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Abstract In this paper, we propose a full Nesterov-Todd (NT) step infeasible
interior-point algorithm for convex quadratic symmetric cone optimization based on
Euclidean Jordan algebra. The algorithm uses only one feasibility step in each main
iteration. The complexity result coincides with the best-known iteration bound for
infeasible interior-point methods.
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1 Introduction

Let (J , ◦, 〈·, ·〉), denoted by J , be a Euclidean Jordan algebra and K be the
corresponding symmetric cone. Consider the convex quadratic symmetric cone
optimization, denoted by CQSCO, given in the standard form

min 〈c, x〉 + 1

2
〈x,H(x)〉

s.t. A(x) = b (P )

x ∈ K,
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and its Lagrangian dual problem

max bT y − 1

2
〈x,H(x)〉

s.t. AT y − H(x) + s = c (D)

s ∈ K,

where c ∈ J and b ∈ Rm are given data, A : J → Rm is a given linear map, AT

is the adjoint of A. 〈x, s〉 = tr(x ◦ s) stands for the trace inner product in J , and H
is a given self-adjoint monotone, i.e., H is positive semidefinite linear operator with
respect to 〈·, ·〉 on J , i.e., for any x, s ∈ J , 〈H(x), s〉 = 〈x,H(s)〉 and 〈H(x), x〉 ≥
0. Moreover, assume that ai is the ith row of A, then A(x) = b means that 〈ai, x〉 =
bi, i = 1, . . . , m, whileAT y −H(x)+ s = c means that

∑m
i=1 yiai −H(x)+ s = c.

Throughout the paper, we assume that the linear map A is surjective, which implies
that AAT is nonsingular.

CQSCO is a generalization of symmetric cone optimization (SCO), which con-
tains linear optimization (LO), second-order cone optimization (SOCO) and semidef-
inite optimization (SDO) as special cases. Furthermore, CQSCO also includes con-
vex quadratic optimization (CQO) and convex quadratic semidefinite optimization
(CQSDO) as special cases. By using Euclidean Jordan algebras, several interior-point
methods (IPMs) have been developed for CQSCO [1, 11, 13, 23, 24]. Until now,
various algorithms based on different starting points have been introduced. Based
on selecting the starting point, are called feasible IPMs or infeasible IPMs (IIPMs).
Because finding the feasible starting point is not an easy work, IIPMs have attracted
more attention. The primal-dual IIPM was first proposed by Lustig [14]. The first
theoretical result on primal-dual IIPMs was obtained by Kojima et al. [12]. They
showed that their algorithm is globally convergent. Roos [18] designed an IIPM for
LO based on using the perturbed problems. Furthermore, his algorithm begins with
infeasible starting point for original primal-dual problems and applies one feasibil-
ity step and a few-at most three-centering steps in each main iteration. Kheirfam and
Mahdavi-Amiri [5] and Kheirfam [6] extended this algorithm to linear complemen-
tarity problem over symmetric cones (SCLCP) and horizontal linear complementarity
problems (HLCP), respectively. Some variants of Roos’ algorithm studied for SCO
by Kheirfam [7, 8]. In [5–8, 18], the authors proposed algorithms with one feasibility
step and several centering steps to get an optimal solution of underlying problems.
Recently, Roos [19] investigated a new IIPM for LO by improving the full-Newton
step IIPM so that the centering steps not be needed. Kheirfam [9, 10] extended this
algorithm to P∗(κ)-SCLCP and HLCP.

Motivated by the recent developments on IIPMs, i.e., [9, 10, 19], we present an
infeasible algorithm for CQSCO under the framework of Euclidean Jordan algebras.
The purpose of the paper is mainly theoretical, and the symmetrization of the search
directions is based on the NT-scaling scheme. The algorithm uses only one feasibility
step at each iteration. We derive the complexity bound for the algorithm, and the
result shows that it enjoys the best-known iteration bound for IIPMs.

The outline of the paper is as follows. In Section 2, we briefly recall some basic
information on Euclidean Jordan algebras that are needed in this paper. In Section 3,
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we define the perturbed problems and their corresponding central path. In addition,
we provide the search directions and also present the algorithm. The complexity
analysis is discussed in Section 4. Some numerical results are reported in Section 5.
Section 6 ends the paper with a conclusion.

2 Preliminaries

In this section, we present some basic results on Euclidean Jordan algebras that are
needed in the subsequent sections. Our presentation is mainly adapted from [2].

Recall that a Euclidean Jordan algebra J is a finite dimensional inner product
space over the field of real numbers endowed with a bilinear map ◦ : J × J → J
satisfying the following properties for all x, y, z ∈ J :

(i) x ◦ y = y ◦ x;
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where x2 = x ◦ x;
(iii) 〈x ◦ y, z〉 = 〈x, y ◦ z〉, where 〈x, y〉 = tr(x ◦ y).

The Jordan algebra J has an identity element, if there exists an element e ∈ J such
that e ◦x = x ◦ e = x for all x ∈ J . Recall that an idempotent c is a nonzero element
of J such that c2 = c. An idempotent c is said to be primitive if it is not the sum
of two other nonzero idempotents. A set of primitive idempotents {c1, c2, . . . , cr} is
called a Jordan frame if ci ◦ cj = 0, for any i 	= j ∈ {1, 2, . . . , r}, and ∑r

i=1 ci = e.

