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Abstract We present two new two-level compact implicit variable mesh numerical
methods of order two in time and two in space, and of order two in time and three
in space for the solution of 1D unsteady quasi-linear biharmonic problem subject
to suitable initial and boundary conditions. The simplicity of the proposed meth-
ods lies in their three-point discretization without requiring any fictitious points for
incorporating the boundary conditions. The derived methods are shown to be uncon-
ditionally stable for a model linear problem for uniform mesh. We also discuss how
our formulation is able to handle linear singular problem and ensure that the devel-
oped numerical methods retain their orders and accuracy everywhere in the solution
region. The proposed difference methods successfully works for the highly nonlinear
Kuramoto-Sivashinsky equation. Many physical problems are solved to demonstrate
the accuracy and efficiency of the proposed methods. The numerical results reveal
that the obtained solutions not only approximate the exact solutions very well but are
also much better than those available in earlier research studies.
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1 Introduction

We consider the following fourth-order quasi-linear partial differential equation
(PDE) of the form:

A(x, t, u, uxx)
∂4u

∂x4
+ ∂u

∂t
= f (x, t, u, ux, uxx, uxxx), (1)

where (x, t) ∈ � ≡ {(x, t)| a < x < b, t > 0}, or equivalently, by defining a new

variable v as v = ∂2u

∂x2
, the above problem may be considered in a coupled manner

as:

∂2u

∂x2
= v, (x, t) ∈ �, (2.1)

A(x, t, u, v)
∂2v

∂x2
+ ∂u

∂t
= f (x, t, u, v, ux, vx), (x, t) ∈ �, (2.2)

subject to the following initial and boundary conditions:

u(x, 0) = u0(x), a ≤ x ≤ b, (3.1)

u(a, t) = g0(t), u(b, t) = g1(t), t > 0, (3.2)

uxx(a, t) = v(a, t) = h0(t), uxx(b, t) = v(b, t) = h1(t), t > 0, (3.3)

where u0, g0, g1, h0, and h1 are functions of sufficient smoothness and their required
higher order derivatives exist in the solution region �. The PDE (1) together with the
initial and boundary conditions (3.1)–(3.3) is referred as 1D unsteady quasi-linear
biharmonic problem of second kind.

Nonlinear unsteady biharmonic problems model many physical phenomena and
dynamic processes in science and engineering. Major nonlinear PDEs of type (1)
which occur in a wide variety of physical problems are considered in our study.
Included are generalized fourth-order Korteweg-de Vries (KdV) equation, general-
ized Kuramoto-Sivashinsky (GKS) equation, and the extended Fisher-Kolmogorov
(EFK) equation. The methods proposed in this study are applicable to these equa-
tions whose spatial domain a < x < b is a finite interval of R subject to initial
and boundary conditions prescribed by (3.1)–(3.3). Korteweg and de Vries [15] orig-
inally introduced KdV equation to model complex phenomena of solitons. It is a
classical nonlinear PDE in physics formulated to model dispersive wave phenomena
in the theory of solids, liquids, gases, and plasma [15]. In this paper, we consider the
following generalized fourth-order KdV equation of the form:

∂4u

∂x4
+ ∂u

∂t
+ (p + 1)upux = 0, p > 2, (x, t) ∈ �. (4)

Other important 1D unsteady biharmonic problem considered in the paper is the GKS
equation given by

∂u

∂t
+ u

∂u

∂x
+ α

∂2u

∂x2
+ β

∂3u

∂x3
+ γ

∂4u

∂x4
= 0, (x, t) ∈ �, (5)

where α, β, and γ are real constants. It is a model of nonlinear PDE encountered
commonly in the study of continuous media that displays a chaotic behavior form.
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It arises in a broad spectrum of contexts such as unstable drift waves in plasma,
stationary solitary pulses in a falling film and can be applied to describe stress waves
in fragmented porous media (see [24, 27]). The GKS equation without the third-order
derivative term is called the Kuramoto-Sivashinsky (KS) equation:

∂u

∂t
+ u

∂u

∂x
+ α

∂2u

∂x2
+ γ

∂4u

∂x4
= 0, (x, t) ∈ �. (6)

The KS equation is a canonical nonlinear PDE occurring in numerous physical frame-
works, for instance in reaction diffusion systems [16], long waves on the interface
between two viscous fluids [10], and flame front instability [25]. It occupies a signifi-
cant position in explaining the motion of a fluid going down a vertical wall, a spatially
uniform oscillating chemical reaction in a homogeneous medium and unstable drift
waves in plasmas [2]. It is the simplest PDE which is capable of exhibiting chaotic
behavior, possessing solution like traveling waves which progress without varying
shape over a finite spatial domain, see [7, 18, 20, 28]. Over the last few decades, the
KS equation has attracted great attention owing to its intricacy and ability to express
real world processes. Another time-dependent fourth-order PDE tested in the paper
is the EFK equation:

∂u

∂t
+ γ

∂4u

∂x4
− ∂2u

∂x2
+ f (u) = 0, (x, t) ∈ �, (7)

where f (u) = u3 −u. The EFK equation was first proposed by Dee and Van Saarlos
[4] as a higher order model equation arising in the study of pattern formation in bi-
stable systems. It has a large variety of applications in the theory of propagation of
domain walls in liquid crystals [31] and traveling waves in reaction-diffusion systems
[1].

The analytical treatment of nonlinear PDEs unlike their linear counterparts is too
involved a process and requires application of advanced mathematical tools. It is
not usually possible to determine closed-form solutions of nonlinear time-dependent
PDEs, even in very simple cases. Therefore, numerical techniques for finding approx-
imate solutions to these PDEs are sought after. Over a last few decades, there has been
considerable amount of research aiming to find methods for numerical solutions of
PDEs of type (1). A number of explicit and implicit difference schemes for the linear
1D unsteady biharmonic problem have been reported since 1950. In 1969, Mitchell
[19] gave an explicit difference scheme for the PDE (1) withA = 1, f = 0. Approxi-
mate solutions of the fourth-order KdV equation have been undertaken by employing
various forms of pseudo-spectral methods, finite difference techniques, and finite
element methods [8, 26, 29]. Earlier, in 2005, Kaya [11] calculated explicit solutions
to the fourth-order KdV equation using the Adomian decomposition method, with-
out spatial discretizations. In recent years, several methods have been proposed for
numerical study of the GKS equation, for example, tanh-function method [6], local
discontinuous Galerkin method [30], and Chebyshev spectral collocation method
[13]. Later, in 2009, Lai andMa [17] proposed a lattice Boltzmannmodel, a technique
different from conventional numerical methods for the GKS equation. Recently,
Lakestani and Dehghan [18] designed a numerical procedure based on the finite dif-
ference and collocation methods for the solution of the GKS equation. An accurate
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and efficient approach for the numerical solution of KS equation was presented by
Uddin et al. [28] by implementing radial basis function based mesh-free interpola-
tion method which is applicable irrespective of the dimension and geometry of the
problem. Further, Mittal and Arora [20] gave a numerical treatment for the KS equa-
tion using a collocation method with the quintic B-spline functions. Most recently,
Ganaie et al. [7] employed cubic Hermite functions to develop a collocation method
for the numerical solution of KS equation and derived a bound for maximum norm of
the semi-discrete solution using Lyapunov functional. As far as computational stud-
ies for the EFK equation are concerned, Danumjaya and Pani [3] performed some
numerical experiments to obtain approximate solution using orthogonal cubic spline
collocation method. Doss and Nandini [5] presented a study on numerical implemen-
tation of the H 1-Galerkin mixed finite element cubic spline approximation method
for the EFK equation by using a splitting technique.

It is quite challenging to find the numerical solution of 1D unsteady nonlinear
biharmonic problems like the KS equation, the EFK equation and the fourth-order
KdV equation due to their extremely complex mechanism of solitary wave inter-
action. Of late, the use of high-order compact finite difference methods for the
computation of such equations are steadily acquiring popularity owing to their high
accuracy and the advantages related with compact cell. In this regard, Mohanty [21]
discussed two-level implicit difference formulas of O(k2 + h2) and O(k2 + h4),
where k > 0 and h > 0 are the mesh sizes in the temporal and spatial dimensions,
respectively, of a uniform mesh for the solution of one-space dimensional mildly
quasi-linear biharmonic problems of second kind on a compact difference stencil.
Most recently, Mohanty and Kaur [22] have proposed two new two-level and three-
level implicit finite difference methods of O(k2 + khl + h3l ) and O(k2 + h3l ) where
hl > 0, l = 1, 2, . . . , N + 1 are mesh sizes in space dimension of a non-uniform
mesh for two different classes of nonlinear fourth-order parabolic PDEs using three
spatial non-uniform grid points, which were successfully applied to the second-order
Benjamin-Ono equation and the good Boussinesq equation. In the present article, we
propose new and accurate two-level implicit variable mesh finite difference formu-
las of O(k2 + h2l ) and O(k2 + khl + h3l ) based on the approach discussed in [22]
by reducing the fourth-order equation to a coupled system of two second-order equa-
tions using Numerov type discretization requiring only three spatial non-uniform grid
points at each time level. In this approach, no fictitious points for incorporating the
boundary conditions are required. The conventional finite difference schemes for the
problem (1) subject to (3.1)–(3.3) are based on five or more grid points and thus needs
fictitious points outside the solution domain. These fictitious points are then elim-
inated by discretizing the derivative boundary conditions (3.3). However, using the
second-order central differences for the boundary conditions (3.3), the accuracy of
the overall numerical scheme is affected even if a higher order scheme is used at inter-
nal grid points. The numerical algorithm proposed in the present paper decompose
the fourth-order equation into a coupled elliptic-parabolic pair and is advantageous
over the traditional schemes as it systematically incorporates the derivative boundary
conditions without discretization. It achieves high order of accuracy by using only
three grid points at each time level. In the proposed methods, numerical solution of
uxx is computed as a by-product of the methods, which is of relative importance in
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many physical problems. In the past, difficulties were encountered to determine the
numerical solution of singular equation of type (1) since the solution deteriorates in
the neighbourhood of singularity. We overcome this difficulty by amending our meth-
ods in such a way that the order and accuracy of the solution is retained everywhere
including the region in the neighborhood of singularity. The main aim of this article
is the application of the proposed high accuracy schemes to the model problems like
the KS equation, the EFK equation and the fourth-order KdV equation. With this rea-
son, we first develop the new schemes and further apply them to these problems of
physical significance.

