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Abstract In this paper, two classes of methods are developed for the solution of
two space dimensional wave equations with a nonlinear source term. We have used
non-polynomial cubic spline function approximations in both space directions. The
methods involve some parameters, by suitable choices of the parameters, a new high
accuracy three time level scheme of order O(h4 + k4 + τ 2 + τ 2h2 + τ 2k2) has
been obtained. Stability analysis of the methods have been carried out. The results
of some test problems are included to demonstrate the practical usefulness of the
proposed methods. The numerical results for the solution of two dimensional sine-
Gordon equation are compared with those already available in literature.
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1 Introduction

We consider the two-dimensional wave equation

∂2u

∂t2
= c2(

∂2u

∂x2
+ ∂2u

∂y2
) + F(u), (x, y) ∈ R, t > 0, (1)
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where
R = {(x, y); L0x < x < L1x, L0y < y < L1y}

subjected to the initial conditions

u(x, y, 0) = φ(x, y), ut (x, y, 0) = ψ(x, y). L0x ≤ x ≤ L1x, L0y ≤ y ≤ L1y,

(2)
and with the following boundary conditions

⎧
⎨

⎩

u(L0x, y, t) = f0(y, t), u(L1x, y, t) = f1(y, t),

u(x, L0y, t) = g0(x, t), u(x, L1y, t) = g1(x, t), t > 0,
(3)

where u = u(x, y, t) is a real valued sufficiently differentiable function and c2 is a
known constant(often representing wave speed).

Further, we assume that F : � → � is the nonlinear smooth function with the
following properties [1]

i)F (0) = 0, ii)uF (u) ≤ 0, iii) | F ′(u) |≤ υ(1 + | u |p−1),

for some υ > 0, where p > 1. Also let φ(x, y) and ψ(x, y) are sufficiently
differentiable functions of as higher order as possible.

Numerical techniques for the solution of hyperbolic equations have been discussed
and developed in the literature. Several finite difference schemes have been presented
for one-dimensional linear hyperbolic equations [2–4]. Ragget and Wilson [5] used
cubic spline and finite difference approximations for such equations. The numeri-
cal solution of one-dimensional linear hyperbolic equations obtained by Rashidinia
et al. [6] and Ding et al. [7] based on non-polynomial cubic spline approximation
in space and finite difference approximation in time direction. Liu et al. [8] used
quartic spline approximation in space direction. Mohanty and Gopal [9, 10] have
studied one-dimensional nonlinear wave equation based on cubic spline and com-
pact finite difference methods. Rashidinia and Mohammadi proposed methods using
tension spline approximation for the solution of nonlinear Klein-Gordon and non-
linear sine-Gordon equations [11, 12]. The solution of one-dimensional hyperbolic
telegraph equation have been approximated by applying radial basis functions (RBF)
[13], by cubic B-spline collocation method [14] and by quartic B-spline collocation
method [15].

The numerical solution of two-dimensional linear hyperbolic equations has been
proposed in [16–18] by using unconditionally stable implicit difference schemes
which have second-order accuracy in both space and time. Also for such equations,
Dehghan et al. applied compact finite difference approximations of fourth-order
for spatial derivatives and collocation method for time component [19]. Meshless
methods have been presented for the solution of two-dimensional linear hyperbolic
problems, so that Dehghan et al. [20] used collocation points and approximated solu-
tion by using thin plate splines (TPS) radial basis functions (RBF). Also in [21] a
combination of a mesh free boundary knot method and analog equation method is
proposed for such hyperbolic problems. Piperno presented two local time stepping
algorithms using discontinuous Galerkin time domain (DGTD) methods for wave
problems [22]. Shi and Li [23] discussed the semi-discrete finite element method with
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rectangular mesh for nonlinear hyperbolic equations. Chabassier and Joly applied
finite elements for a class of nonlinear second-order wave equations. They develop
a family of three-point schemes that conserve discrete energies in time [24]. Chawla
et al. presented linearly implicit one step schemes, for the time integration of second-
order nonlinear hyperbolic equations in one and also two space dimensions [25, 26].
The numerical solution of the nonlinear sine-Gordon equation in two space variables
is proposed in [27], by a method arises from a two-step one parameter method for
solution of second order ordinary differential equations. This method which is sec-
ond order in time and first order other wise, applied explicitly. Also, this equation is
solved in [28], by a method using collocation points and approximating the solution
employing thin plate spline (TPS) radial basis functions (RBF). A numerical tech-
nique based on polynomial differential quadrature method is proposed in [29] for the
solution of two-dimensional sine-Gordon equation. This method reduce the problem
into a system of second-order linear differential equations. Then the obtained system
changed into a system of ordinary differential equations.

