
Numer Algor (2017) 74:137–152
DOI 10.1007/s11075-016-0142-7

ORIGINAL PAPER

A relaxation modulus-based matrix splitting iteration
method for solving linear complementarity problems

Hua Zheng1 ·Wen Li2,3 ·Seakweng Vong4

Received: 30 March 2015 / Accepted: 6 May 2016 / Published online: 18 May 2016
© Springer Science+Business Media New York 2016

Abstract In this paper, a relaxation modulus-based matrix splitting iteration method
is established, which covers the known general modulus-based matrix splitting itera-
tion methods. The convergence analysis and the strategy of the choice of the parame-
ters are given. Numerical examples show that the proposed methods are efficient and
accelerate the convergence performance with less iteration steps and CPU times.

1 Introduction

The linear complementarity problem (LCP(q, A)) consists of finding vectors z ∈ Rn

such that
r = Az + q ≥ 0, z ≥ 0, andzT r = 0,

where A ∈ Rn×n and q ∈ Rn.

� Hua Zheng
hzhengjlfdu@gmail.com

� Wen Li
liwen@scnu.edu.cn

1 School of Mathematics and Statistics, Shaoguan University, Shaoguan,
People’s Republic of China

2 School of Mathematical Sciences, South China Normal University, Guangzhou,
People’s Republic of China

3 Guangdong Engineering Technical Research Center for Data Sciences,
South China Normal University, Guangzhou, People’s Republic of China

4 Department of Mathematics, University of Macau, Macau, People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-016-0142-7&domain=pdf
mailto:hzhengjlfdu@gmail.com
mailto:liwen@scnu.edu.cn

138 Numer Algor (2017) 74:137–152

The LCP(q, A) has many applications, e.g., the economies with institutional
restrictions upon prices, the linear and quadratic programming, the free boundary
problems, and the optimal stopping in Markov chain; see [8, 16] for details.

Recently, many articles gave some solvers of LCP(q, A) based on the modulus
iteration method presented by van Bokhoven in [18]. In particular, Bai presented
a modulus-based matrix splitting method in [3] which not only includes the modi-
fied modulus method [9] and the nonstationary extrapolated modulus algorithms [12]
as its special cases but also yields a series of iteration methods, such as modulus-
based Jacobi, Gauss-Seidel, SOR, and AOR iteration methods, which were extended
to more general cases by Li [14]. In addition, Hadjidimos et al. [11] and Zhang
[19] proposed scaled extrapolated modulus algorithms and two-step modulus-based
matrix splitting iteration methods, respectively. Moreover, the modulus-based syn-
chronous multisplitting iteration methods and modulus-based synchronous two-stage
multisplitting iteration methods were established in [6, 7], while in [21], Zheng and
Yin proposed a class of accelerated modulus-based matrix splitting iteration meth-
ods, which can be discussed in [15]. The global convergence conditions are discussed
when the system matrix is either a positive definite matrix or an H+-matrix; see the
references mentioned above for details.

In this paper, we propose a relaxation modulus-based matrix splitting iteration
method for solving LCP, and give its theoretical analysis. The main idea of the pro-
posed method is to combine a relaxation technique with the fixed-point iteration
formula for updating the iteration vector. Hence, the main contributions of this paper
are given below:

• Input a parameter matrix into the modulus-based matrix splitting iteration
method given in [14], which can accelerate the convergence performance of the
method;

• Propose the strategy for choosing the parameter matrix in each iteration step.

Numerical experiments are given to show that the proposed method is efficient.
In order to present our method, first we introduce some notations and definitions.
For two m×n real matrices B = (bij) and C = (cij), the order B ≥ (>)C means

bij ≥ (>)cij for any i and j. Let e be an n×1 vector whose elements are all equal to
1, A = (aij) ∈ Rn×n and let A = DA −LA −UA = DA −BA, where DA, −LA, and
−UA are the diagonal, the strictly lower-triangular, and the strictly upper-triangular
matrices of A, respectively. By |A|, we denote |A| = (|aij |) and the comparison
matrix of A is 〈A〉 = (〈aij 〉), defined by 〈aij 〉 = |aij | if i = j and 〈aij 〉 = −|aij | if
i �= j . The matrix A is called (e.g., see [2]) a Z-matrix if all of its off-diagonal entries
are non-positive, an M-matrix if it is a Z-matrix with A−1 ≥ 0, and an H -matrix
if its comparison matrix 〈A〉 is an M-matrix. Specially, an H -matrix with positive
diagonal entries is called an H+-matrix (e.g., see [4]). The splitting A = M − N

is called an M-splitting if M is a nonsingular M-matrix and N ≥ 0; an H -splitting
if 〈M〉 − |N | is an M-matrix; and an H -compatible splitting if 〈A〉 = 〈M〉 − |N |
(e.g., see [20]). Note that if A = M − N is an M-splitting and A is a nonsingular
M-matrix, then ρ(M−1N) < 1, and an H -compatible splitting of an H -matrix is an
H -splitting, but not vice versa.

Numer Algor (2017) 74:137–152 139

The rest of this paper is organized as follows. In Section 2, we propose the relax-
ation modulus-based matrix splitting iteration method for solving LCP(q, A). In
Section 3, we give the convergence analysis of the proposed method. The discussion
of the choice of the parameter is given in Section 4. In Section 5, we give some
numerical examples. A conclusion remark is given in the final section.