The rest of this paper is organized as follows: In Section 2, we present two
new two-level implicit variable mesh difference methods for 1D unsteady quasi-
linear biharmonic problem of second kind, which are further derived in Section 3.
In Section 4, linear stability analysis of the proposed methods is carried out and it is
shown that the methods are unconditionally stable. In this section, we discuss how
our formulation is able to handle singular equation by modifying our technique in
such a way that the solution retains its order and accuracy everywhere in the solu-
tion region. In Section 5, we implement the proposed methods on some problems of
physical importance and compare the results with the results of other known meth-
ods available in the literature. It is shown that the proposed schemes produce better
accuracy as compared to the techniques given in earlier studies. Some concluding
remarks are given in Section 6.

2 Formulation of new variable mesh methods

In this section, we outline variable mesh difference methods for the solution of
differential equation (1).

For simplicity, let us first consider 1D unsteady nonlinear biharmonic problem of
the form:

A(x, t)
∂4u

∂x4
+ ∂u

∂t
= f (x, t, u, ux, uxx, uxxx), (x, t) ∈ �, (8)

or equivalently,

∂2u

∂x2
= v, (x, t) ∈ �, (9.1)

A(x, t)
∂2v

∂x2
+ ∂u

∂t
= f (x, t, u, v, ux, vx), (x, t) ∈ �, (9.2)

subject to the initial and boundary conditions given by (3.1)–(3.3).
Note that at x = a and x = b, the values of u and v are given by (3.2) and

(3.3), respectively. Using the initial condition (3.1), the values of all the successive
tangential partial derivatives ux, uxx, . . . , of u can be determined at t = 0. Since
v(x, 0) = uxx(x, 0), so the value of v is also known at t = 0. Hence, the values of u

and v are known on all sides of the solution region �.
To obtain the numerical solution of the initial boundary value problem given by

(9.1)–(9.2) subject to (3.1)–(3.3) on a variable mesh, we partition the interval [a, b]
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into (N + 1) subintervals such that a = x0 < x1 < . . . < xN < xN+1 = b,
where N is a positive integer. The temporal interval is split as 0 = t0 < t1 <

. . . < tJ = T , where J is a positive integer and T is defined as the final time
of the computation. Let k = tj+1 − tj > 0, j = 0, 1, . . . , J − 1 be the mesh
length for the temporal variable t , so that k = T/J and hl = xl − xl−1 > 0 be
the mesh lengths for the spatial variable x, where l = 1, 2, . . . , N + 1. Hence, the
solution region � is covered by a rectangular mesh in which each mesh point is
denoted by (xl, tj ), with xl = x0 + �l

i=1hi, l = 1, 2, . . . , N + 1 and tj = jk,
j = 0, 1, . . . , J . The mesh ratio is denoted by ηl = (hl+1/hl) > 0, l = 1, 2, . . . , N .
For ηl = 1, that is, for hl+1 = hl = h, it reduces to the uniform mesh case. Let
the exact solution values of u(x, t) and v(x, t) at the mesh point (xl, tj ) be denoted

by U
j
l and V

j
l , respectively, and u

j
l and v

j
l denote their approximate solution val-

ues, respectively. For the sake of simplicity, we consider ηl = η (a constant �= 1),
l = 1, 2, . . . , N .

In order to obtain the high accuracy Numerov type discretization of the differential
(9.1)–(9.2), we need the following approximations:

For r = 0, ±1, let us denote

tj = tj + θk, 0 < θ < 1, (10.1)

A
j

l = A(xl, tj ), (10.2)

A
j

xl
= Ax(xl, tj ), (10.3)

A
j

xxl
= Axx(xl, tj ), (10.4)

U
j

l+r = θU
j+1
l+r + (1 − θ)U

j
l+r , (10.5)

V
j

l+r = θV
j+1
l+r + (1 − θ)V

j
l+r , (10.6)

U
j

tl+r
= (U

j+1
l+r − U

j
l+r )/k, (10.7)

U
j

xl
= (U

j

l+1 − (1 − η2)U
j

l − η2U
j

l−1)/(η(1 + η)hl), (10.8)

U
j

xl+1
= ((1 + 2η)U

j

l+1 − (1 + η)2U
j

l + η2U
j

l−1)/(η(1 + η)hl), (10.9)

U
j

xl−1
= (−U

j

l+1 + (1 + η)2U
j

l − η(2 + η)U
j

l−1)/(η(1 + η)hl), (10.10)

V
j

xl
= (V

j

l+1 − (1 − η2)V
j

l − η2V
j

l−1)/(η(1 + η)hl), (10.11)

V
j

xl+1
= ((1 + 2η)V

j

l+1 − (1 + η)2V
j

l + η2V
j

l−1)/(η(1 + η)hl), (10.12)

V
j

xl−1
= (−V

j

l+1 + (1 + η)2V
j

l − η(2 + η)V
j

l−1)/(η(1 + η)hl), (10.13)

V
j

xxl
= 2(V

j

l+1 − (1 + η)V
j

l + ηV
j

l−1)/(η(1 + η)h2l ). (10.14)

For r = 0, the approximations are defined at (xl, tj ) and for r = ±1, the
approximations are defined at two neighboring points (xl±1, tj ).
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At the mesh point (xl, tj ), we denote

P1l
= (η − 1)

3
− hl

18
(1 + η + η2)

A
j

xl

A
j

l

, (11.1)

P2l
= 1 − η + η2

12
, (11.2)

Pl = η2 + η − 1 − hl

3
(1 + η + η2)

A
j

xl

A
j

l

, (11.3)

Ql = (1 + η)(1 + 3η + η2) + hl

3
(1 − η2)(1 + η + η2)

A
j

xl

A
j

l

, (11.4)

Rl = η(1 + η − η2) + hl

3
η2(1 + η + η2)

A
j

xl

A
j

l

. (11.5)

Using the approximations (10.1) and (10.5)–(10.13), we define

F
j

l+r = f (xl+r , tj , U
j

l+r , V
j

l+r , U
j

xl+r
, V

j

xl+r
). (12)

In order to achieve high-order accuracy of the first-order partial derivatives of the
solution variables at the concerned point (xl, tj ), we consider the following linear
combinations:

U
j

xl
= U

j

xl
+ a1hl(V

j

l+1 − V
j

l−1), (13.1)

V
j

xl
= V

j

xl
+ b1hl[(F j

l+1 − F
j

l−1) − (U
j

tl+1
− U

j

tl−1
)] + b2h

2
l V

j

xxl
, (13.2)

where a1, b1, and b2 are the parameters to be suitably determined.
The additional approximation to the first-order derivatives are then applied to

obtain the functional value at the point (xl, tj ), defined by the relation

F
j

l = f (xl, tj , U
j

l , V
j

l , U
j

xl
, V

j

xl
). (14)

Then, at each internal mesh point (xl, tj ), l = 1, 2, . . . , N, j = 0, 1, . . . , J ,
the differential equations (9.1)–(9.2) are discretized by finite difference methods of
O(k2 + h2l ) and O(k2 + khl + h3l ) given by

U
j

l+1 − (1 + η)U
j

l + ηU
j

l−1 = h2l

6
[(η − 1)V

j

l+1 + (1 + η)(1 + η + η2)V
j

l − η2(η − 1)V
j

l−1]
+O(k2h2l + kh3l + h4l ), (15.1)

[Aj

l + (η − 1)

3
hlA

j

xl
](V j

l+1 − (1 + η)V
j

l + ηV
j

l−1) + h2l

6
[(η − 1)U

j

tl+1
+ (1 + η)(1 + η + η2)U

j

tl

−η2(η − 1)U
j

tl−1
] = h2l

6
[(η − 1)F

j

l+1 + (1 + η)(1 + η + η2)F
j

l − η2(η − 1)F
j

l−1]
+O(k2h2l + kh3l + h4l ), η �= 1, (15.2)
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and

U
j

l+1 − (1 + η)U
j

l + ηU
j

l−1 = h2l

12
[(η2 + η − 1)V

j

l+1 + (1 + η)(1 + 3η + η2)V
j

l

+η(1 + η − η2)V
j

l−1] + T
j

l

(1)
, (16.1)

[Aj

l + hlP1l
A

j

xl
+ h2l P2l

A
j

xxl
](V j

l+1 − (1 + η)V
j

l + ηV
j

l−1) + h2l

12
[PlU

j

tl+1
+ QlU

j

tl
+ RlU

j

tl−1
]

= h2l

12
[PlF

j

l+1 + QlF
j

l + RlF
j

l−1] + T
j

l

(2)
, η �= 1, (16.2)

respectively, where

θ = 1

2
, a1 = −η(1 + η + η2)

6Ql

(
1 + 2(1 − η)hlA

j

xl

3A
j

l

)
,

b1 = −η(1 + η + η2)

6A
j

l Ql

(
1 + 2(1 − η)hlA

j

xl

3A
j

l

)
,

b2 = η(1 + η)(1 + η + η2)A
j

xl

6A
j

l Ql

(
1 + 2(1 − η)hlA

j

xl

3A
j

l

)
,

and T
j

l

(1) = O(k2h2l + kh3l + h5l ), T
j

l

(2) = O(k2h2l + kh3l + h5l ), provided η �= 1.
The methods (15.1)–(15.2) and (16.1)–(16.2) are called two-level methods. These

methods give a relation between the solution values at two time levels tj+1 = tj + k

and tj . The solution value at any nodal point on (j + 1)th level is dependent on the
solution values at the neighboring nodal points (xl±1, tj+1) on the same level and on
the solution values at three nodal points (xl, tj ), (xl±1, tj ) on the j th level.