In this paper, we have developed a new implicit three time level method of order
two in time and order four in both spaces, for the solution of two space dimensional
wave equations with nonlinear source term. We have used non-polynomial cubic
spline function approximations in both x and y spatial directions and finite difference
approximation in temporal direction. The methods involve some parameters, by suit-
able choices of the parameters two schemes of orders O(h2+k2+τ 2+τ 2h2+τ 2k2)

and O(h4 + k4 + τ 2 + τ 2h2 + τ 2k2) can be obtained. Stability analysis of the pre-
sented methods have been given. Some test examples are provided to demonstrate the
viability and practical usefulness of our methods. The errors of the proposed methods
for the solution of two dimensional nonlinear sine-Gordon equation are compared
with the results given in [27–29].

2 Non-polynomial spline functions

The solution domain, � = {(x, y, t); L0x ≤ x ≤ L1x, L0y ≤ y ≤ L1y, t > 0},
is divided to (N + 1) ∗ (N + 1) ∗ J mesh. The grid points are (xl, ym, tj ), where

xl = L0x + lh; h = L1x−L0x
N+1 , l = 0, 1, ..., N + 1, ym = L0y + mk; k = L1y−L0y

N+1 ,
m = 0, ..., N + 1 and tj = jτ ; 0 < j ≤ J , N and J are positive integers.

We let s1m(x) be the non-polynomial spline function which interpolates u(x, ym)

in each segment [(xl, ym), (xl+1, ym)] and is defined by

s1m(x) = a1l +b1l(x −xl)+c1lsinλ1(x −xl)+d1lcosλ1(x −xl), l = 1, ..., N, (4)

where a1l , b1l , c1l and d1l are unknown coefficients and λ1 is arbitrary parameter.
Also, let s2l (y) be the non-polynomial spline function interpolating u(xl, y) in each
segment [(xl, ym), (xl, ym+1)] and is defined by

s2l (y) = a2m+b2m(y−ym)+c2msinλ2(y−ym)+d2mcosλ2(y−ym), m = 1, ..., N,

(5)
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where a2m, b2m, c2m and d2m are unknown coefficients and λ2 is arbitrary parameter.
To derive explicit expressions for determining coefficients, we first denote

s1m(xl) = ul,m, s1m(xl+1) = ul+1,m,

s′′
1m(xl) = M1l,m, s′′

1m(xl+1) = M1l+1,m, (6)
s2l (ym) = ul,m, s2l(ym+1) = ul,m+1,

s′′
2l (ym) = M2l,m, s′′

2l(ym+1) = M2l,m+1. (7)
From (4) and (6) and after algebraic manipulations, we derive

a1l = ul,m + 1

λ21

M1l,m,

b1l = 1

h
(ul+1,m − ul,m) + 1

ω1λ1
(M1l+1,m − M1l,m),

c1l = 1

λ21

(cot (ω1)M1l,m − csc(ω1)M1l+1,m), d1l = −1

λ21

M1l,m,

where ω1 = λ1h.
Also from (5) and (7), we get

a2m = ul,m + 1

λ22

M2l,m,

b2m = 1

k
(ul+1,m − ul,m) + 1

ω2λ2
(M2l+1,m − M2l,m),

c2m = 1

λ22

(cot (ω2)M2l,m − csc(ω2)M2l+1,m), d2m = −1

λ22

M2l,m,

where ω2 = λ2k.
From the continuity of the first derivatives of spline functions s1m(x) and s2l (y) at

(xl, ym), we can obtain the following useful consistency relations

ul−1,m − 2ul,m + ul+1,m = h2(α1M1l−1,m + 2β1M1l,m + α1M1l+1,m), (8)

ul,m−1 − 2ul,m + ul,m+1 = k2(α2M2l,m−1 + 2β2M2l,m + α2M2l,m+1), (9)
where

α1 = 1

ω2
1

(ω1csc(ω1) − 1), β1 = 1

ω2
1

(1 − ω1cot (ω1)),

α2 = 1

ω2
2

(ω2csc(ω2) − 1), β2 = 1

ω2
2

(1 − ω2cot (ω2)).