2 The relaxation modulus-based matrix splitting iteration method

Let A = M − N be a splitting of A, and �, �, �1, and �2 be nonnegative diagonal
matrices with � = �1 + �2. It is known from [3] that the linear complementarity
problem LCP(q, A) is completely equivalent to solving the fixed-point equations:

(�2 + M�)x = (N� − �1)x + (� − A�)|x| − q. (1)

In particular, taking

� = �2, �1 = 0, and� = 1

γ
I,

where γ is a positive constant, (1) is simplified as

(� + M)x = Nx + (� − A)|x| − γ q, (2)

which leads to the modulus-based matrix splitting iteration method:

Method 2.1 [3] LetA = M−N be a splitting ofA. Given an initial vector x(0) ∈ Rn,
for k = 1, 2, · · · until the iteration sequence {z(k)}+∞

k=1 ⊂ Rn is convergent, compute
x(k) ∈ Rn by solving the linear system

(� + M)x(k) = Nx(k−1) + (� − A)|x(k−1)| − γ q, (3)

and set

z(k) = 1

γ
(|x(k)| + x(k)).

Here, � is an n × n positive diagonal matrix and γ is a positive constant.

By different choices of the splitting A = M − N , from the equation (2), one
may deduce a series of modulus-based matrix splitting iteration methods; see [3] for
details.

Taking �2 = � and � = �1 in (1), Li [14] proposed a general modulus-based
matrix splitting iteration method as follows:

Method 2.2 For any given positive diagonal matrices �1 and �2, let A�1 = M�1 −
N�1 be a splitting of the matrix A�1 ∈ Rn×n. Given an initial vector x(0) ∈ Rn,
compute x(k) ∈ Rn by solving the linear system

(�2 + M�1)x
(k) = N�1x

(k−1) + (�2 − A�1)|x(k−1)| − q. (4)

Then set
z(k) = �1(|x(k)| + x(k))

for k = 1, 2, · · · until the iteration sequence {z(k)}+∞
k=1 is convergent.

140 Numer Algor (2017) 74:137–152

At the kth step in (4), consider mixing the new approach vector and the old
approach vector before the next iteration, by introducing a nonsingular parameter
matrix P ∈ Rn×n, we compute x(k) by solving the next linear system:{

(�2 + M�1)x
(k− 1

2) = N�1x
(k−1) + (�2 − A�1)|x(k−1)| − q,

x(k) = (I − P)x(k−1) + Px(k− 1
2).

(5)

In fact, (5) can be written as

x(k) = (I −P)x(k−1)+P(�2+M�1)
−1[N�1x

(k−1)+(�2−A�1)|x(k−1)|−q]. (6)

Remark 2.3 The parameter matrix P can vary for a given k during the iteration.
However, it is difficult to choose such a parameter matrix P so that the convergence
rate of (6) is optimal.

Now, we consider the special cases, e.g.,

P = θI,

where θ ∈ R\{0} and θ can be vary with respect to k. Then based on (5), we have

Method 2.4 (The relaxation modulus-based matrix splitting iteration method)
For any given positive diagonal matrices �1 and �2, let A�1 = M�1 − N�1 be a
splitting of the matrixA�1 ∈ Rn×n and θ ∈ R\{0}. Given an initial vector x(0) ∈ Rn,
for k = 1, 2, · · · until the iteration sequence {z(k)}+∞

k=1 ⊂ Rn is convergent, compute
x(k) ∈ Rn by solving the linear system{

(�2 + M�1)x
(k− 1

2) = N�1x
(k−1) + (�2 − A�1)|x(k−1)| − q,

x(k) = (1 − θ)x(k−1) + θx(k− 1
2)

(7)

and set

z(k) = �1(|x(k)| + x(k)).

Method 2.4 provides a general framework of modulus-based matrix splitting
iteration methods for solving LCP(q, A), from which a series of relaxation modulus-
based matrix splitting iteration methods can be derived. For example, when taking

M�1 = 1

α
(DA�1 − βLA�1), N�1 = 1

α
[(1 − α)DA�1 + (α − β)LA�1 + αUA�1],

we can obtain the relaxation modulus-based accelerated overrelaxation (RMAOR)
iteration method, which extends the relaxation modulus-based successive overre-
laxation (RMSOR) iteration method, the relaxation modulus-based Gauss-Seidel
(RMGS) iteration method, and the relaxation modulus-based Jacobi (RMJ) iteration
method when α = β, α = β = 1 and α = 1, β = 0, respectively.

Remark 2.5 If we take θ = 1, Method 2.4 reduces to Methods 2.2. Hence, the pro-
posed method provides a more general framework for the existing modulus-based
methods.

Numer Algor (2017) 74:137–152 141

3 Convergence analysis

In this section, the convergence analysis for Method 2.4 is presented when the system
matrix A of LCP(q, A) is an H+-matrix.

The following lemmas are useful in the sequel of the paper.