For the quasi-linear differential (2.1)–(2.2), i.e., when the coefficient A =
A(x, t, u, v), then we need to modify our proposed difference methods (15.1)–(15.2)
and (16.1)–(16.2). In this case, we make use of the following approximations in
(15.1)–(15.2) and (16.1)–(16.2):

A
j

xl
= A

j

l+1 − (1 − η2)A
j

l − η2A
j

l−1

η(1 + η)hl

, (17.1)

A
j

xxl
= 2(A

j

l+1 − (1 + η)A
j

l + ηA
j

l−1)

η(1 + η)h2l

, (17.2)

where

A
j

l = A(xl, tj , U
j

l , V
j

l ), (17.3)

A
j

l±1 = A(xl±1, tj , U
j

l±1, V
j

l±1). (17.4)

Substituting (17.1)–(17.2) using (17.3)–(17.4) into the original schemes (15.1)–
(15.2) and (16.1)–(16.2), we obtain two new finite difference formulas of O(k2 +
khl + h3l ) and O(k2 + h2l ), respectively. Incorporating the initial and boundary con-
ditions (3.1)–(3.3), the new implicit finite difference methods can be expressed in
two-level block tri-diagonal matrix form which can be solved by suitable iterative
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methods. If the differential (1) is linear, then we use Gauss-Seidel iteration method
whereas for the nonlinear case, we use Newton’s nonlinear block iteration method
(see Hageman and Young [9]).

3 Derivation of the discretizations

In this section, we discuss the derivation procedure of the novel second-order formula
(15.1)–(15.2) and the novel Numerov type discretization given by (16.1)–(16.2) on a
variable mesh following the techniques proposed by Mohanty and Kaur [22].

In order to illustrate the general procedure used for constructing the difference for-
mulas (15.1)–(15.2) and (16.1)–(16.2) to the equations (9.1)–(9.2), we first consider
the simplest form of the second-order ordinary differential equation:

A(x)u′′(x) = f (x). (18)

For the second-order method to (18), we consider

Fl + hlM
∗
1l

F ′
l = (Al + hlM

∗
1l

A′
l)U

′′
l + M∗

1l
AlhlU

′′′
l , (19)

where the exact solution value of u(x) at the grid point xl is denoted by Ul and
Fl = f (xl), Al = A(xl), A′

l = A′(xl) etc. and M∗
1l
is a parameter to be determined

suitably.
Consider the following approximation

U
′′
l = 2(Ul+1 − (1 + η)Ul + ηUl−1)/(η(1 + η)h2l )

= U ′′
l + (η − 1)

3
hlU

′′′
l + (1 − η + η2)

12
h2l U

iv
l + O(h3l ). (20)

Using the approximation (20) in (19), we obtain

Fl +hlM
∗
ll
F ′

l = (Al +hlM
∗
1l

A′
l)U

′′
l +

(
M∗

1l
Al − (η − 1)Al

3

)
hlU

′′′
l +O(h2l ). (21)

Equating the coefficient of hlU
′′′
l to zero in (21), we get M∗

1l
= η − 1

3
. Substituting

the value of M∗
1l
back in (21), we obtain

(Al + hlM
∗
1l

A′
l )U

′′
l = Fl + hlM

∗
1l

F ′
l + O(h2l )

= Fl + (η − 1)

3

1

η(1 + η)
[Fl+1 − (1 − η2)Fl − η2Fl−1] + O(h2l ), (22)

where the following approximation

F
′
l = 1

η(1 + η)hl

[Fl+1 − (1 − η2)Fl − η2Fl−1] = F ′
l + O(h2l ), (23)
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is used. This leads to the following scheme:

[Al + (η − 1)

3
hlA

′
l](Ul+1 − (1 + η)Ul + ηUl−1)

= h2l

6
[(η − 1)Fl+1 + (1 + η)(1 + η + η2)Fl − η2(η − 1)Fl−1] + O(h2l ).(24)

For the third-order method to (18), consider

Fl + hlM1l
F ′

l + h2l M2l
F ′′

l = (Al + hlM1l
A′

l + h2l M2l
A′′

l )U
′′
l + (Mll Al + 2hlM2l

A′
l )hlU

′′′
l

+M2l
Alh

2
l U

iv
l , (25)

where M1l
and M2l

are the parameters to be obtained suitably. Using the approxi-
mation (20) in (25), we obtain

Fl + hlM1l
F ′

l + h2l M2l
F ′′

l = (Al + hlM1l
A′

l + h2l M2l
A′′

l )U
′′
l

+
(

M1l
Al + 2hlM2l

A′
l − (η − 1)

3
(Al + hlM1l

A′′
l )

)
hlU

′′′
l

+
(

M2l
Al − (1 − η + η2)

12
Al

)
h2l U

iv
l + O(h3l ). (26)

Equating the coefficients of hlU
′′′
l and h2l U

iv
l to zero in (26), we obtain

M1l
= (η − 1)

3
− hl

18
(1 + η + η2)

A′
l

Al

,

M2l
= 1 − η + η2

12
.

Also,

F
′′
l = 2(Fl+1 − (1 + η)Fl + ηFl−1)/(η(1 + η)h2l )

= F ′′
l + (η − 1)

3
hlF

′′′
l + (1 − η + η2)

12
h2l F

iv
l + O(h3l ). (27)

Substituting the values of M1l
, M2l

back in (26) and using the relations (23) and (27),
we get

(Al + hlM1l
A′

l + h2l M2l
A′′

l )U
′′
l

= Fl + hlM1l
F ′

l + h2l M2l
F ′′

l + O(h3l )

= Fl +
(

(η − 1)

3
− hl

18
(1 + η + η2)

A′
l

Al

)
1

η(1 + η)
[Fl+1 − (1 − η2)Fl − η2Fl−1]

+ (1 − η + η2)

12

2

η(1 + η)
(Fl+1 − (1 + η)Fl + ηFl−1) + O(h3l ), (28)

which gives the following scheme

[Al + hlM1l
A′

l + h2l M2l
A′′

l ](Ul+1 − (1 + η)Ul + ηUl−1) = h2l

12
[LlFl+1 + MlFl + NlFl−1]

+O(h3l ), (29)
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where

Ll = η2 + η − 1 − hl

3
(1 + η + η2)

A′
l

Al

,

Ml = (1 + η)(1 + 3η + η2) + hl

3
(1 − η2)(1 + η + η2)

A′
l

Al

,

Nl = η(1 + η − η2) + hl

3
η2(1 + η + η2)

A′
l

Al

.

The basic schemes (24) and (29) are used to obtain the difference formulas (15.1)–
(15.2) and (16.1)–(16.2) to the equations (9.1)–(9.2) which involves both temporal
and spatial variables. This is accomplished by defining the approximations to
u, v, ut , ux, vx given by (10.5), (10.6), (10.7), (10.8)–(10.10), (10.11)–(10.13),
respectively, at the point (xl, tj ) and the neighboring points (xl±1, tj ). Using these
approximations, the functional approximations given by (12), the additional approx-
imations (13.1)–(13.2), (14) and following the methods (24) and (29) adopted for
the ordinary differential (18), it results in difference formulas (15.1)–(15.2) and
(16.1)–(16.2) whose local truncation errors are estimated below.

At the mesh point (xl, tj ), for S = A, B, C, D, U, V and g, we denote

Sab = ∂a+bS

∂xa∂tb
, a, b = 0, 1, 2, . . . (30)

Then, at the mesh point (xl, tj ), the differential (9.1)–(9.2) may be written as:

U20 = V00, (31.1)

A00V20 + U01 = f (x, tj , U
j
l , V

j
l , U

j
xl

, V
j
xl

) ≡ F
j
l . (31.2)

Further, at the mesh point (xl, tj ), we denote

α
j
l = ∂f

∂U
, β

j
l = ∂f

∂V
, γ

j
l = ∂f

∂Ux

, δ
j
l = ∂f

∂Vx

, ξ
j
l = ∂f

∂t
.

Differentiating the (9.1)–(9.2) with respect to ‘t’ at the mesh point (xl, tj ), we obtain
the following relations:

U21 = V01, (32.1)

A00V21 + A01V20 + U02 = ξ
j
l + α

j
l U01 + β

j
l V01 + γ

j
l U11 + δ

j
l V11. (32.2)
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Simplifying the approximations (10.1)–(10.14) using Taylor series expansion, we
obtain

A
j

l = A
j
l + θkA01 + O(k2), (33.1)

A
j

xl
= A

j
xl

+ θkA11 + O(k2), (33.2)

A
j

xxl
= A

j
xxl

+ θkA21 + O(k2), (33.3)

U
j

l = U
j
l + θkU01 + O(k2), (33.4)

U
j

l+1 = U
j

l+1 + θkU01 + θkηhlU11 + O(k2 + kh2l ), (33.5)

U
j

l−1 = U
j

l−1 + θkU01 − θkhlU11 + O(k2 + kh2l ), (33.6)

V
j

l = V
j
l + θkV01 + O(k2), (33.7)

V
j

l+1 = V
j

l+1 + θkV01 + θkηhlV11 + O(k2 + kh2l ), (33.8)

V
j

l−1 = V
j

l−1 + θkV01 − θkhlV11 + O(k2 + kh2l ), (33.9)

U
j

t l = U
j
t l + k

2
U02 + O(k2), (33.10)

U
j

t l+1 = U
j
t l+1 + k

2
U02 + kηhl

2
U12 + O(k2 + kh2l ), (33.11)

U
j

t l−1 = U
j
t l−1 + k

2
U02 − khl

2
U12 + O(k2 + kh2l ), (33.12)

U
j

xl = U
j
x l + ηh2l

6
U30 + θkU11 + O(k2 + khl + h3l ), (33.13)

U
j

xl+1 = U
j
x l+1 − η(1 + η)h2l

6
U30 + θkU11 + O(k2 + khl + h3l ), (33.14)

U
j

xl−1 = U
j
x l−1 − (1 + η)h2l

6
U30 + θkU11 + O(k2 + khl + h3l ), (33.15)

V
j

x l = V
j
x l + ηh2l

6
V30 + θkV11 + O(k2 + khl + h3l ), (33.16)

V
j

x l+1 = V
j
x l+1 − η(1 + η)h2l

6
V30 + θkV11 + O(k2 + khl + h3l ), (33.17)

V
j

x l−1 = V
j
x l−1 − (1 + η)h2l

6
V30 + θkV11 + O(k2 + khl + h3l ), (33.18)

V
j

xxl
= V

j
xxl

+ (η − 1)
hl

3
V30 + O(k + h2l ). (33.19)

Again using Taylor series expansion in (12), we obtain

F
j

l = F
j
l + kT1 + ηh2l

6
T2 + O(k2 + khl + h3l ), (34.1)

F
j

l+1 = F
j

l+1 + kT1 − η(1 + η)h2l

6
T2 + O(k2 + khl + h3l ), (34.2)

F
j

l−1 = F
j

l−1 + kT1 − (1 + η)h2l

6
T2 + O(k2 + khl + h3l ), (34.3)
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where

T1 = θ(ξ
j
l + α

j
l U01 + β

j
l V01 + γ

j
l U11 + δ

j
l V11),

T2 = γ
j
l U30 + δ

j
l V30.