For any x ∈ J , let r be the smallest positive integer such that {e, x, . . . , xr} is
linearly dependent; r is called the degree of x and is denoted by deg(x). Moreover,
we define the rank of J as r := max{deg(x) : x ∈ J }. For an element x ∈ J , let
L : J → J be the linear map defined byL(x)y := x◦y, for all y ∈ J . Furthermore,
the linear map P(x) := 2L(x)2 − L(x2), where L(x)2 := L(x)L(x), is called the
quadratic representation of x in J . For any x ∈ J , there exists a Jordan frame
{c1, . . . , cr } and real numbers λ1(x), . . . , λr (x) such that x = ∑r

i=1 λi(x)ci . The
numbers λi(x), i = 1, . . . , r are uniquely determined by x, and they are called the
eigenvalues of x. We denote λmin(x)(λmax(x)) be the minimal (maximal) eigenvalue
of x. Furthermore, tr(x) := λ1(x) + · · · + λr(x). Note that since e = c1 + · · · + cr ,
the eigenvalues of e are all equal to 1, it follows that tr(e) = r . Recall that for a
Euclidean Jordan algebra J , its cone of squares is the setK := {x2 : x ∈ J }. A cone
is symmetric if and only if it is the cone of squares of some Euclidean Jordan algebra.
Recall that two elements x and y in J operators commute if L(x)L(y) = L(y)L(x),
and are called similar, denoted as x ∼ y, if x and y share the same set of eigenvalues.
An element x ∈ J is said to be invertible if there exists an element y such that
x ◦ y = y ◦ x = e. The element y is called the inverse of x and it is unique. It is
denoted by x−1. The Frobenius norm ‖ · ‖F induced by the inner product 〈·, ·〉 and
the spectral norm are given by ‖x‖F := √〈x, x〉 = √

tr(x2) =
√∑r

i=1 λ2i (x) and
‖x‖∞ := max

i
|λi(x)|. We associate with a proper cone K the partial order defined

by x �K y ⇔ x − y ∈ K, and we define an associated strictly partial order by
x �K y ⇔ x − y ∈ intK, where intK denotes the interior of K. Furthermore,
x ∈ K ⇔ λi(x) ≥ 0, and x ∈ intK ⇔ λi(x) > 0 for each i = 1, . . . , r.
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Lemma 1 (Lemma 3.2 in [3]) Let x, s ∈ intK. Then, there exists a unique w ∈ intK
such that x = P(w)s. Moreover,

w = P
(
x

1
2

) (
P

(
x

1
2

)
s
)− 1

2
[

= P
(
s− 1

2

) (
P(s

1
2 )x

) 1
2
]

.

This unique w is called the NT-scaling point of x and s [16].

Lemma 2 (Lemma 2.9 in [17]) Given x ∈ intK, we have

‖x − x−1‖F ≤ ‖x2 − e‖F

λmin(x)
.

Lemma 3 (Lemma 30 in [21]) Let x, s ∈ intK. Then

‖P(x)
1
2 s − e‖F ≤ ‖x ◦ s − e‖F .

Lemma 4 (Theorem 4 in [22], Lemma 30 in [21]) Let x, s ∈ intK. Then

λmin

(
P(x)

1
2 s

)
≥ λmin(x ◦ s), λmax

(
P(x)

1
2 s

)
≤ λmax(x ◦ s).

3 An infeasible algorithm

In this section, we present an infeasible interior-point algorithm for solving the
CQSCO problem. As usual for IIPMs, we suppose that an optimal solution exists and
let the algorithm start with the following initial infeasible point

(
x0, y0, s0

)
= (

ρpe, 0, ρde
)
, (1)

where

‖x∗‖∞ ≤ ρp, max{‖s∗‖∞, ‖ρpHe + c‖F } ≤ ρd (2)

for some optimal solution (x∗, y∗, s∗). The initial values of the primal and dual
residual vectors present as follows:

r0p := b − A
(
x0

)
, r0d := c − AT y0 − s0 + H

(
x0

)
. (3)

Our aim is to show that, under this assumption, our algorithm finds an ε solution.

3.1 The perturbed problems

Let (x0, y0, s0) be the starting point. For any ν with 0 < ν ≤ 1, we consider the
perturbed problem (Pν), defined by

min
〈
c − νr0d , x

〉 + 1

2
〈x,H(x)〉

s.t. A(x) = b − νr0p (Pν)

x ∈ K,
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and its dual problem (Dν), which is given by

max
(
b − νr0p

)T

y − 1

2
〈x,H(x)〉

s.t. AT y − H(x) + s = c − νr0d (Dν)

s ∈ K.

It is obvious that (x, y, s) = (x0, y0, s0) is a strictly feasible solution of (Pν) and
(Dν) when ν = 1. We conclude that (Pν) and (Dν) satisfy the interior-point condition
(IPC) for ν = 1. More generally, we have the following lemma, whose proof is
similar to the proof of Theorem 3.1 in [5] ( see also Theorem 5.13 in [18]).