Lemma 3.6 [13] Let B ∈ Rn×n be a strictly diagonal dominant matrix. Then ∀C ∈
Rn×n,

||B−1C||∞ ≤ max
1≤i≤n

(|C|e)i
(〈B〉e)i ,

holds, where e = (1, 1, · · · , 1)T .

Lemma 3.7 [10] Let A be an H -matrix. Then |A−1| ≤ 〈A〉−1.

Lemma 3.8 [2] Let A be a Z-matrix with positive diagonal entries. Then A is an
M-matrix if and only if there exists a positive diagonal matrix D, such that AD is a
strictly diagonal dominant matrix with positive diagonal entries.

Lemma 3.9 [2] Let A, B be two Z-matrices, A be an M-matrix, and B ≥ A. Then
B is an M-matrix.

Lemma 3.10 Let A ∈ Rn×n be an H+-matrix and A�1 = M�1 − N�1 be an H -
splitting of A�1. Then there exists a positive diagonal matrix D such that (〈M�1〉 −
|N�1 |)D and (�2 + 〈M�1〉)D are two strictly diagonal dominant matrices, and

[(〈A�1〉 + 〈M�1〉 − |N�1 |)De]i > 0, i = 1, 2, · · · , n. (8)

Proof Since A�1 = M�1 − N�1 is an H -splitting of A�1, 〈M�1〉 − |N�1 | and〈A�1〉 are two M-matrices. From Lemma 3.8, there exists a positive diagonal matrix
D, such that (〈M�1〉 − |N�1 |)D is a strictly diagonal dominant matrix. For 〈M�1〉 ≥
〈M�1〉 − |N�1 |, (�2 + 〈M�1〉)D is strictly diagonal dominant too. Since

〈A�1〉 + 〈M�1〉 − |N�1 |
= |DM�1

− DN�1
| − |BM�1

− BN�1
| + 〈M�1〉 − |N�1 |

≥ |DM�1
| − |DN�1

| − |BM�1
| − |BN�1

| + 〈M�1〉 − |N�1 |
= 2(〈M�1〉 − |N�1 |),

(〈A�1〉 + 〈M�1〉 − |N�1 |)D is also a strictly diagonal dominant matrix, and then (8)
holds.

Let (z∗, r∗) be the solution of LCP(q, A). By (6) we can easily get that x∗ =
1
2 (�

−1
1 z∗ − �−1

2 r∗) satisfies

x∗ = (I − P)x∗ + P(�2 + M�1)
−1[N�1x

∗ + (�2 − A�1)|x∗| − q]. (9)

By Lemma 3.7, we have

0 ≤ |(�2 + M�1)
−1| ≤ (�2 + 〈M�1〉)−1.

142 Numer Algor (2017) 74:137–152

Subtracting (9) from (6) gives

|x(k) − x∗|
≤ P |(�2 + M�1)

−1|[|(�2 + M�1)(P
−1 − I) + N�1 |

+|�2 − A�1|]|x(k−1) − x∗|
≤ P(�2 + 〈M�1〉)−1[|(�2 + M�1)(P

−1 − I) + N�1 |
+|�2 − A�1|]|x(k−1) − x∗|

= L|x(k−1) − x∗|,
where

L = PM̃−1ÑP −1, M̃ = �2 + 〈M�1〉, (10)

Ñ = |(�2 + M�1)(I − P) + N�1P | + |�2 − A�1|P. (11)

Lemma 3.11 With the same assumptions and notations as in Lemma 3.10, let P

be positive diagonal matrices and let matrices M̃ and Ñ be given by (10) and (11)
respectively. Then ρ(L) < 1 if

⎧⎨
⎩

(�2e)i ≥ (DA�1e)i ,{[2�2 + 2|DM�1
| − (2�2 + |M�1 | + |N�1 | − 〈A�1〉)P]De}i > 0, when (P e)i ≥ 1,

{[(〈A�1〉 + |M�1 | − |N�1 |)P − 2|BM�1
|]De}i > 0, when 0 < (Pe)i < 1,

(12)

or

⎧⎨
⎩

[12 (|A�1| − 〈M�1 〉 + |N�1 |)De]i < (�2De)i < (DA�1De)i,
{[2�2 + 2|DM�1

| − (|M�1 | + |N�1 | + |A�1|)P]De}i > 0, when (P e)i ≥ 1,
{[(2�2 − |A�1| + |M�1 | − |N�1 |)P − 2|BM�1

|]De}i > 0, when 0 < (Pe)i < 1,
(13)

where D is given by Lemma 3.10, i = 1, 2, · · · , n.

Proof From Lemma 3.6 and Lemma 3.10, we have

||D−1P −1LPD||∞ = ||(M̃D)−1(ÑD)||∞ ≤ max
1≤i≤n

(ÑDe)i

(M̃De)i
. (14)

Next, we show that
(M̃De)i > (ÑDe)i, (15)

for any 1 ≤ i ≤ n.
By (11), we have

D
Ñ

≤ (�2 + DM�1
)|P − I | + |DN�1

|P + |�2 − DA�1 |P, (16)

and

B
Ñ

= −|BM�1
(P − I) + BN�1

P | − |BA�1 |P
≥ −|BM�1

||P − I | − |BN�1
|P − |BA�1 |P. (17)