It can be shown that the above non-polynomial splines defined in (4) and (5)
reduce to standard cubic splines when the parameters tend to zero. So that when
λ1 → 0, that ω1 → 0 , then (α1, β1) → (1/6, 1/3) and also when λ2 → 0, then
(α2, β2) → (1/6, 1/3) and the consistency relations of tension splines defined in (8)
and (9) reduce to the following ordinary cubic spline relations, respectively

(ul−1,m − 2ul,m + ul+1,m) = h2

6
( M1l−1,m + 4M1l,m + M1l+1,m). (10)

(ul,m−1 − 2ul,m + ul,m+1) = k2

6
(M2l,m−1 + 4M2l,m + M2l,m+1). (11)
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3 Spline numerical methods

We next develop an approximation for (1) in which we use the non-polynomial cubic
spline approximation in both spatial directions and finite difference approximation
for the temporal direction. At the grid point (xl, ym, tj ), (1) may be discretized by

(utt )
j
l,m = c2((uxx)

j
l,m + (uyy)

j
l,m) + F

j
l,m, (12)

where F
j
l,m = F(u

j
l,m).

For the time derivative, we use the following finite difference approximation

(ūtt )
j
l,m = u

j−1
l,m − 2uj

l,m + u
j+1
l,m

τ 2
= (utt )

j
l,m + O(τ 2), (13)

and the non-polynomial cubic spline function approximations for x and y space
derivatives are as follows

(ūxx)
j
l,m = M

j

1l,m + O(h2), (14)

(ūyy)
j
l,m = M

j

2l,m + O(k2). (15)

By using (13)–(15) and after neglecting the truncation errors, (12) may be written
as follows

u
j−1
l,m − 2uj

l,m + u
j+1
l,m

τ 2
= c2(M

j

1l,m + M
j

2l,m) + F
j
l,m.

or

M
j

1l,m + M
j

2l,m = u
j−1
l,m − 2uj

l,m + u
j+1
l,m

c2τ 2
− 1

c2
F

j
l,m. (16)

Then we can conclude that

M
j

1l±1,m + M
j

2l±1,m = u
j−1
l±1,m − 2uj

l±1,m + u
j+1
l±1,m

c2τ 2
− 1

c2
F

j

l±1,m, (17)

and

M
j

1l,m±1 + M
j

2l,m±1 = u
j−1
l,m±1 − 2uj

l,m±1 + u
j+1
l,m±1

c2τ 2
− 1

c2
F

j

l,m±1. (18)

Consistency relation (8) in the j-th time level can be written as

(u
j

l−1,m − 2uj
l,m + u

j

l+1,m) = h2(α1M
j

1l−1,m + 2β1M
j

1l,m + α1M
j

1l+1,m). (19)

Then we have

(u
j

l−1,m±1−2uj

l,m±1+u
j

l+1,m±1) = h2(α1M
j

1l−1,m±1+2β1M
j

1l,m±1+α1M
j

1l+1,m±1).

(20)
Similarly consistency relation (9) in the j-th time level can be written as

(u
j

l,m−1 − 2uj
l,m + u

j

l,m+1) = k2(α2M
j

2l,m−1 + 2β2M
j

2l,m + α2M
j

2l,m+1). (21)



294 Numer Algor (2017) 74:289–306

Then we have

(u
j

l±1,m−1−2uj

l±1,m+u
j

l±1,m+1) = k2(α2M
j

2l±1,m−1+2β2M
j

2l±1,m+α2M
j

2l±1,m+1).

(22)
At first we multiply (19) by 2k2β2 and (20) by k2α2 and (21) by 2h2β1 and (22) by
h2α1, then adding these equations with each other we obtain

2k2β2(u
j

l−1,m − 2uj
l,m + u

j

l+1,m) + k2α2(u
j

l−1,m−1 − 2uj

l,m−1 + u
j

l+1,m−1)

+k2α2(u
j

l−1,m+1 − 2uj

l,m+1 + u
j

l+1,m+1) + 2h2β1(u
j

l,m−1 − 2uj
l,m + u

j

l,m+1)

+h2α1(u
j

l−1,m−1 − 2uj

l−1,m + u
j

l−1,m+1) + h2α1(u
j

l+1,m−1 − 2uj

l+1,m + u
j

l+1,m+1)

= 2h2k2α1β2(M
j

1l−1,m + M
j

2l−1,m + M
j

1l+1,m + M
j

2l+1,m)

+2h2k2α2β1(M1l,m−1 + M2l,m−1 + M1l,m+1 + M2l,m+1)

+h2k2α1α2(M1l−1,m−1 + M2l−1,m−1 + M1l+1,m−1 + M2l+1,m−1)

+h2k2α1α2(M1l−1,m+1 + M2l−1,m+1 + M1l+1,m+1 + M2l+1,m+1)

+4h2k2β1β2(M1l,m + M2l,m).