Firstly, we determine the local truncation errors associated with the method (15.1)–
(15.2). By the help of Taylor series expansion and the relations (31.1)–(31.2), we get

U
j

l+1 − (1 + η)U
j
l + ηU

j

l−1 = h2l

6
[(η − 1)V j

l+1 + (1 + η)(1 + η + η2)V
j
l − η2(η − 1)V j

l−1]
+O(h4l ), (35.1)

[Aj
l + (η − 1)

3
hlA

j
xl

](V j

l+1 − (1 + η)V
j
l + ηV

j

l−1) + h2l

6
[(η − 1)Uj

tl+1
+ (1 + η)(1 + η + η2)U

j
tl

−η2(η − 1)Uj
tl−1

] = h2l

6
[(η − 1)F j

l+1 + (1 + η)(1 + η + η2)F
j
l − η2(η − 1)F j

l−1] + O(h4l ),

η �= 1. (35.2)

Also, we have

U
j

l+1 − (1 + η)U
j

l + ηU
j

l−1 = U
j

l+1 − (1 + η)U
j
l + ηU

j

l−1 + θ

2
η(1 + η)kh2l U21

+O(kh3l + k2h2l ), (36.1)

[Aj

l + (η − 1)

3
hlA

j

xl
](V j

l+1 − (1 + η)V
j

l + ηV
j

l−1) + h2l

6
[(η − 1)U

j

tl+1

+(1 + η)(1 + η + η2)U
j

tl

−η2(η − 1)U
j

tl−1
] = [Aj

l + (η − 1)

3
hlA

j
xl

](V j

l+1 − (1 + η)V
j
l + ηV

j

l−1)

+h2l

6
[(η − 1)Uj

tl+1
+ (1 + η)(1 + η + η2)U

j
tl

− η2(η − 1)Uj
tl−1

]

+η(1 + η)

2
kh2l

[
θ(A

j
l V21 + A

j
tl
V20) + U02

2

] + O(kh3l + k2h2l ). (36.2)

Since U21 = V01, incorporating (33.7)–(33.9), (36.1) in (15.1) and by using the
relation (35.1), we conclude that the local truncation error associated with (15.1) may
be obtained as O(k2h2l + kh3l + h4l ), for arbitrary θ . Similarly, using the approxima-
tions (33.7)–(33.12), (34.1)–(34.3) in (15.2) and by the help of the relations (32.2),
(35.2) and (36.2), the local truncation error associated with (15.2) is obtained as:

η(1 + η)

2
kh2l

(
θ − 1

2

)
U02 + O(k2h2l + kh3l + h4l ). (37)

Hence, for θ = 1/2, the local truncation error associated with (15.2) becomes
O(k2h2l + kh3l + h4l ) and thus the formula (15.1)–(15.1) is O(k2 + h2l ) accurate.

Now, for the difference formula (16.1)–(16.2), we require high-order accuracy of
the first-order partial derivatives of the solution variables at the point (xl, tj ) defined
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in (13.1)–(13.2). With the help of (34.2)–(34.3) and (10.1)–(10.14), from (13.1)–
(13.2), we obtain

U
j

xl
= U

j
xl

+ θkU11 + h2l

6
T3 + O(k2hl + khl + h3l ), (38.1)

V
j

xl
= V

j
xl

+ θkV11 + h2l

6
T4 + O(k2hl + khl + h3l ), (38.2)

where

T3 = (η + 6a1(1 + η))U30,

T4 = (η + 6b1(1 + η)A
j

l )V30 + 6(b1(1 + η)A
j

xl
+ b2)V20.

Applying series expansion about the central grid (xl, tj ) to (14) and incorporating
(38.1)–(38.2), one obtains

F
j

l = F
j
l + kT1 + h2l

6
T5 + O(k2hl + khl + h3l ), (39)

where T5 = T3γ
j
l + T4δ

j
l .

Using Taylor series expansion, we first obtain

U
j

l+1 − (1 + η)U
j
l + ηU

j

l−1 = h2l

12
[(η2 + η − 1)V j

l+1 + (1 + η)(1 + 3η + η2)V
j
l

+η(1 + η − η2)V
j

l−1] + O(h5l ), (40.1)

[Aj
l + hlP1l

A
j
xl

+ h2l P2l
A

j
xxl

](V j

l+1 − (1 + η)V
j
l + ηV

j

l−1) + h2l

12
[PlU

j
tl+1

+ QlU
j
tl

+ RlU
j
tl−1

]

= h2l

12
[PlF

j

l+1 + QlF
j
l + RlF

j

l−1] + O(h5l ). (40.2)

Using the approximations (33.4)–(33.9) in (16.1), we obtain

U
j

l+1 − (1 + η)U
j
l + ηU

j

l−1 + θ

2
η(1 + η)kh2l U21

= h2l

12
[(η2 + η − 1)V j

l+1 + (1 + η)(1 + 3η + η2)V
j
l + η(1 + η − η2)V

j

l−1 + 6θkη(1 + η)V01]
+O(kh3l + k2h2l ). (41)

Using the relation U21 = V01 and (40.1) in (41), the local truncation error T
j

l

(1)

associated with (16.1) may be obtained as T
j(1)

l = O(k2h2l + kh3l +h5l ), for arbitrary
θ .

Further, invoking Taylor series expansion, we may re-write

[Aj

l + hlP1l
A

j

xl
+ h2l P2l

A
j

xxl
](V j

l+1 − (1 + η)V
j

l + ηV
j

l−1) + h2l

12
[PlU

j

tl+1
+ QlU

j

tl
+ RlU

j

tl−1
]

= [Aj
l + hlP1l

A
j
xl

+ h2l P2l
A

j
xxl

](V j

l+1 − (1 + η)V
j
l + ηV

j

l−1) + h2l

12
[PlU

j
tl+1

+ QlU
j
tl

+ RlU
j
tl−1

]

+η

2
(1 + η)kh2l [θ(A00V21 + A01V20) + U02

2
] + O(kh3l + k2h2l ). (42)
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Now using the approximations (34.2)–(34.3), (39) on the right hand side, (42) on
the left hand side of (16.2) and by the help of relation (40.2), we obtain the local

truncation error T
j

l

(2)
associated with (16.2) as:

T
j(2)

l = η(1 + η)

2
kh2l

(
θ − 1

2

)
U02 + h4l

72
[−η(1 + η)PlT2 + QlT5 − (1 + η)RlT2]

+O(k2h2l + kh3l + h5l ). (43)

We observe from (43) that T
j(2)

l is of O(k2h2l + kh3l +h5l ) if and only if θ = 1/2 and

(1 + η)(ηPl + Rl)T2 = QlT5,

from which we obtain

a1 = −η(1 + η + η2)

6Ql

(
1 + 2(1 − η)hlA

j

xl

3A
j

l

)
,

b1 = −η(1 + η + η2)

6A
j

l Ql

(
1 + 2(1 − η)hlA

j

xl

3A
j

l

)
,

b2 = η(1 + η)(1 + η + η2)A
j

xl

6A
j

l Ql

(
1 + 2(1 − η)hlA

j

xl

3A
j

l

)
.

Hence, for the above set of parameters, T
j

l

(2) = O(k2h2l + kh3l + h5l ) and thus the
difference method (16.1)–(16.2) is of O(k2 + khl + h3l ) for θ = 1/2.

We now consider quasi-linear problem in the coupled form given by (2.1)–(2.2)
subject to the initial and boundary conditions given by (3.1)–(3.3). Here, the coef-
ficient A is a function of not only the independent variables x and t but also of the
dependent variables u and v, i.e., A ≡ A(x, t, u, v). Differentiating the (2.1)–(2.2)
with respect to ‘t’ at the mesh point (xl, tj ), we obtain:

U21=V01, (44.1)

A00V21+[A01+AuU01+AvV01]V20+U02=ξ
j
l +α

j
l U01+β

j
l V01+γ

j
l U11+δ

j
l V11. (44.2)

Upon substitution of the approximations (17.1)–(17.4) and using the relations
(44.1)–(44.2) in place of (32.1)–(32.2), we observe that the difference methods
(15.1)–(15.2) and (16.1)–(16.2) retain their orders and hence we obtain difference
methods ofO(k2+h2l ) andO(k2+k2hl+h3l ), respectively, for the numerical solution
of quasi-linear equations (2.1)–(2.2).