Numer Algor (2017) 74:137–152 143

By (10), (16) and (17), we have

(M̃De)i − (ÑDe)i

= [(M̃ − D
Ñ

+ B
Ñ

)De]i
≥ {[�2 + 〈M�1〉 − (�2 + DM�1

)|P − I | − |DN�1
|P

−|�2 − DA�1 |P − |BM�1
||P − I | − |BN�1

|P − |BA�1 |P]De}i . (18)
Case 1: If (�2e)i ≥ (DA�1e)i , then by (18) we have

(M̃De)i − (ÑDe)i

≥
{ {[2�2 + 2|DM�1

| − (2�2 + |M�1 | + |N�1 | − 〈A�1〉)P]De}i > 0, when (P e)i ≥ 1;
{[(〈A�1〉 + |M�1 | − |N�1 |)P − 2|BM�1

|]De}i > 0, when 0<(Pe)i <1.

Case 2: If [12 (|A�1| − 〈M�1〉 + |N�1 |)De]i < (�2De)i < (DA�1De)i , then one
may derive from (18) that

(M̃De)i − (ÑDe)i

≥
{ {[2�2 + 2|DM�1

| − (|M�1 | + |N�1 | + |A�1|)P]De}i > 0, when (P e)i ≥ 1;
{[(2�2 − |A�1| + |M�1 | − |N�1 |)P − 2|BM�1

|]De}i > 0, when 0 < (Pe)i < 1.

By Cases 1 and 2, it is easy to see that the assertion (15) holds, which
together with (14) gives ρ(L) < 1. This proves the lemma.

Furthermore, if A�1 = M�1 − N�1 is an H -compatible splitting, then 〈A�1〉 =
〈M�1〉 − |N�1 |. Hence Lemma 3.11 can be simplified to the following results.

Corollary 3.12 With the same assumptions and notations as in Lemma 3.11, if
A�1 = M�1 − N�1 is an H -compatible splitting, then ρ(L) < 1 if⎧⎨
⎩

(�2e)i ≥ (DA�1e)i,{[�2 + |DM�1
| − (�2 + |DM�1

| − 〈A�1〉)P]De}i > 0 when (P e)i ≥ 1,
{[(|DM�1

| − |N�1 |)P − |BM�1
|]De}i > 0 when 0 < (Pe)i < 1,

and ⎧⎨
⎩

[|BA�1 |De]i < (�2De)i < (DA�1De)i,

{[�2 + |DM�1
| − (|DM�1

| + |BA�1 |)P]De}i > 0 when (P e)i ≥ 1,
{[(�2 − |BA�1 | + |BM�1

|)P − |BM�1
|]De}i > 0 when 0 < (Pe)i < 1.

Now, we give the convergence result for Method 2.4.

Theorem 3.13 With the same assumptions and notations as in Lemmas 3.10 and
3.11, then for any given x(0) ∈ Rn, {z(k)}+∞

k=1, generated by Method 2.4, converges to
the exact solution z∗ ∈ Rn of LCP(q, A) provided{

(�2e)i ≥ (DA�1e)i,

δ
(1)
i < θ < δ

(2)
i

, (19)

144 Numer Algor (2017) 74:137–152

or { [12 (|A�1| − 〈M�1〉 + |N�1 |)De]i < (�2De)i < (DA�1De)i,

δ
(3)
i < θ < δ

(4)
i

, (20)

where D is given by Lemma 3.10,

δ
(1)
i = (2|BM�1

|De)i

[(〈A�1〉 + |M�1 | − |N�1 |)De]i , (21)

δ
(2)
i = [(2�2 + 2|DM�1

|)De]i
[(2�2 + |M�1 | + |N�1 | − 〈A�1〉)De]i , (22)

δ
(3)
i = (2|BM�1

|De)i

[(2�2 − |A�1| + |M�1 | − |N�1 |)De]i , (23)

and

δ
(4)
i = [(2�2 + 2|DM�1

|)De]i
[(|A�1| + |M�1 | + |N�1 |)De]i , (24)

i = 1, 2, · · · , n.

Proof If (�2e)i ≥ (DA�1e)i , by (8), we have

[(2�2 + 2|DM�1
|)De]i − [(2�2 + |M�1 | + |N�1 | − 〈A�1〉)De]i

= [(〈A�1〉 + 〈M�1〉 − |N�1 |)De]i > 0,

and

[(〈A�1〉 + |M�1 | − |N�1 |)De]i − 2(|BM�1
|De)i

= [(〈A�1〉 + 〈M�1〉 − |N�1 |)De]i > 0.

Then by (21) and (22), we have 0 < δ
(1)
i < 1 < δ

(2)
i .

If [12 (|A�1| − 〈M�1〉 + |N�1 |)De]i < (�2De)i < (DA�1De)i , we have

[(2�2 + 2|DM�1
|)De]i − [(|A�1| + |M�1 | + |N�1 |)De]i

= [(2�2 − |A�1| + 〈M�1〉 − |N�1 |)De]i > 0,

and

[(2�2 − |A�1| + |M�1 | − |N�1 |)De]i − (2|BM�1
|De)i

= [(2�2 − |A�1| + 〈M�1〉 − |N�1 |)De]i > 0.

Then by (23) and (24), we have 0 < δ
(3)
i < 1 < δ

(4)
i .