By substituting M
j

1l,m + M
j

2l,m and M
j

1l±1,m + M
j

2l±1,m and M
j

1l,m±1 + M
j

2l,m±1
with their equivalent expressions in (16)–(18) and after simplification we derive

p1u
j+1
l−1,m−1 + p3u

j+1
l,m−1 + p1u

j+1
l+1,m−1 + p2u

j+1
l−1,m + p4u

j+1
l,m + p2u

j+1
l+1,m

+p1u
j+1
l−1,m+1 + p3u

j+1
l,m+1 + p1u

j+1
l+1,m+1

= −p1u
j−1
l−1,m−1 − p3u

j−1
l,m−1 − p1u

j−1
l+1,m−1 − p2u

j−1
l−1,m − p4u

j−1
l,m − p2u

j−1
l+1,m

−p1u
j−1
l−1,m+1 − p3u

j−1
l,m+1 − p1u

j−1
l+1,m+1

+p5u
j

l−1,m−1 + p7u
j

l,m−1 + p5u
j

l+1,m−1 + p6u
j

l−1,m + p8u
j
l,m + p6u

j

l+1,m

+p5u
j

l−1,m+1 + p7u
j

l,m+1 + p5u
j

l+1,m+1 +
+τ 2(p1F

j

l−1,m−1 + p3F
j

l,m−1 + p1F
j

l+1,m−1 + p2F
j

l−1,m + p4F
j
l,m + p2F

j

l+1,m

+p1F
j

l−1,m+1 + p3F
j

l,m+1 + p1F
j

l+1,m+1), (23)

where

p1 = α1α2, p2 = 2α1β2, p3 = 2α2β1, p4 = 4β1β2,

p5 = c2τ 2(α2/h2 + α1/k2) + 2α1α2,

p6 = 2c2τ 2(β2/h2 − α1/k2) + 4α1β2,

p7 = 2c2τ 2(β1/k2 − α2/h2) + 4α2β1,

p8 = −4c2τ 2(β2/h2 + β1/k2) + 8β1β2. (24)

The scheme (23) is an implicit three time level scheme. For the solution u at first
time level, that is at t = τ, we use an explicit scheme of O(τ 3).
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Since the initial values of u and ut are known explicitly at t = 0, this implies all
their successive partial derivatives are known at t = 0.

By the help of Taylor expansion, a third-order approximation to u at t = τ can be
written as

u1l,m = u0l,m + τ(ut )
0
l,m + τ 2

2
(utt )

0
l,m + τ 3

6
(uttt )

0
l,m + O(τ 4). (25)

From initial values in (2), we have

u0l,m = φl,m, (ut )
0
l,m = ψl,m. (26)

Using (12), we find

(utt )
0
l,m = [c2(uxx + uyy) + F(u)]0l,m, (27)

(uttt )
0
l,m = [c2(utxx + utyy) + Fu(u).ut ]0l,m. (28)

Thus, by using (25)-(28), we may obtain the approximate solution u at t = τ as
follows

u1l,m = φl,m + τψl,m + τ 2

2
[c2((φxx + φyy)l,m) + F(φl,m)]

+ τ 3

6
[c2((ψxx + ψyy)l,m) + Fu(φl,m).ψl,m]. (29)

Then in each time level, we may obtain the solution from the following matrix
form of scheme (23)

AUj+1 = −AUj−1 + BUj + τ 2AF(Uj ), j = 1, ..., J. (30)

where A and B are block tridiagonal matrices of orderN2 and U is the solution vector.
Each diagonal block of A is a tridiagonal N-order matrix in the form tri[p2, p4, p2]
and each upper diagonal block is equal to each lower diagonal block of A and
equals to tri[p1, p3, p1]. Similarly each diagonal block of B is a tridiagonal N-
order matrix in the form tri[p6, p8, p6] and each off diagonal block of B is equal to
tri[p5, p7, p5], where the triangular matrix T = tri[a, b, a] is defined by

T = (tij ) =
⎧
⎨

⎩

b i = j

a | i − j |= 1
0 otherwise

4 Truncation error

From (12), we have

F
j
l,m = (utt )

j
l,m − c2((uxx)

j
l,m + (uyy)

j
l,m) (31)
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Then we may have

