,

i

(
Un+1(s+1) − Un

τ
, vh

)

− 1

2
B(Un+1(s+1) + Un, vh) + (Hn+1(s), vh) = 0, (89)

with the boundary condition

Un+1(s+1) = 0, on ∂�, (90)

where

Hn+1(s) = β

4
(|Un+1(s)|2 + |Un|2)(Un+1(s) + Un), (91)

and

Un+1(0) =
{

Un, n = 0,
2Un − Un−1, n ≥ 1.

(92)

We note that the scheme (89)–(92) is linearized and once we get the solution
Un+1(s+1), then the discrete solution of problem (51) is reached if Un+1(s+1) con-
verges. We also notice that the global stiff matrix of (89) does not change as the
process of iterative, which can reduce the amount of computation efficiently.

6 Numerical experiments

In this section, we give some numerical examples to support our theoretical analysis
proposed in the previous sections. Consider the following nonlinear Riesz space-
fractional Schrödinger equation [30]

iut − (−�)
α
2 u + 2|u|2u = 0, (93)

with the initial value condition

u(x, 0) = sech(x) · exp(2ix). (94)
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When α = 2, the problem becomes the classic integer-order Schrödinger equation
and by [30, 32], we know the exact solution is given by

u(x, t) = sech(x − 4t) · exp(i(2x − 3t)). (95)

Since the initial value u(x, 0) exponentially decays to zero with the variable x
away from the origin, the wave function can be negligible outside the interval [a, b]
for a � 0 and b � 0, so that we can set u(a, t) = u(b, t) = 0 when a is chosen suffi-
ciently small and b is chosen sufficiently big. In this section, we set a = −20, b = 20
and the outer iteration tolerance tol = 10−8.

According to the fully discrete iterative FEM scheme (89)–(92), comparing with
finite element methods to solve traditional differential equations, the mainly difficult
parts are the computing of bilinear form B(Un+1(s+1) + Un, vh) and nonlinear item
(Hn+1(s), vh). In this paper, we take the Lagrange linear shape functions for example.
Let

� = (−20, 20), �̄ = N∪
i=1

ei, ei = [xi, xi+1](i = 1 · · · N), Li = (Li
1, L

i
2),

where

Li
1 =

{
xi+1−x

h
, x ∈ ei,

0, else,

and

Li
2 =

{
x−xi

h
, x ∈ ei,

0, else.

Since the fractional derivative is a non-local operator, the compute of bilinear form
B(·, ·) is more complex than the case of integer one. Bu et al. [6] gives detailed
statements, thus we do not need state here. For the computing of the nonlinear item
(Hn+1(s), vh), we write the main steps as follows. Let

Un+1(s)|ei
= asL

i
1 + bsL

i
2, Un|ei

= aLi
1 + bLi

2. (96)

It is obvious that

(Hn+1(s), vh) =
(
1

2
(|Un+1(s)|2 + |Un|2)(Un+1(s) + Un), vh

)

=
N∑

i=1

(
1

2
(|Un+1(s)|2 + |Un|2)(Un+1(s) + Un), vh

)

i

, (97)

where (u, v)i := ∫ xi+1
xi

uv̄dx. When x ∈ ei , we have

|Un+1(s)|2 = |asL
i
1 + bsL

i
2|2 = |as |2(Li

1)
2 + |bs |2(Li

2)
2 + F(as, bs)L

i
1L

i
2, (98)

and

|Un|2 = |aLi
1 + bLi

2|2 = |a|2(Li
1)

2 + |b|2(Li
2)

2 + F(a, b)Li
1L

i
2, (99)
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where F(x, y) := 2Re(x)Re(y)+2Im(x)Im(y). Assume vh|ei
= vi

1L
i
1 +vi

2L
i
2 and

combine (96)–(99) to arrive at

(Hn+1(s), vh)i = (P1, P2)A
i
1(v

i
1, v

i
2)

T + (P3, P4)A
i
2(v

i
1, v

i
2)

T , (100)

where

(P1, P2) :=
(

(|as |2 + |a|2)(as + a), (|bs |2 + |b|2)(bs + b)

)

,

(P3, P4) :=
(

(|as |2 + |a|2)(bs + b) + Q(as + a), (|bs |2 + |b|2)(as + a) + Q(bs + b)

)

,

Q :=
(

2Re(as)Re(bs) + 2Im(as)Im(bs)

)

+
(

2Re(a)Re(b) + 2Im(a)Im(b)

)

,

and

Ai
1 :=

(
((Li

1)
3, Li

1)i ((Li
1)

3, Li
2)i

((Li
2)

3, Li
1)i ((Li

2)
3, Li

2)i

)

=
(

h
5

h
20

h
20

h
5

)

,

Ai
2 :=

(
((Li

1)
2Li

2, L
i
1)i ((Li

1)
2Li

2, L
i
2)i

((Li
2)

2Li
1, L

i
1)i ((Li

2)
2Li

1, L
i
2)i

)

=
(

h
20

h
30

h
30

h
20

)

.

The following step is to construct the global stiff matrix similar as the process of
classical integer-order problems. Based on above analysis, we obtain the following
results.

Firstly, we take τ = h = 0.05, then the figures of the numerical solutions to (93)–
(94) for different α are depicted in Figs. 1, 2, 3, and 4. We note that the order α will
affect the shape of the soliton. When α becomes smaller, the shape of the soliton will
change more quickly. As shown in [30], this property of the fractional Schrödinger
equation can be used in physics to modify the shape of wave without the change of the
nonlinearity and dispersion effects. From Figs. 1, 2, 3, and 4, when α tends to 2, the
numerical solutions of the nonlinear fractional Schrödinger equation are convergent

Fig. 1 FEM numerical solutions for α = 1.1 (left) and α = 1.3 (right)
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Fig. 2 FEM numerical solutions α = 1.5 (left) and α = 1.7 (right)

to the solutions of the usual classical integer one. By the view of Fig. 5, we see that
it will not only change the height and width of the solitary wave solution but produce
two turning points.