When η = 1 (uniform mesh case), that is, for hl+1 = hl = h, l = 1, 2, . . . , N , the
corresponding implicit difference methods of accuracy O(k2 + h2) and O(k2 + h4)

for the solution of differential (9.1)–(9.2) are:

δ2xU
j

l = h2V
j

l + O(k2h2 + h4), (45.1)

A
j

l δ
2
xV

j

l + h2U
j

tl
= h2F

j

l + O(k2h2 + h4), l = 1, 2, . . . , N, j = 0, 1, . . . , J, (45.2)
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and

δ2xU
j

l = h2

12
[V j

l+1 + 10V
j

l + V
j

l−1] + O(k2h2 + kh4 + h6), (46.1)

[
A

j

l + h2

12
(A

j

xxl
− 2A

j2

xl

A
j

l

)
]
δ2xV

j

l + h2

12

[
(1 − hA

j

xl

A
j

l

)U
j

tl+1
+ 10U

j

tl
+ (1 + hA

j

xl

A
j

l

)U
j

tl−1

]

= h2

12

[
(1 − hA

j

xl

A
j

l

)F
j

l+1 + 10F
j

l + (1 + hA
j

xl

A
j

l

)F
j

l−1

] + O(k2h2 + kh4 + h6),

l = 1, 2, . . . , N, j = 0, 1, . . . , J, (46.2)

respectively, for θ = 1/2, where δxUl = (Ul+1/2 − Ul−1/2) is the central difference
operator with respect to x-direction.

Note that for the uniformmesh case, the difference method (46.1)–(46.2) is fourth-
order accurate in space for a fixed value of the mesh ratio parameter λ = k/h2.

4 Stability analysis and difference schemes for a singular equation

We shall discuss the stability for the uniform mesh case. Consider the following 1D
unsteady linear biharmonic problem of the form

∂4u

∂x4
+ ∂u

∂t
= f (x, t), (x, t) ∈ �, (47)

subject to the initial and boundary conditions (3.1)–(3.2). Applying the difference
methods (45.1)–(45.2) and (46.1)–(46.2) to the differential equation (47), we obtain
the matrix equation

Qwj+1 = (−Q + R)wj + l, (48)
where

Q =
[

Q1 −h2Q2

Q2
λ

2
Q1

]
, R =

[
0 0

2Q2 0

]
, w =

[
u

v

]
, l =

[
l1
l2

]
.

The matrices Q and R are 2N × 2N block tri-diagonal while w and l are column
vectors of order 2N . Equation (48) is the matrix form of the finite difference equation
relating the solution values along the (j + 1)th and j th time levels in which Q and R

are the coefficient matrices, w is the solution vector, and l denotes the column vector
of known boundary values and right hand side function values of (47).

The submatrices for method (45.1)–(45.2) are given by Q1 = [1, −2, 1], Q2 =
[0, 1, 0] while the submatrices for method (46.1)–(46.2) are given by Q1 =
12[1, −2, 1], Q2 = [1, 10, 1] where

[a, b, c] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b c 0 · · · 0
a b c

...

0
. . .

. . .
. . . 0

... a b c

0 · · · 0 a b

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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is the N × N tri-diagonal matrix having eigenvalues b + 2
√

a c cos(2φ), 2φ =
(sπ)/(N + 1), s = 1(1)N ; u = (u1, u2, . . . , uN)T , v = (v1, v2, . . . , vN)T are
solution vectors and l1, l2 are column vectors of order N consisting of homogenous
functions, initial and boundary values of the block system (48). Note that u0, uN+1
and v0, vN+1 are known from the imposed boundary conditions and λ = k/h2 is the
mesh ratio parameter for the uniform mesh (for η = 1, that is, for hl+1 = hl = h).
We see that l1 is the zero column vector of order N for both the difference methods
(45.1)–(45.2) and (46.1)–(46.2). For the difference method (45.1)–(45.2),

l2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

kf (x1, tj ) − λ
2

(
v

j+1
0 + v

j

0

)
kf (x2, tj )

. . .

. . .

kf (xN−1, tj )

kf (xN, tj ) − λ
2

(
v

j+1
N+1 + v

j

N+1

)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

while for the difference method (46.1)–(46.2),

l2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

k
(
f (x2, tj ) + 10f (x1, tj ) + f (x0, tj )

) − (
u

j+1
0 + u

j

0

) − 6λ
(
v

j+1
0 + v

j

0

)
k
(
f (x3, tj ) + 10f (x2, tj ) + f (x1, tj )

)
. . .

. . .

k
(
f (xN , tj ) + 10f (xN−1, tj ) + f (xN−2, tj )

)
k
(
f (xN+1, tj ) + 10f (xN , tj ) + f (xN−1, tj )

) − (
u

j+1
N+1 + u

j

N+1

) − 6λ
(
v

j+1
N+1 + v

j

N+1

)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

For discussing the stability of differential equation (47), we consider the homoge-
nous part of the difference scheme (48), which may be written as

wj+1 = (−I + Q−1 R)wj . (49)

We denote εj = wj − Wj as the error vector at the j th iterate (in the absence of
round-off errors), where

Wj =
[

U

V

]j

,

U and V being exact solution vectors. We may write the error equation as:

εj+1 = Hεj ,

where the amplification matrix H is given by H = −I + Q−1 R. The eigenvalues ξ

of matrix Q for method (45.1)–(45.2) satisfies the characteristic equation

det

[ −4 sin2 φ − ξ −h2

1 −2λ sin2 φ − ξ

]
= 0, (50)

which on simplification gives

ξ2 + 2 sin2 φ(λ + 2)ξ + 8λ sin4 φ + h2 = 0. (51)

The eigenvalues ξ of matrix Q for method (46.1)–(46.2) satisfies the characteristic
equation

det

[ −48 sin2 φ − ξ −h2(12 − 4 sin2 φ)

12 − 4 sin2 φ −24λ sin2 φ − ξ

]
= 0, (52)
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which gives

ξ2 + 24 sin2 φ(λ + 2)ξ + h2(12 − 4 sin2 φ)2 + 1152λ sin4 φ = 0. (53)

Further, 0 is the only eigenvalue of matrix R, and since Q−1 and R commute each
other, hence eigenvalue η of the amplification matrix H for methods (45.1)–(45.2)
and (46.1)–(46.2) is given by η = −1. Since |η| = 1 for all variable angle φ and
λ > 0, hence the methods are stable for all values of the mesh ratio parameter λ.

Next, we aim to discuss the stable difference schemes for a class of 1D unsteady
linear biharmonic equations with singular coefficients and ensure that the methods
developed retain their order and accuracy for such equations.

Let us consider a class of 1D unsteady linear singular biharmonic problem of the
form:

∇4u + ∂2u

∂t2
≡

(
∂2

∂r2
+ α

r

∂

∂r

)2

u + ∂u

∂t
= g(r, t),

where (r, t) ∈ � ≡ {(r, t)| 0 < r < 1, t > 0}, or equivalently,
∂4u

∂r4
+ ∂u

∂t
= B(r)

∂3u

∂r3
+ C(r)

∂2u

∂r2
+ D(r)

∂u

∂r
+ g(r, t), (r, t) ∈ �, (54)

where

B(r) = −2α

r
, C(r) = α(2 − α)

r2
, D(r) = α(α − 2)

r3
,

subject to the following initial and boundary conditions

u(r, 0) = u0(r), 0 ≤ r ≤ 1, (55.1)

u(0, t) = g0(t), u(0, t) = g1(t), t > 0, (55.2)

urr (1, t) = h0(t), urr (1, t) = h1(t), t > 0. (55.3)

For α = 1 and 2,

∇2 ≡ ∂2

∂r2
+ α

r

∂

∂r

represents one-space dimensional Laplacian operator in cylindrical and spherical
coordinates, respectively, so for α = 1 and 2, (54) is the 1D unsteady bihar-
monic equation in cylindrical and spherical coordinates, respectively. Using the
second-order central differences, the numerical solution of the above equation can
be obtained making use of five grid points in r-direction and discretizing the bound-
ary conditions. But so far, no two-level difference method on a variable mesh of
O(k2 + khl + h3l ) using only three spatial grid points and without discretizing the
boundary conditions is known for the singular equation (54). The finite difference
methods discussed here requires no fictitious points for incorporating the boundary
conditions. It is difficult to determine the numerical solution of (54) as the solution
deteriorates in the vicinity of the singularity r = 0. We overcome this difficulty by
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modifying our methods in such a manner that the order and accuracy of the solution
is retained everywhere including the region in the vicinity of the singularity r = 0.

Applying the difference method (15.1)–(15.2) of O(k2 + h2l ), we obtain

u
j

l+1 − (1 + η)u
j
l + ηu

j

l−1 = h2l

6
[(η − 1)vj

l+1 + (1 + η)(1 + η + η2)v
j
l − η2(η − 1)vj

l−1],(56.1)

v
j

l+1 − (1 + η)v
j
l + ηv

j

l−1 + h2l

6
[(η − 1)uj

tl+1
+ (1 + η + η2)(1 + η)u

j
tl

− η2(η − 1)uj
tl−1

]

= h2l

6

[
(η − 1)(Bl+1v

j
rl+1 + Cl+1v

j

l+1 + Dl+1u
j
rl+1 + g

j

l+1)

+(1 + η + η2)(1 + η)(Blv
j
rl + Clv

j
l + Dlu

j
rl + g

j
l )

−η2(η − 1)(Bl−1v
j
rl−1 + Cl−1v

j

l−1 + Dl−1u
j
rl−1 + g

j

l−1)
]
,

l = 1, 2, . . . , N, j = 0, 1, . . . , J, η �= 1, (56.2)

where for p = 0, ±1: Bl+p = B(rl+p), Cl+p = C(rl+p), Dl+p = D(rl+p), g
j
l+p

= g(rl+p, tj ).
The above scheme fails to determine the solution at l = 1, in the vicinity of the

singularity. We overcome this difficulty by modifying the scheme (56.1)–(56.2) in
such a way that the solutions retain their order and accuracy everywhere including
the vicinity of the singularity r = 0. We need the following approximations:

Bl+1 = B00 + ηhlB10 + O(h2l ) ≡ B∗
1 + O(h2l ), (57.1)

Bl−1 = B00 − hlB10 + O(h2l ),≡ B∗
2 + O(h2l ) (57.2)

Cl+1 = C00 + ηhlC10 + O(h2l ) ≡ C∗
1 + O(h2l ), (57.3)

Cl−1 = C00 − hlC10 + O(h2l ) ≡ C∗
2 + O(h2l ), (57.4)

Dl+1 = D00 + ηhlD10 + O(h2l ) ≡ D∗
1 + O(h2l ), (57.5)

Dl−1 = D00 − hlD10 + O(h2l ) ≡ D∗
2 + O(h2l ), (57.6)

g
j

l+1 = g
j
l + ηhlg

j
rl + O(h2l ) ≡ G∗

1 + O(h2l ), (57.7)

g
j

l−1 = g
j
l − hlg

j
rl + O(h2l ) ≡ G∗

2 + O(h2l ). (57.8)

where
B∗
1 = B00 + ηhlB10, B∗

2 = B00 − hlB10, etc.