Taking P = θI in the proof of Lemma 3.11, it is easy to see that, if the assumption
(19) or (20) holds, ρ(L) < 1, which implies that Method 2.4 converges.

Numer Algor (2017) 74:137–152 145

If the splitting A�1 = M�1 − N�1 is assumed to be an H -compatible splitting,
then the convergence condition can be simplified as follows:

Corollary 3.14 With the same assumptions and notations as in Theorem 3.13, fur-
thermore, if A�1 = M�1 − N�1 is an H -compatible splitting, then the sufficient
conditions (19)–(24) for convergence are simplified to{

(�2e)i ≥ (DA�1e)i,

δ
(1)
i < θ < δ

(2)
i

and

{
(|BA�1 |De)i < (�2De)i < (DA�1De)i,

δ
(3)
i < θ < δ

(4)
i

,

where

δ
(1)
i = (|BM�1

|De)i

[(|DM�1
| − |N�1 |)De]i , δ

(2)
i = [(�2 + |DM�1

|)De]i
[(�2 + |DM�1

| − 〈A�1〉)De]i ,

δ
(3)
i = (|BM�1

|De)i

[(�2 − |BA�1 | + |BM�1
|)De]i , δ

(4)
i = [(�2 + |DM�1

|)De]i
[(|DM�1

| + |BA�1 |)De]i ,
i = 1, 2, · · · , n.

Remark 3.15 In the applications, we can get a positive diagonal matrix D such that
(〈M�1〉 − |N�1 |)D is a strictly diagonal dominant matrix as in [1, 5, 14].

Remark 3.16 It is known from the above discussion that (19) and (20) are the suffi-
cient conditions for which Method 2.4 converges. In the applications, it is needed to
choose a suitable θ such that Method 2.4 converges faster than Method 2.2, which
will be discussed in the next section.

4 The optimal parameters

In this section, we give the strategy how to choose the parameter θ for a given k in
Method 2.4.

Obviously, we have
x∗ = (1 − θ)x∗ + θx∗,

combining with (7) together yields

d(k) = (1 − θ)d(k−1) + θd(k− 1
2), (25)

where

d(k−1) = x(k−1) − x∗, d(k) = x(k) − x∗and d(k− 1
2) = x(k− 1

2) − x∗.
Let

ϕ(θ) = ||d(k)||22 − ||d(k− 1
2)||22.

Theorem 4.17 With the same notations as above, suppose σ (k) .= (d(k−1) −
d(k− 1

2))T d(k− 1
2) �= 0, then

ϕ(θ) < 0 (26)

146 Numer Algor (2017) 74:137–152

if

σ (k) > 0 and θ ∈ (1, 1 + 2σ (k)

||d(k−1) − d(k− 1
2)||22

) (27)

or

σ (k) < 0 and θ ∈ (1 + 2σ (k)

||d(k−1) − d(k− 1
2)||22

, 1). (28)

Furthermore, the minimum point of ϕ(θ), is given by

θmin = 1 + σ (k)

||d(k−1) − d(k− 1
2)||22

= 1 + (x(k− 1
2) − x∗)T (x(k−1) − x(k− 1

2))

||x(k−1) − x(k− 1
2)||22

. (29)

Proof From (25), we have

ϕ(θ) = ||d(k)||22 − ||d(k− 1
2)||22

= ||(1 − θ)(d(k−1) − d(k− 1
2)) + d(k− 1

2)||22 − ||d(k− 1
2)||22

= (1 − θ)2||d(k−1) − d(k− 1
2)||22

+2(1 − θ)(d(k−1) − d(k− 1
2))T d(k− 1

2).

Obviously, ϕ(θ) is a quadratic function with respect to θ . It is easy to see that, when
(27) or (28) is satisfied, (26) holds.

By a straightforward computation, we get

dϕ(θ)

dθ
= −2||d(k−1) − d(k− 1

2)||22(1 − θ) − 2σ (k).

Let dϕ(θ)
dθ = 0. Then (29) is derived.

Remark 4.18 Although the various entities involved depend on k in Theorem 4.17,
the parameter θ is taken to be a constant in a predefined interval unless otherwise
stated (see (32)–(34) below).

It is known from Theorem 4.17 that the inequality ||d(k)||2 < ||d(k− 1
2)||2 holds

under the assumption of (27) or (28). This implies that x(k) is closer to x∗ than x(k− 1
2),

i.e., the relaxation technique in Method 2.4 is useful. From the Contraction Mapping
Theorem (see [17]), we may obtain an error bound as follows:

|x(k) − x∗| ≤ L|x(k−1) − x∗| ⇒ ||x(k) − x∗|| ≤ ρk(L)

1 − ρ(L)
||x(1) − x(0)||.

Numer Algor (2017) 74:137–152 147

Although (29) is only of a theoretical significant for choosing θ because x∗ is

unknown, in the applications, if k > 1, replacing k and x∗ by k − 1 and x(k− 1
2) in

(29), a reasonable choice may be

θ(k) = 1 +
(
x(k− 3

2) − x(k− 1
2)

)T (
x(k−2) − x(k− 3

2)
)

||x(k−2) − x(k− 3
2)||22

. (30)

Notice that if
x∗ �≈ x(k− 1

2), (31)

that is to say x(k− 1
2) is not close to x∗, θ(k) given in (30) can not guarantee that

Method 2.4 converges faster. To avoid this, we consider checking the parameter in
each step using an interval given in advance. If θ(k) given in (30) is out of such
interval, set θ(k) to be the corresponding endpoint.