F
j
l+η,m+γ = (utt )

j
l+η,m+γ − c2((uxx)

j
l+η,m+γ + (uyy)

j
l+η,m+γ ), (32)

where η, γ = 0, ±1. Substituting (31) and (32) in the scheme (23) and then expand-
ing both side of the derived equation, in Taylor series in terms of u(xl, ym, tj ) and
it,s partial derivatives we obtain the truncation error as follows

T
j
l,m = {2(α2 + β2)(2α1 + 2β1 − 1)

∂2

∂x2
+ 2(α1 + β1)(2α2 + 2β2 − 1)

∂2

∂y2

+(h2α1(2α2 + 2β2 − 1) + k2α2(2α1 + 2β1 − 1))
∂2

∂x2

∂2

∂y2

+(2h2(α2 + β2)(α1 − 1

12
))

∂4

∂x4
+ (2k2(α1 + β1)(α2 − 1

12
))

∂4

∂y4

+1

3
τ 2(α1 + β1)(α2 + β2)

∂4

∂t4

+(h2k2α2(α1 − 1

12
) + 1

6
h4α1(β2 − 1

2
))

∂4

∂x4

∂2

∂y2

+(h2k2α1(α2 − 1

12
) + 1

6
k4α2(β1 − 1

2
))

∂2

∂x2

∂4

∂y4

+1

6
h2τ 2α1(α2 + β2)

∂2

∂x2

∂4

∂t4
+ 1

6
k2τ 2α2(α1 + β1)

∂2

∂y2

∂4

∂t4

+1

6
h4(α2 + β2)(α1 − 1

30
)

∂6

∂x6
+ 1

6
k4(α1 + β1)(α2 − 1

30
)

∂6

∂y6

+ 1

90
τ 4(α1 + β1)(α2 + β2)

∂4

∂t4
+ ...}uj

l,m (33)

By choosing suitable values of parameters α1, α2, β1, and β2, we achieve the
following various classes of methods

(i) If we choose

α1 + β1 = 1

2
, α2 + β2 = 1

2
, α1 �= 1

12
, α2 �= 1

12
. (34)

we obtain various schemes of orderO(h2+k2+τ 2+τ 2h2+τ 2k2). In particular,
we can choose α1 = α2 = 1

6 and β1 = β2 = 1
3 .

(ii) If we choose

α1 + β1 = 1

2
, α2 + β2 = 1

2
, α1 = 1

12
, α2 = 1

12
. (35)

we obtain a new scheme of order O(h4 + k4 + τ 2 + τ 2h2 + τ 2k2).
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5 Stability analysis

Now we will discuss the stability of the proposed schemes. First, we consider the
homogenous part of scheme (23) and assume u

j−1
l,m = v

j
l,m, then by setting Y

j
l,m =

(u
j
l,m, v

j
l,m)T we have

C1Y
j+1
l−1,m−1 + C3Y

j+1
l,m−1 + C1Y

j+1
l+1,m−1 + C2Y

j+1
l−1,m + C4Y

j+1
l,m + C2Y

j+1
l+1,m

+C1Y
j+1
l−1,m+1 + C3Y

j+1
l,m+1 + C1Y

j+1
l+1,m+1

= D1Y
j

l−1,m−1 + D3Y
j

l,m−1 + D1Y
j

l+1,m−1 + D2Y
j

l−1,m + D4Y
j
l,m + D2Y

j

l+1,m

+D1Y
j

l−1,m+1 + D3Y
j

l,m+1 + D1Y
j

l+1,m+1, (36)

where

C1 =
(

p1 0
0 1

)

, C2 =
(

p2 0
0 1

)

, C3 =
(

p3 0
0 1

)

, C4 =
(

p4 0
0 1

)

,

D1 =
(

p5 p1
1 0

)

, D2 =
(

p6 p2
1 0

)

,

D3 =
(

p7 p3
1 0

)

, D4 =
(

p8 p4
1 0

)

.