Using the approximations (57.1)–(57.8) in the scheme (56.1)–(56.2) and neglecting
high order terms, we get

u
j

l+1 − (1 + η)u
j
l + ηu

j

l−1 = h2l

6
[(η − 1)vj

l+1 + (1 + η)(1 + η + η2)v
j
l − η2(η − 1)vj

l−1], (58.1)

v
j

l+1 − (1 + η)v
j
l + ηv

j

l−1 + h2l

6
[(η − 1)uj

tl+1
+ (1 + η + η2)(1 + η)u

j
tl

− η2(η − 1)uj
tl−1

]

= h2l

6

[
(η − 1)(B∗

1 v
j
rl+1 + C∗

1v
j

l+1 + D∗
1u

j
rl+1 + G∗

1

+(1 + η + η2)(1 + η)(B00v
j
rl + C00v

j
l + D00u

j
rl + g00)

−η2(η − 1)(B∗
2 v

j
rl−1 + C∗

2v
j

l−1 + D∗
2u

j
rl−1 + G∗

2)
]
,

l = 1, 2, . . . , N, j = 0, 1, . . . , J, η �= 1, (58.2)



446 Numer Algor (2017) 74:427–459

which is a valid difference scheme ofO(k2+h2l ) in the region [0 < r < 1]×[t > 0].
The proposed difference method (16.1)–(16.2) of O(k2 + khl + h3l ) when applied

to the singular equation (54) results in the following difference scheme:

u
j

l+1 − (1 + η)u
j
l + ηu

j

l−1 = h2l

12

[
(η2 + η − 1)vj

l+1 + (1 + η)(1 + 3η + η2)v
j
l

+η(1 + η − η2)v
j

l−1

]
, (59.1)

v
j

l+1 − (1 + η)v
j
l + ηv

j

l−1 + h2l

12
[(η2 + η − 1 − p0)u

j
tl+1

+ (1 + η)(1 + 3η + η2)u
j
tl

+(η(1 + η − η2) + p0)u
j
tl−1

]
= h2l

12

[(
η2 + η − 1 − p0

)(
Bl+1v

j
rl+1 + Cl+1v

j

l+1 + Dl+1u
j
rl+1 + g

j

l+1

)

+(1 + η)(1 + 3η + η2)
(
Blv

j
rl + Clv

j
l + Dlu

j
rl + g

j
l

) − q0(v
j

l+1 − v
j

l−1)

+(
η(1 + η − η2) + p0

)(
Bl−1v

j
rl−1 + Cl−1v

j

l−1 + Dl−1u
j
rl−1 + g

j

l−1

)]
,

l = 1, 2, . . . , N, j = 0, 1, . . . , J, (59.2)

where p0 = (η(1 + η + η2)hlBl)/6, q0 = (η(1 + η + η2)hlDl)/6.
Although the difference scheme (59.1)–(59.2) is of O(k2 + khl + h3l ), it contains

the terms Bl−1, Cl−1, Dl−1, g
j

l−1, all of which involve the term 1/rl−1 giving rise
to singularity at l = 1 since r0 = 0. It is for this reason that the proposed method
is not directly applicable to singular equations in the region 0 < r < 1, i.e., in the
vicinity of singularity. We overcome this difficulty by modifying the method (59.2)
in such a manner that the order and accuracy of the solution is retained everywhere
in the region [0 < r < 1] × [t > 0], even in the vicinity of the singularity r = 0.

In order to get a valid difference scheme of O(k2 + khl + h3l ) on a variable mesh,
we require the following approximations:

Bl+1 = B00 + ηhlB10 + η2h2l

2
B20 + O(h3l ) ≡ B1 + O(h3l ), (60.1)

Bl−1 = B00 − hlB10 + h2l

2
B20 − O(h3l ) ≡ B2 − O(h3l ), (60.2)

Cl+1 = C00 + ηhlC10 + η2h2l

2
C20 + O(h3l ) ≡ C1 + O(h3l ), (60.3)

Cl−1 = C00 − hlC10 + h2l

2
C20 − O(h3l ) ≡ C2 − O(h3l ), (60.4)

Dl+1 = D00 + ηhlD10 + η2h2l

2
D20 + O(h3l ) ≡ D1 + O(h3l ), (60.5)

Dl−1 = D00 − hlD10 + h2l

2
D20 − O(h3l ) ≡ D2 − O(h3l ), (60.6)

g
j

l+1 = g
j
l + ηhlg

j
rl + η2h2l

2
g

j
rrl

+ O(h3l ) ≡ G1 + O(h3l ), (60.7)

g
j

l−1 = g
j
l − hlg

j
rl + h2l

2
g

j
rrl

− O(h3l ) ≡ G2 − O(h3l ). (60.8)
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where

B1 = B00 + ηhlB10 + η2h2l

2
B20, B2 = B00 − hlB10 + h2l

2
B20, etc.

and g
j
rl = gr(rl, tj ), g

j
rrl

= grr (rl, tj ). Using the approximations (60.1)–
(60.8) in the difference scheme (59.1)–(59.2) and neglecting the higher-order terms,
we obtain

u
j

l+1 − (1 + η)u
j
l + ηu

j

l−1 = h2l

12

[
(η2 + η − 1)vj

l+1 + (1 + η)(1 + 3η + η2)v
j
l

+η(1 + η − η2)v
j

l−1

]
, (61.1)

v
j

l+1 − (1 + η)v
j
l + ηv

j

l−1 + h2l

12
[(η2 + η − 1 − p0)u

j
tl+1

+ (1 + η)(1 + 3η + η2)u
j
tl

+(η(1 + η − η2) + p0)u
j
tl−1

]

= h2l

12

[(
η2 + η − 1 − p0

)(
B1v

j
rl+1 + C1v

j

l+1 + D1u
j
rl+1 + G1

)

+(1 + η)(1 + 3η + η2)
(
B00v

j
rl + C00v

j
l + D00u

j
rl + g00

) − q0(v
j

l+1 − v
j

l−1)

+(
η(1 + η − η2) + p0

)(
B2v

j
rl−1 + C2v

j

l−1 + D2u
j
rl−1 + G2

)]
,

l = 1, 2, . . . , N, j = 0, 1, . . . , J. (61.2)

Note that the difference scheme (61.1)–(61.2) is a two-level implicit scheme of
O(k2 + khl + h3l ) which does not involve the term 1/rl−1, hence can be very easily
solved for l = 1, 2, . . . , N in the region [0 < r < 1] × [t > 0]. The result-
ing system of tri-diagonal matrices can be solved using block iterative methods
(see Kelly [12]).

5 Numerical illustrations

In this section, we implement the proposed difference methods over a collection of
linear and nonlinear problems having physical importance. The exact solutions of the
problems are provided in each case. The right hand side homogenous function, initial
and boundary conditions correspond to the data from the exact solution. Whenever
the differential equation (1) is nonlinear or quasi-linear, then the proposed difference
formulas form a coupled nonlinear block system. We have used iterative methods for
solving the coupled system of equations at each mesh point. If the differential (1)
is linear, then the resulting system is solved by block Gauss-Seidel iteration method
whereas the nonlinear systems are solved using Newton’s nonlinear block Gauss-
Seidel iteration method (see Kelly [12], Saad [23] and Hageman and Young [9]) and
in each case the iterations are terminated once the absolute error tolerance ≤ 10−10

is achieved.
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Table 1 The maximum absolute errors for Example 1 at t = 1.0, η = 0.94 (variable mesh)

N + 1 O(k2 + khl + h3l )-method (16.1)–(16.2) O(k2 + h2l )-method (15.1)–(15.2)

α = 1 α = 2 α = 1 α = 2

8 u 2.4607(−04) 1.1207(−03) 1.5739(−03) 3.3012(−03)

urr 4.9997(−03) 2.4233(−02) 5.7765(−02) 7.5181(−02)

16 u 2.8482(−05) 1.6480(−04) 3.2114(−04) 6.9671(−04)

urr 1.2191(−03) 6.8188(−03) 1.5140(−02) 1.9540(−02)

32 u 6.1012(−06) 3.9682(−05) 6.0043(−05) 1.4908(−04)

urr 3.4265(−04) 2.6947(−03) 5.3493(−03) 9.7255(−03)

For uniform mesh, η = 1 and for variable mesh, the interval [a, b] in x-direction
is divided into N + 1 parts with a = x0 < x1 < . . . < xN < xN+1 = b, where hl =
xl − xl−1, l = 1, 2, . . . , N + 1 and η = (hl+1/hl) > 0, l = 1, 2, . . . , N. Since

b − a = xN+1 − x0 = (xN+1 − xN) + (xN − xN−1) + · · · + (x1 − x0)

= hN+1 + hN + · · · + h1

= h1(1 + η + η2 + · · · + ηN),

which gives the value of the first step length in x-direction as

h1 = (b − a)(1 − η)

1 − ηN+1
, η �= 1. (62)

Thus, having prescribed the value of η and total number of mesh points in the x-
direction as N + 2 with N + 1 subintervals, we can calculate h1 from the above
relation and the remaining mesh lengths in x-direction are known by hl+1 = ηhl, l =