Secondly, numerical accuracy of the proposed iterative finite element scheme is
examined. For α = 2, the numerical solution of the fractional equation is conver-
gent to the classical non-fractional one and the exact solution is given by (95). As
expected, Table 1 shows that the method has second order accuracy for α = 2 both in
temporal and spatial directions. However, for 1 < α < 2, there are no way to get the
exact solution of problem (93)–(94). Accordingly, we have to get the ‘exact’ solution
by choosing a very fine mesh and a sufficiently small time step. In this section, we
select h = 0.01 and τ = 0.00005. Table 2 confirms the theoretical accuracy stated in
Theorem 5. Here, u is the ‘exact’ solution, uh is the numerical one, and eh := u−uh

is the error function.
Finally, we compute the discrete conservation laws to confirm Theorem 3. Let

τ = h = 0.05. Tables 3 and 4 show the values of mass Qn and energy En at different
time for different α. Figure 6 depicts the evolution of mass Qn and energy En. By
Fig. 6, we note that the mass Qn is independent of the time and the value of α, as a
result, the four curves in the left figure of Fig. 6 overlap with each other. However,
the energy En is independent of the time but dependent of the value of α. Meanwhile,

Fig. 3 FEM numerical solutions for α = 1.9 (left) and α = 1.99 (right)
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Fig. 4 FEM numerical solutions for α = 2.0

by Tables 3 and 4, the different values of mass Qn and energy En for fixed α mainly
comes from the choose of the iteration tolerance (10−8), therefore, once we reduce
the iteration tolerance, the conservation results will be better. All these show that the
scheme (89)–(91) preserves the mass and energy conservation very well.
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Fig. 5 FEM numerical solutions at the time t = 0, 1, 2, 3 for α = 1.7
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Table 1 The error and the order
of convergence using piecewise
P 1 elements for α = 2 with
τ = 0.1h

τ h ‖u − uh‖ Order

0.02 0.2 2.3491e-01

0.01 0.1 6.0874e-02 1.9482

0.005 0.05 1.5352e-02 1.9874

0.0025 0.025 3.8464e-03 1.9969

0.00125 0.0125 9.6214e-04 1.9992

Table 2 The error ‖u − uh‖
and the order of convergence
using piecewise P 1 elements for
different α (τ = 0.1h)

α h = 0.1 h = 0.05 Order

1.1 1.0378e-01 2.4162e-02 2.1027

1.3 1.6540e-01 3.8015e-02 2.1214

1.5 2.1429e-01 4.5236e-02 2.2441

1.7 2.2121e-01 4.6317e-02 2.2558

1.9 2.2996e-01 5.1283e-02 2.1648

1.99 2.4834e-01 5.7698e-02 2.1057

Table 3 The value of Qn at different time for different α

T α = 1.1 α = 1.5 α = 1.9 α = 2.0

0 1.9963931340652 1.9963931340653 1.9963931340653 1.9963931340653

1/2 1.9963931341950 1.9963931321130 1.9963931349491 1.9963931348856

1 1.9963931347466 1.9963931361416 1.9963931370828 1.9963931357332

3/2 1.9963931381068 1.9963931361416 1.9963931422997 1.9963931366545

2 1.9963931307797 1.9963931250771 1.9963931449086 1.9963931376258

5/2 1.9963931305633 1.9963931266803 1.9963931471321 1.9963931386181

3 1.9963931282832 1.9963931286137 1.9963931519087 1.9963931396030

Table 4 The value of En at different time for different α

T α = 1.1 α = 1.5 α = 1.9 α = 2.0

0 2.9633848214952 4.4825224320512 6.6138662499513 7.3282437524857

1/2 2.9633848218691 4.4825224284203 6.6138662506749 7.3282437533072

1 2.9633848210085 4.4825224280589 6.6138662501820 7.3282437537592

3/2 2.9633848240941 4.4825224399996 6.6138662458918 7.3282437542151

2 2.9633848271497 4.4825224411663 6.6138662474977 7.3282437546740

5/2 2.9633848278166 4.4825224425385 6.6138662502774 7.3282437551357

3 2.9633848379934 4.4825224419623 6.6138662481048 7.3282437556003
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Fig. 6 Evolution of mass Qn (left) and energy En (right) for different value of α

7 Conclusion

In this paper, Crank-Nicolson scheme in temporal direction and finite element
method in spatial direction are used to solve a class of nonlinear Riesz space-
fractional Schrödinger equations. We analyze the conservation and convergence
properties of the semi-discrete scheme and the fully discrete one. Meanwhile, we
give a rigorous analysis of the uniqueness and existence of the fully discrete solu-
tion. Also, we propose a linearized iterative finite element algorithm for performing
the nonlinear CN finite element scheme. Numerical tests show the scheme is effi-
cient. From the processes of numerical tests, we note that the obtained global rigidity
matrix of nonlinear Riesz space-fractional Schrödinger equation by the finite element
method is dense which shows the computing of inner product of fractional derivative
is more elaborate than integer one.

We remark that it is easy to extend the conservation, convergence results of the
semi-discrete and the fully discrete schemes to the cases of multi-dimensional spaces.
However, the proof of the unique solvability of discrete solutions in the cases of
multi-dimensional spaces is totally different from the one-dimensional case, which
is due to the different forms of fractional Gagliardo-Nirenberg inequality in different
dimensions. This needs to be further investigated.
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