Let Ȳ j
l,m be the numerical value of Y

j
l,m then ε

j
l,m = Y

j
l,m − Ȳ

j
l,m is the error vector

at the j − th time level. From (36), we have

C1ε
j+1
l−1,m−1 + C3ε

j+1
l,m−1 + C1ε

j+1
l+1,m−1 + C2ε

j+1
l−1,m + C4ε

j+1
l,m + C2ε

j+1
l+1,m

+C1ε
j+1
l−1,m+1 + C3ε

j+1
l,m+1 + C1ε

j+1
l+1,m+1

= D1ε
j

l−1,m−1 + D3ε
j

l,m−1 + D1ε
j

l+1,m−1 + D2ε
j

l−1,m + D4ε
j
l,m + D2ε

j

l+1,m

+D1ε
j

l−1,m+1 + D3ε
j

l,m+1 + D1ε
j

l+1,m+1. (37)

We may assume that the solution of (37) at the grid point (xl, ym, tj ) is of the form

ε
j
l,m = ξj ei(θ1l+θ2m), (38)

where i = √−1 , θ1, θ2 are real phase angles and ξ is in general complex. Substitut-
ing (38) into (37) and using Euler identity eiθ = cos(θ)+isin(θ), after simplification
we find

ξ

(
Q1 0
0 Q2

)

=
(

Q3 Q1
Q2 0

)

, (39)

where
Q1 = 4(α1cosθ1 + β1)(α2cosθ2 + β2),

Q2 = (2cosθ1 + 1)(2cosθ2 + 1),

Q3 = 4(α2cosθ2 + β2)(
c2τ 2

h2
(cosθ1 − 1) + α1cosθ1 + β1)

+ 4(α1cosθ1 + β1)(
c2τ 2

k2
(cosθ2 − 1) + α2cosθ2 + β2).
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Then we get the amplification matrix of the difference scheme (37) as follows

G =
(

Q1 0
0 Q2

)−1 (
Q3 Q1
Q2 0

)

=
(

2 − 2c2τ 2(
sin2(

θ1
2 )

h2(α1cosθ1+β1)
+ sin2(

θ2
2 )

k2(α2cosθ2+β2)
) −1

1 0

)

.

The eigenvalues λ of matrix G satisfy the equation
λ2 − 2bλ + 1 = 0, (40)

where

b = 1 − c2τ 2

(
sin2(

θ1
2 )

h2(α1cosθ1 + β1)
+ sin2(

θ2
2 )

k2(α2cosθ2 + β2)

)

.

Using the transformation λ = 1+z
1−z

, (40) takes the form

(2 + 2b)z2 + (2 − 2b) = 0. (41)

By the above transformation the unit circle can be mapped to the left half of the
plane, so the stability criterion | λ |< 1 will be satisfied, when | b |< 1. Thus for
stability, by choosing α1 + β1 = 1

2 and α2 + β2 = 1
2 ,with α1 < 1

4 and α2 < 1
4 , we

must have the following restrictions for the time step

τ ≤ h

√
1 − 4α1

2c2
, τ ≤ k

√
1 − 4α2

2c2
. (42)

6 Numerical results

In this section, we applied method (i) and method (ii) presented in (34) and (35) to the
following test problems, with the known exact solutions. To demonstrate the applica-
bility of our methods, the computed solutions are compared with the exact solutions
at grid points. The computed errors with different norms are tabulated in Tables 1, 2,
3, and 4. The surface plots and pseudo color plots of the estimated solutions at dif-
ferent time levels are given in Figs. 1, 2, 3, and 4. In the first example, our computed
errors for the solution of two-dimensional sine-Gordon equation are compared with
the results in existing methods given in references [27–29].

Example 1 Consider the two dimensional sine-Gordon equation

utt = uxx + uyy − sinu, −7 < x, y < 7, t > 0, (43)

subject to the initial conditions

u(x, y, 0) = 4tan−1(exp(x + y)),

ut (x, y, 0) = −2sech(x + y), −7 ≤ x, y ≤ 7
The exact solution of this problem is

u(x, y, t) = 4tan−1(exp(x + y − t)).

The boundary conditions are derived from the exact solution.
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Table 1 Errors in the numerical solution of Example 1

t Method (i) Method (ii) [27] [28] [29]

L∞-errors 1 7.82(−3) 1.34(−4) 3.50(−2) 6.70(−2) 2.7(−3)
3 2.39(−2) 2.90(−4) 4.31(−2) 8.34(−2) 2.0(−3)
5 3.18(−2) 2.93(−4) 4.04(−2) 1.01(−1) 3.3(−3)
7 3.96(−2) 3.40(−4) 3.53(−2) 1.52(−1) 5.9(−3)

RMS-errors 1 2.18(−3) 2.61(−5) − 5.00(−3) 5.0(−4)
3 5.48(−3) 5.25(−5) − 1.03(−2) 5.0(−5)
5 8.22(−3) 6.36(−5) − 1.45(−2) 7.0(−4)
7 8.40(−3) 6.42(−5) − 1.87(−2) 1.1(−3)