0
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Fig. 1 Example 1: The graph of numerical and exact solution for α = 1, η = 0.94 and N + 1 = 16 at
t = 1 with min

1≤l≤N+1
hl = 0.0377 and max

1≤l≤N+1
hl = 0.0955
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Table 2 The maximum absolute errors for Example 2 at t = 1.0, η = 1.08 (variable mesh)

N + 1 O(k2 + khl + h3l )-method (16.1)–(16.2) O(k2 + h2l )-method (15.1)–(15.2)

α = 10 α = 20 α = 40 α = 10 α = 20 α = 40

8 u 9.6855(−05) 7.7079(−05) 6.2282(−05) 7.5101(−03) 6.1608(−03) 4.8730(−03)

uxx 7.4891(−03) 7.2465(−03) 6.8882(−03) 1.6228(−01) 1.4935(−01) 1.3764(−01)

16 u 2.1191(−05) 1.7910(−05) 1.4694(−05) 2.3124(−03) 1.9097(−03) 1.5264(−03)

uxx 1.4068(−03) 1.3918(−03) 1.3753(−03) 5.5398(−02) 5.2045(−02) 4.8772(−02)

32 u 8.1361(−06) 6.9275(−06) 5.7831(−06) 1.0341(−03) 8.6087(−04) 6.9501(−04)

uxx 6.5429(−04) 6.5008(−04) 6.4540(−04) 2.8087(−02) 2.6594(−02) 2.5095(−02)

1, 2, . . . , N . Hence, each grid point (xl, tj ) of the mesh is determined. Throughout
our computation (wherever not specified), we have used the time step k = 1.6/(N +
1)2 for finding the solution at t = 1.

Example 1 (1D unsteady singular biharmonic equation) We solve numerically the
differential equation (54) whose exact solution is u = e−t r4 sin r . The maximum
absolute error is considered for testing the accuracy of the methods defined as

MAE = max
1≤l≤N

|u(xl, t) − u∗(xl, t)|,

where u(xl, t), u∗(xl, t) denotes the numerical and exact solution, respectively. The
maximum absolute errors in u and urr with η = 0.94 are listed in Table 1 at t = 1
for α = 1, 2. Figure 1 gives a comparison of the plots of the exact and numerical
solutions using method (61.1)–(61.2).
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Fig. 2 Example 2: The graph of numerical and exact solution for α = 20, η = 1.08 and N + 1 = 16 at
t = 1 with min

1≤l≤N+1
hl = 0.0330 and max

1≤l≤N+1
hl = 0.1046
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Table 3 The absolute errors in u for the generalized fourth-order KdV equation (4), Example 3 with
p = 4, c = 0.05, K = 0.1 and A = 0.2 (uniform mesh)

x

t 0.1 0.2 0.3 0.4 0.5

0.1 Method (46.1)–(46.2) 9.9124(−07) 1.8988(−06) 2.6425(−06) 3.1510(−06) 3.3679(−06)

Method discussed in [11] 5.5554(−06) 1.1081(−05) 1.6575(−05) 2.2040(−05) 2.7475(−05)

0.2 Method (46.1)–(46.2) 8.8986(−07) 1.7064(−06) 2.3785(−06) 2.8423(−06) 3.0464(−06)

Method discussed in [11] 5.7876(-06) 1.1546(−05) 1.7275(−05) 2.2976(−05) 2.8647(−05)

0.3 Method (46.1)–(46.2) 7.9102(−07) 1.5186(−06) 2.1198(−06) 2.5377(−06) 2.7259(−06)

Method discussed in [11] 6.0145(−06) 1.2001(−05) 1.7959(−05) 2.3890(−05) 2.9792(−05)

0.4 Method (46.1)–(46.2) 6.9173(−07) 1.3302(−06) 1.8610(−06) 2.2336(−06) 2.4059(−06)

Method discussed in [11] 6.2362(−06) 1.2446(−05) 1.8628(−05) 2.4784(−05) 2.7475(−05)

0.5 Method (46.1)–(46.2) 5.9199(−07) 1.1413(−06) 1.6019(−06) 1.9295(−06) 2.0862(−06)

Method discussed in [11] 6.4530(−06) 1.2880(−05) 1.9282(−05) 2.5658(−05) 3.2008(−05)

Example 2 (1D unsteady quasi-linear biharmonic equation)

(
1 + u2

)∂4u

∂x4
+ ∂u

∂t
= αuuxx + f (x, t), 0 < x < 1, t > 0, (63)
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Fig. 3 Example 2: Error plot with varying mesh ratio at t = 1 (α = 20 and N + 1 = 16 in Example 2)
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Fig. 4 Example 3: The graph of numerical and exact solution of homogenous generalized fourth-order
KdV equation (4) for p = 4, c = 0.05, K = 0.1, A = 0.2 at t = 0.5 and for −20 < x < 20

where

f (x, t) = [
π4(1 + e−2t sin2(πx)

) − 1 + απ2e−t sin(πx)
]
e−t sin(πx).

The exact solution is u(x, t) = e−t sin(πx). The quasi-linear equation (63) in which
the coefficient A(x, t, u, uxx) ≡ 1 + u2 is solved using the approximations (17.1)–
(17.2) in the difference formula (16.1)–(16.2). The maximum absolute errors in u and
uxx with η = 1.08 are listed in Table 2 at t = 1 for various values of α. Figure 2 gives
a comparison of the plots of the exact and numerical solutions. In order to illustrate
the effect in the accuracy of the scheme (16.1)–(16.2) with varying mesh ratio, the
maximum absolute errors are plotted at t = 1 in Fig. 3 for α = 20 and N + 1 = 16
with mesh ratio varying from 0.92 to 1.08. It is observed from Fig. 3 that the error
is minimum for η = 1 (uniform mesh) and fourth-order accurate results are obtained
while the error increases as the mesh ratio varies from unity.

Table 4 The maximum absolute errors for non-homogenous fourth-order nonlinear KdV equation (64),
Example 4 at t = 1.0, η = 0.92 for various values of p (variable mesh)

N + 1 O(k2 + khl + h3l )-method (16.1)–(16.2) O(k2 + h2l )-method (15.1)–(15.2)

p = 4 p = 6 p = 8 p = 4 p = 6 p = 8

8 u 1.1291(−05) 3.1582(−05) 1.0103(−04) 3.1935(−04) 4.1000(−04) 2.9101(−03)

uxx 4.1053(−04) 2.2876(−03) 8.4276(−03) 1.8103(−02) 7.0936(−02) 1.6960(−01)

16 u 1.5093(−06) 5.1481(−06) 2.4821(−05) 1.1170(−04) 2.1159(−04) 1.0707(−03)

uxx 1.4344(−04) 1.0158(−03) 3.9896(−03) 1.0767(−02) 4.6772(−02) 1.2559(−01)

32 u 5.0662(−07) 1.8546(−06) 1.0592(−05) 6.0383(−05) 1.2508(−04) 5.9424(−04)

uxx 8.2770(−05) 6.0844(−04) 2.4633(−03) 7.5403(−03) 3.4048(−02) 9.5377(−02)
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Fig. 5 Example 4: The graph of numerical and exact solution of non-homogenous generalized fourth-
order KdV equation (64) for p = 4, η = 0.92 and N + 1 = 8 at t = 1 with min

1≤l≤N+1
hl = 0.0917 and

max
1≤l≤N+1

hl = 0.1643

Example 3 (Generalized fourth-order KdV equation) The generalized fourth-order
KdV equation (4) admits single-soliton solutions as u(x, t) = A[sech2(Kx − ct)]1/p
where A, K and c are constants (see [11]). We compute the above traveling wave
solution of (4) by using the difference method (45.1)–(45.2) for uniform mesh and
compare our results with the Adomian decomposition method proposed by Kaya
[11]. We take the same constants as in [11]: p = 4, c = 0.05, K = 0.1 and
A = 0.2. The absolute errors are tabulated in Table 3 at various time levels t =
0.1, 0.2, 0.3, 0.4 and 0.5. The 3D graphs of numerical and analytical solutions are
plotted in Fig. 4 for p = 4, c = 0.05, K = 0.1, A = 0.2 and for −20 < x < 20.

Table 5 Comparison of global relative error in u for the KS equation (6), Example 5 with α = 1 and
γ = 1 at different times

t O(k2 + h4)-method Method discussed Method discussed

(46.1)–(46.2) in [20] in [17]

1 6.0297(−05) 3.8173(−04) 6.7923(−04)

2 9.9303(−05) 5.5114(−04) 1.1503(−03)

3 1.3064(−04) 7.0398(−04) 1.5941(−03)

4 1.6060(−04) 8.6366(−04) 2.0075(−03)
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Example 4 (Non-homogenous fourth-order non-linear KdV equation) We conducted
an accuracy test using variable mesh difference method (16.1)–(16.2) for the non-
homogenous fourth-order KdV equation (see [21]):

∂4u

∂x4
+ ∂u

∂t
+ (p + 1)upux = f (x, t), p > 2, 0 < x < 1, t > 0, (64)

where

f (x, t) =
[
p4

16
− 2t − p

2
(p + 1)e−p

(
px
2 +t2

)]
e
−
(

px
2 +t2

)
.

The exact solution is given by u(x, t) = e−(
px
2 +t2). The maximum absolute errors in

u and uxx with η = 0.92 are listed in Table 4 at t = 1 for p = 4, 6 and 8. Figure 5
gives a comparison of the plots of the exact and numerical solutions using method
(16.1)–(16.2) for p = 4.

Example 5 (Kuramoto-Sivashinsky equation with α = 1 and γ = 1) We compute
numerical solution of differential equation (6) for α = 1 and γ = 1 using finite
difference method (46.1)–(46.2) for uniform mesh and compare our results with the
quintic B-spline collocation method discussed byMittal and Arora [20] and the lattice
Boltzmann method proposed by Lai and Ma [17]. The exact solution of (6) for the
above parameters is

u(x, t) = b + 15

19

√
11

19
(−9 tanh(K(x − bt − x0)) + 11 tanh3(K(x − bt − x0))).