Summarizing the above discussion, the choice of the parameter θ in Method 2.4 is
suggested below:

θ =

⎧⎪⎪⎨
⎪⎪⎩
1, if k = 1;
θ(k), if k > 1 and θ(k) ∈ (a, b);
a, if k > 1 and θ(k) ≤ a;
b, if k > 1 and θ(k) ≥ b,

(32)

where θ(k) is given in (30), and a and b are two constants given as follows.

Remark 4.19 In the applications, to guarantee that Method 2.4 converges, the param-
eters a, b in (32) can be computed from (19) or (20), e.g., for the case (�2e)i ≥
(DA�1e)i we have

a = max
1≤i≤n

δ
(1)
i , b = min

1≤i≤n
δ
(2)
i (33)

or
a = min

1≤i≤n
δ
(1)
i , b = max

1≤i≤n
δ
(2)
i , (34)

where δ
(1)
i and δ

(2)
i are given by (21) and (22) respectively.

5 Numerical examples

In this section, two examples are given to examine the efficiency of our algorithms
from the aspects of the number of iteration steps (denoted by ‘IT’) and the elapsed
CPU time in seconds (denoted by ‘CPU’). All numerical tests were run on an
Intel(R) Core(TM), where the CPU is 2.50 GHz and the memory is 4.00 GB, and the
programming language is MATLAB 7.11.

Since Method 2.4 is globally convergent with the assumptions in Theorem 3.13,
the initial vector can be chosen arbitrarily. In the following numerical examples, all
initial vectors are chosen to be x(0) = e and all iterations are terminated once

||min(Az(k) + q, z(k))||2
||min(Az(0) + q, z(0))||2 ≤ 10−6,

148 Numer Algor (2017) 74:137–152

where the minimum is taken componentwise.
Let �1 = I . We compare Method 2.4 (RMJ, RMGS and RMSOR) with Method

2.2 (when θ = 1 in Method 2.4). In all numerical examples, we take �2 = 2DA and
n = 2500. For MSOR and RMSOR, let the overrelaxation parameter be α = 1.2.

To observe the behavior of Method 2.4, we run Method 2.4 with five strategies
of θ :

Strategy 1: Taking θ to be a constant during the iteration. For this case, let θ

change from 0.5 to 1.6 with interval 0.1.
Strategy 2: Taking θ = 1 when k = 1 and θ be given by (30) when k > 1.
Strategy 3: Taking θ to be given by (32) and (33).
Strategy 4: Taking θ to be given by (32) and (34).
Strategy 5: Taking θ to be given by (32) and a = 0, b = 2.3.

The following two examples are taken from [3, 7], respectively.

Example 5.20 [3] Let LCP(q, A) be given by A = Â + 4I where

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S −I

−I S −I

−I S
. . .

. . .
. . . −I

−I S −I

−I S

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Rn×n and q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1
1

−1
...

(−1)n−1

(−1)n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ Rn,

respectively, where n = m2, S = tridiag(−1, 4, −1) ∈ Rm×m and I ∈ Rm×m is the
identity matrix.

Clearly, A is strictly diagonal dominant with positive diagonal entries. We take
D = I in (21) and (22). Then (a, b) is given by

(0, 1.2), (0.3333, 1.2), (0.4286, 1.1333),

in (33) and
(0, 1.3333), (0, 1.3333), (0, 1.2593)

in (34) for RMJ, RMGS and RMSOR, respectively.

Example 5.21 [7] Let LCP(q, A) be given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S −I −I

S −I −I

. . .
. . .

. . .

S −I −I

S −I

S

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ Rn×n and q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1
1

−1
...

(−1)n−1

(−1)n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ Rn,

respectively, where n = m2, S = tridiag(−1, 4, −1) ∈ Rm×m and I ∈ Rm×m is the
identity matrix.

Numer Algor (2017) 74:137–152 149

Then A is not a strictly diagonal dominant matrix. We take D = diag[(〈M�1〉 −
|N�1 |)−1e] in (21) and (22). Then (a, b) is given by

(0, 1.0050), (0.9437, 1.0050), (1 − 6 × 10−7, 1 + 5 × 10−8)

in (33) and
(0, 1.2948), (0, 1.2948), (0, 1.2143)

in (34) for RMJ, RMGS and RMSOR, respectively.
The results of all methods are shown in Tables 1 and 2, where ‘−’ denotes the

iteration is divergent. It is shown that Method 2.4 is more efficient than Method 2.2
for both examples in some cases. Furthermore, we have

• For Strategy 1, Method 2.4 converges slower than Method 2.2 when θ < 1. As
θ increases, the iteration steps of Method 2.4 first decrease then increase. When
θ is out of the convergence range, Method 2.4 diverges. The real convergence
range of Method 2.4 is larger than (34) in most cases, which means that (19) and
(20) may be improved.