We applied our methods to solve this problem in the domain −7 ≤ x, y ≤ 7 with
h = k = 0.25, and step size in time direction is τ = 0.01. The L∞ and RMS-errors
in solutions at t = 1, 3, 5, 7 are compared with the results in references [27, 28], and
[29], with step size in time direction τ = 0.001, which are tabulated in Table 1. In
[27, 28], the spatial step sizes are as the same as ours and are equal to h = k = 0.25.
In reference [29], the number of divides in space directions is N = 31. The errors
in the estimated solution of our methods are quite accurate because in the above
mentioned references the number of levels to achieve such errors are tenfold that of
our levels. The computed errors in Table 1 show that in our methods with larger time
step and much fewer iterations, we obtain the results with considerable accuracy. The
surface plots and pseudo color plots for numerical solutions of sin(u/2) at different
time levels are shown in Fig. 1.

Example 2 Consider two-dimensional Klein-Gordon equation

utt = 5

4
(uxx + uyy) − u − 3

2
u3, 0 < x, y < 1, t > 0, (44)

Table 2 Errors in the numerical solution of Example 2 with μ = 0.1

Method (i) Method (ii)

(h,k) τ L2-error L∞-error order L2-error L∞-error Order

t = 1:
( 18 , 1

8 ) 0.02 4.442(−4) 1.239(−4) 2.628(−6) 8.182(−7)
( 1
16 , 1

16 ) 0.02 2.170(−4) 3.033(−5) 2.03 3.336(−7) 5.193(−8) 3.98

( 1
32 , 1

32 ) 0.01 1.092(−4) 7.709(−6) 1.98 4.231(−8) 3.294(−9) 3.98
( 1
64 , 1

64 ) 0.005 5.485(−5) 1.928(−6) 1.99 5.471(−9) 2.114(−10) 3.96

t = 2:
( 18 , 1

8 ) 0.02 1.033(−3) 2.650(−4) 6.076(−6) 1.611(−6)
( 1
16 , 1

16 ) 0.02 5.178(−4) 6.782(−5) 2.03 7.670(−7) 1.047(−7) 3.94
( 1
32 , 1

32 ) 0.01 2.610(−4) 1.690(−5) 2.00 9.729(−8) 6.619(−9) 3.98
( 1
64 , 1

64 ) 0.005 1.309(−4) 4.139(−6) 2.03 1.258(−8) 4.250(−10) 3.96
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Table 3 Errors in the numerical solution of Example 3 with a = .1, b = 1, μ = .3

Method (i) Method (ii)

(h,k) τ L2-error L∞-error order L2-error L∞-error Order

t = 1:
( 18 , 1

8 ) 0.5 3.554(−4) 7.865(−5) 3.148(−4) 6.513(−5)

( 1
16 ,

(1
16 ) 0.2 9.037(−5) 9.248(−6) 3.08 7.948(−5) 8.004(−6) 3.02

( 1
32 , 1

32 ) 0.05 1.280(−5) 6.598(−7) 3.08 8.599(−6) 4.359(−6) 4.19

( 1
64 , 1

64 ) 0.01 2.650(−6) 6.814(−8) 3.28 6.596(−7) 1.673(−8) 4.70

t=2:

( 18 , 1
8 ) 0.5 1.065(−3) 2.096(−4) 9.616(−4) 1.882(−4)

( 1
16 , 1

16 ) 0.2 3.053(−4) 3.059(−5) 2.77 2.705(−4) 2.658(−5) 3.00

( 1
32 , 1

32 ) 0.05 4.668(−5) 2.338(−6) 3.71 3.143(−5) 1.553(−6) 4.09

( 1
64 , 1

64 ) 0.01 9.894(−6) 2.461(−7) 3.24 2.463(−6) 6.097(−8) 4.67

subject to the initial conditions
u(x, y, 0) = Btan(K(x + y)),

ut (x, y, 0) = BμKsec2(K(x + y)), 0 ≤ x, y ≤ 1

B = √
2/3, K =

√

1/(5 − 2μ2),

The exact solution of this problem is

u(x, y, t) = Btan(K(x + y) + μt).