For numerical computation, we choose the same theoretical parameters as in [17, 20]:

b = 5, K = 1
2

√
11
19 , x0 = −12 and the solution domain is taken as [−30, 30] with

Fig. 6 Example 4: Comparison
between numerical and exact
solution at different times
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454 Numer Algor (2017) 74:427–459

Table 6 Comparison of global relative error in u for Example 5 with change in number of partitions at
different times

N + 1 = 200 N + 1 = 300 N + 1 = 400

t O(k2 + h4)- Method O(k2 + h4)- Method O(k2 + h4)- Method

method discussed method discussed method discussed

(46.1)–(46.2) in [20] (45.1)–(45.2) in [20] (45.1)–(45.2) in [20]

1 3.3445(−05) 2.1335(−04) 2.4382(−05) 1.2335(−04) 2.2991(−05) 6.6956(−05)

2 5.8065(−05) 3.0874(−04) 4.4914(−05) 1.6780(−04) 4.2944(−05) 9.6417(−05)

3 7.9875(−05) 3.9500(−04) 6.4010(−05) 2.0791(−04) 6.1833(−05) 1.0947(−04)

4 9.7756(−05) 4.8479(−04) 8.1239(−05) 2.5018(−04) 7.9068(−05) 1.2600(−04)

number of partitions as 150 and k = 0.01. To test the accuracy of the method, we
have computed the global relative error defined using the formula

GRE =

N∑
l=1

|u(xl, t) − u∗(xl, t)|
N∑

l=1
|u∗(xl, t)|

.

The global relative errors for the solution of KS equation are listed in Table 5 at
different times t = 1, 2, 3, and 4. We show the two-dimensional visual comparison
of exact and numerical solution at different times in Fig. 6. In Table 6, the global
relative error is compared for different number of partitions for various time intervals
with those of [20] to present the effect of change in the number of mesh points.

Example 6 (Kuramoto-Sivashinsky equation with α = −1 and γ = 1) The exact
solution of the KS equation (6) with α = −1 and γ = 1 is given by

u(x, t) = b + 15

19
√
19

(−3 tanh(K(x − bt − x0)) + tanh3(K(x − bt − x0))).

For numerical computation, we choose the same physical constants as in [17, 20]:
b = 5, K = 1

2
√
19
, x0 = −25 and the solution domain is taken as [−50, 50] with

Table 7 Comparison of global relative error in u for the KS equation (6), Example 6 with α = −1 and
γ = 1 at different times

t O(k2 + h4)-method Method discussed Method discussed

(46.1)–(46.2) in [20] in [17]

6 8.9929(−08) 6.5093(−06) 7.8808(−06)

8 2.3011(−07) 7.1315(−06) 9.5324(−06)

10 3.3576(−07) 7.3103(−06) 1.0891(−05)

12 5.2537(−07) 8.7766(−06) 1.1793(−05)
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Fig. 7 Example 5: Comparison
between numerical and exact
solution at different times
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t=6 Numerical
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t=8 Numerical
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t=10 Numerical
t=12 Exact
t=12 Numerical

number of partitions as 200 and k = 0.01. In Table 7, we present a comparison of
the global relative error found by method (46.1)–(46.2) with the B-spline collocation
method of [20] and the lattice Boltzmann method of [17]. The two-dimensional graph
of numerical solution vs. exact solution is plotted in Fig. 7 for −50 < x < 50.

Example 7 (Generalized Kuramoto-Sivashinsky equation) Equation (5) is also
known as KdV-Burgers-Kuramoto equation. For β = 0, (5) is the KS equation.
We compute numerical solution of differential equation (5) for α = 1, β = 4 and
γ = 1 using finite difference method (46.1)–(46.2) for uniform mesh and compare
our results with the lattice Boltzmann method discussed in [17]. The exact solution
of (5) for the above parameters is

u(x, t) = b + 9− 15(tanh(K(x − bt − x0)) + tanh2(K(x − bt − x0)) − tanh3(K(x − bt − x0))).

For numerical computation, we choose the same theoretical parameters as in [17]:
b = 6, K = 1

2 and x0 = −10 and the solution domain is taken as [−30, 30] with
h = 0.1, k = 0.0001. To test the accuracy, the global relative error is compared in

Table 8 Comparison of global relative error in u for the GKS equation (5), Example 7 with α = 1, β = 4
and γ = 1 at different times

t O(k2 + h4)-method Method discussed

(46.1)–(46.2) in [17]

1 8.4059(−05) 2.5945(−02)

2 2.7154(−04) 2.7959(−02)

3 5.3351(−04) 2.6701(−02)

4 8.5210(−04) 3.5172(−02)
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Fig. 8 Example 6: Comparison
between numerical and exact
solution at t = 1
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Table 8 at time t = 1, 2, 3, and 4. In Fig. 8, two-dimensional comparison of exact
and numerical solution is presented at t = 1.

Example 8 (Extended Fisher-Kolmogorov equation)

∂u

∂t
+ γ

∂4u

∂x4
− ∂2u

∂x2
+ f (u) = φ(x, t), 0 < x < 1, t > 0, (65)

where f (u) = u3 − u (see Khiari and Omrani [14]). Here

φ(x, t) = (
16γπ4 + 4π2 + e−2t sin2(2πx) − 2

)
e−t sin(2πx).

The exact solution of the above problem for γ = 0.1 is u(x, t) = e−t sin(2πx). The
numerical solution of differential equation (64) is computed using finite difference
method (46.1)–(46.2) for uniform spatial mesh with number of partitions 8, 16, 32,

Table 9 The root mean square error, the maximum absolute error and the order of convergence of method
(46.1)–(46.2) for Example 8 at t = 1 and 2 for a fixed λ = (k/h2) = 1.6 (uniform mesh)

t = 1 t = 2

h RMSE Order MAE Order RMSE Order MAE Order

1/8 7.9824(−04) – 1.0560(−03) – 2.9407(−04) – 3.8902(−04)

1/16 4.7263(−05) 4.0780 6.4717(−05) 4.0283 1.7412(−05) 4.0780 2.3842(−05) 4.0283

1/32 2.8921(−06) 4.0305 4.0259(−06) 4.0068 1.0655(−06) 4.0305 1.4832(−06) 4.0067

1/64 1.7924(−07) 4.0122 2.5184(−07) 3.9987 6.5990(−08) 4.0131 9.2806(−08) 3.9984
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Fig. 9 Example 7: Comparison
between numerical and exact
solution at t = 1 and t = 2
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and 64 at time t = 1 and 2. The maximum absolute error and the root mean square
error defined using the formula

RMSE = [ 1
N

N∑
l=1

(u(xl, t) − u∗(xl, t))
2]1/2,

are computed. For each spatial mesh length h, the corresponding time step size is cho-
sen as k ∝ h2. With this choice of time step size, the theoretical order of convergence
becomes O(h4), i.e., the method is fourth-order accurate in space, which is verified
using the formula (log(eh1) − log(eh2))/(log(h1) − log(h2)), where eh1 and eh2 are
errors corresponding to two uniform mesh lengths h1 and h2, respectively. The root
mean square error, the maximum absolute error and the order of convergence are tab-
ulated in Table 9. Figure 9 shows the two-dimensional visual comparison of the exact
and numerical solutions at t = 1 and 2.

The above examples have been taken to demonstrate the effect and utility of the
proposed methods. These numerical experiments show that the obtained results are
not only quite satisfactory with respect to the exact solutions but are also much
more accurate than the solutions described in the available literature. We have solved
Examples 1, 2, and 4 with variable mesh methods ofO(k2+khl +h3l ) andO(k2+h2l )

with N + 1 = 8, 16, and 32 and the maximum absolute errors are reported for each
case in Tables 1, 2, and 4, respectively. It is observed from these tables that the error
decreases as the number of subintervals N + 1 increases.

6 Final discussion

In this paper, we have developed two new implicit variable mesh difference schemes
for the solution of 1D unsteady quasi-linear biharmonic problem of second kind
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based on Numerov type discretization using coupled approach. The proposed differ-
ence methods use only three spatial grid points xl, xl±1 of a single computational cell
and no fictitious points for incorporating the boundary conditions are required. The
methods are shown to be stable for all values of the mesh ratio parameter λ = k/h2

for uniform mesh. We present stable difference schemes for a class of one space
unsteady linear singular biharmonic problem by modifying the proposed schemes in
such a way that the solution retains its order and accuracy everywhere including the
region in the vicinity of the singularity without using any fictitious points outside
the solution region to handle the numerical scheme near the boundary. The numer-
ical solution of uxx is determined as a by-product of the methods, which is quite
often of interest in various applied mathematics problems. The results of a num-
ber of numerical experiments on problems of physical importance are presented to
illustrate the effectiveness and efficiency of the proposed methods. The numerical
results clearly indicate that the methods produce better results in comparison with
the existing methods of Mittal and Arora [20] and Lai and Ma [17] for the classical
nonlinear Kuramoto-Sivashinsky equation. It is noted from Tables 5, 6, 7, and 8 that
the accuracy of the solution for the KS equation decreases with time due to the time
truncation errors of the time derivative term. We observe from Table 9 that the uni-
form mesh discretization produces fourth-order accurate results for a fixed mesh ratio
parameter λ for the extended Fisher-Kolmogorov equation. The graphical represen-
tation of numerical solution at various time intervals exhibits the same characteristics
as existing in the literature. The proposed methods are easily implemented, concise,
and approximate the exact solution very well for a large class of nonlinear PDEs. It
is hopeful that the presented methods will help in solving other nonlinear unsteady
biharmonic problems in applied sciences and engineering. Further research will be
directed to extend the proposed methods to solve 2D unsteady biharmonic problems.

Acknowledgments The authors thank the reviewers for their valuable suggestions, which substantially
improved the standard of the paper.
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