• For Strategy 2, Method 2.4 converges much faster than Method 2.2 for Example
5.20, while it requires more CPU times than the one by Method 2.2 for Exam-
ple 5.21 for RMJ and RMSOR. The reason is that (31) may happen during the
iteration.

• For Strategy 3, by using an interval (a, b) to bound θ , Method 2.4 also converges
faster than Method 2.2 for Example 5.20. For Example 5.21, Method 2.4 requires

Table 1 Results of Example 5.20

RMJ RMGS RMSOR

Strategy IT CPU IT CPU IT CPU

Strategy 1 (θ = 0.5) 72 1.3635 67 1.2578 63 1.1798

Strategy 1 (θ = 0.6) 59 1.1223 55 1.0432 51 0.9557

Strategy 1 (θ = 0.7) 49 0.9243 45 0.8406 42 0.7545

Strategy 1 (θ = 0.8) 42 0.7944 39 0.7315 36 0.6669

Strategy 1 (θ = 0.9) 36 0.6867 33 0.6166 31 0.5672

Strategy 1 (θ = 1.0) 31 0.5548 29 0.5540 27 0.5312

Strategy 1 (θ = 1.1) 27 0.5176 25 0.4766 31 0.5801

Strategy 1 (θ = 1.2) 24 0.4875 34 0.6440 45 0.8422

Strategy 1 (θ = 1.3) 22 0.4165 55 1.0779 130 2.5101

Strategy 1 (θ = 1.4) 19 0.3675 179 3.4875 – –

Strategy 1 (θ = 1.5) 17 0.3334 – – – –

Strategy 1 (θ = 1.6) – – – – – –

Strategy 2 21 0.3899 19 0.3806 19 0.3591

Strategy 3 26 0.4894 26 0.4895 24 0.4789

Strategy 4 24 0.4544 22 0.4319 22 0.4207

Strategy 5 20 0.3711 19 0.3454 19 0.3618

150 Numer Algor (2017) 74:137–152

Table 2 Results of Example 5.21

RMJ RMGS RMSOR

Strategy IT CPU IT CPU IT CPU

Strategy 1 (θ = 0.5) 411 7.8219 375 7.1993 351 6.6893

Strategy 1 (θ = 0.6) 339 6.3717 309 5.8829 289 5.5191

Strategy 1 (θ = 0.7) 288 5.4652 263 5.0228 245 4.7423

Strategy 1 (θ = 0.8) 250 4.7808 227 4.3191 212 4.0718

Strategy 1 (θ = 0.9) 220 4.3769 200 3.8010 187 3.5603

Strategy 1 (θ = 1.0) 196 3.9300 178 3.3808 166 3.4898

Strategy 1 (θ = 1.1) 176 3.3711 160 3.0502 149 2.8495

Strategy 1 (θ = 1.2) 160 3.0507 145 2.7480 135 2.5567

Strategy 1 (θ = 1.3) 146 2.7809 132 2.5109 123 2.3304

Strategy 1 (θ = 1.4) 134 2.5423 121 2.3101 164 3.1109

Strategy 1 (θ = 1.5) 124 2.3680 341 7.1056 – –

Strategy 1 (θ = 1.6) – – – – – –

Strategy 2 189 4.0334 155 3.2913 189 4.0256

Strategy 3 195 3.9207 177 3.5254 166 3.1600

Strategy 4 147 3.2221 133 2.7106 133 2.7877

Strategy 5 161 3.2503 139 2.7825 154 3.1427

less CPU times than the one by Strategy 2. But the convergence rate of Method
2.4 is almost the same as Method 2.2. Because b, the right endpoint of (a, b)

given in (33), is just a little larger than 1, which deteriorates the convergence rate
of Method 2.4.

• For Strategy 4, by enlarging the convergence range, the faster convergence of
Method 2.4 is also guaranteed like Strategy 3. Although Method 2.3 with Strat-
egy 2 outperforms Strategy 4 with less iterations and CPU time for Example 5.20,
as the comments for Strategy 2 given above, Strategy 2 works less stably than
Strategy 4. Consequently, with Strategy 4 Method 2.4 can work more efficient
and stable than Method 2.2.

0 10 20 30 40
−15

−10

−5

0

5

The iteration steps

R
es

id
ua

l

MJ vs RMJ

MJ
RMJ

0 10 20 30
−15

−10

−5

0

5

The iteration steps

R
es

id
ua

l

MGS vs RMGS

MGS
RMGS

0 10 20 30
−15

−10

−5

0

5

The iteration steps

R
es

id
ua

l

MSOR vs RMSOR

MSOR
RMSOR

Fig. 1 Residual comparison with Strategy 4 for Example 5.20

Numer Algor (2017) 74:137–152 151

0 50 100 150 200
−15

−10

−5

0

5

The iteration steps

R
es

id
ua

l

MJ vs RMJ

MJ
RMJ

0 50 100 150 200
−15

−10

−5

0

5

The iteration steps

R
es

id
ua

l

MGS vs RMGS

MGS
RMGS

0 50 100 150 200
−15

−10

−5

0

5

The iteration steps

R
es

id
ua

l

MSOR vs RMSOR

MSOR
RMSOR

Fig. 2 Residual comparison with Strategy 4 for Example 5.21

• For Strategy 5, where b is larger than that in (34). Comparing with Strategy 4,
Method 2.4 converges faster for Example 5.20, while slower for Example 5.21.
Although Method 2.4 can be accelerated by enlarging the length of (a, b), this
strategy can not be guaranteed as being effective.