The boundary conditions are derived from the exact solution.We applied our methods
to solve this problem with different values of space steps h and k for μ = 0.1. The
computed solutions are compared with exact solutions at grid points. The L2 and L∞
errors and also the orders of convergence are tabulated in Table 2. The surface plots
and pseudo color plots of numerical solutions at different time levels are shown in Fig. 2.

Example 3 Consider the two-dimensional Klein-Gordon equation
Table 4 Errors in the numerical
solution of Example 4 with
μ = 0.1

(h,k) t L2-error L∞-error RMS − error

Method (i)

(.04,.04) 1 6.750(−4) 2.233(−4) 1.386(−5)
2 7.018(−4) 2.231(−4) 1.432(−5)
4 1.049(−3) 2.571(−4) 2.128(−5)
6 1.343(−3) 3.948(−4) 2.741(−5)
8 1.880(−3) 5.794(−4) 3.847(−5)

Method (ii)

(.04,.04) 1 2.825(−4) 4.714(−5) 5.766(−6)
2 2.962(−4) 4.755(−5) 6.046(−6)
4 4.567(−4) 4.769(−5) 9.321(−6)
6 5.873(−4) 8.244(−5) 1.199(−5)
8 8.532(−4) 1.244(−4) 1.741(−5)
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Fig. 1 Surface plots (left column) and pseudo color plots (right column) for numerical solutions of
sin(u/2) at t = 1,3,5,7 with h = k = 0.25, for Example 1

utt = a2

2
(uxx + uyy) − au + bu3, 0 < x, y < 1, t > 0, (45)

where a, b ∈ �+ subject to initial conditions

u(x, y, 0) = Btanh(K(x + y)),

ut (x, y, 0) = −BμKsech2(K(x + y − μt)), 0 ≤ x, y ≤ 1,



302 Numer Algor (2017) 74:289–306

Fig. 2 Surface plots (left column) and pseudo color plots (right column) of numerical solutions of
u2(x, y, t) at t = 1,2,4 with h = k = 1/32 for Example 2

B =
√

a

b
, K =

√
a

2(μ2 − a2)
,

where μ2 − a2 > 0. The kink solution of this problem is

u(x, y, t) = Btanh(K(x + y − μt)).

The boundary conditions are derived from the exact solution.We applied our methods
to solve this problem for a = 0.1, b = 1, μ = 0.3 and with different values of
space steps h and k. The computed solutions are compared with exact solutions at
grid points. The L2 and L∞ errors and also the orders of convergence are tabulated in
Table 3. The surface plots and pseudo color plots of numerical solutions at different
time levels are shown in Fig. 3.
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Fig. 3 Surface plots (left column) and pseudo color plots (right column) for numerical solutions of
u2(x, y, t) at t = 1, 2, 3, 4 with h = k = 1/32 for Example 3
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Fig. 4 Surface plots(left column) and pseudo color plots(right column) of the numerical solutions at t =
2, 4, 6, 8 for Example 4

Example 4 Consider the two-dimensional equation

utt = 1

2
(uxx + uyy) − 2eu + 2e−u, 1 < x, y < 3, t > 0, (46)

subject to initial conditions

u(x, y, 0) = ln(coth2(K(x + y))),

ut (x, y, 0) = 2μK(tanh(x + y) − coth(x + y)), 1 ≤ x, y ≤ 3,

where K = 1√
1−μ2

, with μ2 < 1.

The exact solution of this problem is

u(x, y, t) = ln(coth2(K(x + y − μt))).
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The boundary conditions are derived from the exact solution.We applied our methods
to solve this problem for h = k = 0.04, with μ = 0.1. The computed solutions
are compared with exact solutions at grid points. The L2 , L∞, and RMS-errors in
solutions at t = 1, 2, 3, 4 are tabulated in Table 4. The surface plots and pseudo color
plots of numerical solutions at different time levels are shown in Fig. 4.

7 Conclusion

In this paper, we developed two implicit three time level methods for the solution of
two dimensional wave equations. We applied non-polynomial cubic spline function
approximations for both second-order spatial derivatives. The methods involve some
parameters, by choosing the parameters adopted in cubic spline, we may obtain the
scheme of order O(h2 + k2 + τ 2 + τ 2h2 + τ 2k2). Also by appropriate choices of the
parameters, we can increase the order of accuracy to new scheme of order O(h4 +
k4 + τ 2 + τ 2h2 + τ 2k2). In the first example, our computed errors in comparison
with results in three existing methods show that our methods with larger time step
and fewer iterations give compatible or better approximations. The other numerical
results given in the previous section justify that our methods are accurate and easy in
application.
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