In summary, Strategy 4 is recommended for Method 2.4. With Strategy 4, the
residuals of Method 2.4 and Method 2.2 are shown in Figs. 1 and 2, where the lon-
gitudinal coordinates of all figures denote the natural logarithm of the residuals. It is
learnt from Figs. 1 and 2 that the more x(k) approximates x∗, the faster Method 2.4
converges.

6 Conclusions

In this paper, a relaxation modulus-based matrix splitting iteration method for solv-
ing the linear complementarity problem is proposed. The convergence analysis of
the proposed method is established. We also discuss the choice of the parameter θ .
Numerical results show that the relaxation method with Strategy 4 is more efficient
and stable. More specifically, comparing with Strategy 4, Strategy 1 and Strategy
5 are without theoretical results, Strategy 3 has slower convergence, and Strategy 2
may lead to divergence. It is also shown that convergence ranges (19) and (20) may
be improved. The further theoretical analysis for finding a better parameter θ is worth
studying in the future. The relaxation technique can be also applied to the other
existing modulus methods.

Acknowledgments The authors would like to thank the referees for their helpful comments. The work
was supported by the National Natural Science Foundation of China (Grant No. 11271144, 61305036),
Project of Department of Education of Guangdong Province (Grant No. 2013KJCX0053), University of
Macau (Grant No. MYRG2015-00064-FST), the Opening Project of Guangdong Province Key Labora-
tory of Computational Science at the Sun Yat-sen University(Grant No. 2016005), the Opening Project
of Guangdong Provincial Engineering Technology Research Center for Data Sciences and the Science
Foundation of Shaoguan University (Grant No. SY2014KJ01).

References

1. Alanelli, M., Hadjidimos, A.: A new iterative criterion for H -matrices. SIAM J. Matrix Anal. Appl.
29, 160–176 (2006)

152 Numer Algor (2017) 74:137–152

2. Berman, A., Plemmons, R.J.: Nonnegative matrix in the mathematical sciences. SIAM Publisher,
Philadelphia (1994)

3. Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems.
Numer. Linear Algebra Appl. 17, 917–933 (2010)

4. Bai, Z.-Z.: On the convergence of the multisplitting methods for the linear complementarity problem.
SIAM J. Matrix Anal. Appl. 21, 67–78 (1999)

5. Bru Garcia, R., Giménez, I., Hadjidimos, A.: Is A ∈ Cn×n a general H -matrix? Linear Algebra Appl.
436, 364–380 (2012)

6. Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear
complementarity problems. Numer. Linear Algebra Appl. 20, 425–439 (2013)

7. Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous two-stage multisplitting iteration methods for
linear complementarity problems. Numer. Algorithms 62, 59–77 (2013)

8. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic, SanDiego
(1992)

9. Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear
complementarity problems. Numer. Linear Algebra Appl. 16, 129–143 (2009)

10. Frommer, A., Mayer, G.: Convergence of relaxed parallel multisplitting methods. Linear Algebra
Appl. 119, 141–152 (1989)

11. Hadjidimos, A., Lapidakis, M., Tzoumas, M.: On iterative solution for linear complementarity
problem with an H-matrix. SIAM J. Matrix Anal. Appl. 33, 97–110 (2011)

12. Hadjidimos, A., Tzoumas, M.: Nonstationary extrapolated modulus algorithms for the solution of the
linear complementarity problem. Linear Algebra Appl. 431, 197–210 (2009)

13. Hu, J.-G.: Estimates of ||B−1C||∞ and their applications. Mathematica Numerica Sinica 4, 272–282
(1982)

14. Li, W.: A general modulus-based matrix splitting method for linear complementarity problems of H-
matrices. Appl. Math. Lett. 26, 1159–1164 (2013)

15. Liu, S.-M., Zheng, H., Li, W.: A general accelerated modulus-based matrix splitting iteration method
for solving linear complementarity problems. Calcolo, published online (2015)

16. Murty, K.G.: Linear Complementarity, Linear and nonlinear programming. Heldermann Verlag,
Berlin (1988)

17. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. SIAM,
Philadelphia (2000)

18. van Bokhoven, W.M.G.: Piecewise-linear modelling and analysis. Proefschrift, Eindhoven (1981)
19. Zhang, L.-L.: Two-step modulus based matrix splitting iteration for linear complementarity problems.

Numer. Algorithms 57, 83–99 (2011)
20. Zhang, L.-L., Ren, Z.-R.: Improved convergence theorems of modulus-based matrix splitting iteration

methods for linear complementarity problems. Appl. Math. Lett. 26, 638–642 (2013)
21. Zheng, N., Yin, J.-F.: Accelerated modulus-based matrix splitting iteration methods for linear

complementarity problems. Numer. Algorithms 64, 245–262 (2013)

	A relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems
	Abstract
	Introduction
	The relaxation modulus-based matrix splitting iteration method
	Convergence analysis
	The optimal parameters
	Numerical examples
	Conclusions
	Acknowledgments
	References