Lemma 5 The original problems, (P) and (D), are feasible if and only if for each ν

satisfying 0 < ν ≤ 1, the perturbed problems (Pν) and (Dν) satisfy the IPC.

3.2 The central path of the perturbed problems

Let (P) and (D) be feasible and 0 < ν ≤ 1. Then Lemma 5 implies that the perturbed
problems (Pν) and (Dν) satisfy the IPC, and hence their central paths exist [4]. This
means that the system

b − A(x) = νr0p, x ∈ K, (4)

c − AT y + H(x) − s = νr0d , s ∈ K, (5)

x ◦ s = μe, (6)

has a unique solution for every μ > 0, as the μ-centers of the perturbed problem
pair (Pν) and (Dν). Note that, since x0 ◦ s0 = μ0e with μ0 = ρpρd , (x0, y0, s0) is
the μ0-center of the perturbed problems (Pν) and (Dν) for ν = 1. In the sequel, the
parameters μ and ν always satisfy the relation μ = νμ0.

Assuming that x, y, and s satisfy the conditions (4)–(6) for someμ > 0 and ν > 0.
Our aim is to obtain search directions Δx, Δy, and Δs that satisfying the conditions
(4)–(6) with ν replaced by ν+ := (1 − θ)ν, except that we target the μ+-centers of
(Pν+) and (Dν+), i.e.,

A(x + Δx) = ν+r0p,

AT (y + Δy) − H(x + Δx) + s + Δs = ν+r0d ,

(x + Δx) ◦ (s + Δs) = μ+e. (7)

So, assuming that (x, y, s) is feasible for the system (4)–(6) and neglecting the
quadratic term Δx ◦ Δs, it follows that Δx, Δy, and Δs should satisfy

A(Δx) = θνr0p,

AT Δy − H(Δx) + Δs = θνr0d ,

s ◦ Δx + x ◦ Δs = (1 − θ)μe − x ◦ s. (8)

Due to the fact that x and s do not operator commute in general, the system (8) does
not always have a unique solution. It is well known that this difficulty can be solved
by applying a scaling scheme. It goes as follows. Let x, s, u ∈ intK, then x◦s = μe if



98 Numer Algor (2017) 74:93–109

and only if P (u)x◦P(u)−1s = μe (Lemma 28 in [21]). Here, we consider u = w− 1
2 ,

where w is the NT-scaling point of x and s as defined in Lemma 1. Now replacing

(6) by P(w)− 1
2 x ◦ P(w)

1
2 s = μe, and then applying Newton’s method, we obtain

the following system

A(Δx) = θνr0p,

AT Δy − H(Δx) + Δs = θνr0d ,

P (w)−
1
2 Δx ◦ P(w)

1
2 s + P(w)−

1
2 x ◦ P(w)

1
2 Δs =

(1 − θ)μe − P(w)−
1
2 x ◦ P(w)

1
2 s. (9)

The new iterates are obtained by taking a full step as follows

x+ := x + Δx, y+ := y + Δy, s+ := s + Δs.

Introducing the notations

v := P(w)− 1
2 x√

μ

[

= P(w)
1
2 s√

μ

]

, dx := P(w)− 1
2 Δx√

μ
, ds := P(w)

1
2 Δs√
μ

, (10)

one can easily check that the system (9) which defines the search direction
(Δx, Δy, Δs) can be rewritten as follows:

Ā(dx) = θνr0p,

ĀT Δy

μ
− H̄(dx) + ds = 1√

μ
θνP (w)

1
2 r0d ,

dx + ds = (1 − θ)v−1 − v, (11)

where Ā = √
μAP(w)

1
2 and H̄ = P(w)

1
2HP(w)

1
2 . If triple (x, y, s) is feasible

for the perturbed problem pair (Pν) and (Dν), and μ = νρpρd , then we measure
proximity to the μ-center of this perturbed problem pair by the quantity

δ(x, s; μ) := δ(v) := 1

2
‖v − v−1‖F , (12)

where v is defined in (10). Moreover, it follows that

δ(v) = 0 ⇔ v = v−1 ⇔ v = e,

which this means that (x, y, s) is on the central path of the problem pair. As an
immediate consequence we have the following result.

Lemma 6 (cf. Lemma II.62 in [20]) With δ := δ(v), one has 1
ρ(δ)

≤ λi(v) ≤ ρ(δ),

for each i = 1, . . . , r , where ρ(δ) := δ + √
1 + δ2.

3.3 An iteration of our algorithm

In Section 3.1, we established that if ν = 1 and μ = μ0, then (x0, y0, s0) is the μ-
center of the perturbed problem pair (Pν) and (Dν). The initial iterates are given as in
(1). So, initially, we have δ(x, s; μ) = δ(x0, s0; μ0) = 0. In what follows, we assume
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that at the start of each iteration, just before the μ-update, δ(x, s; μ) ≤ τ where τ

is a positive threshold value. This certainly holds at the start of the first iteration. In
more details, suppose that for some μ ∈ (0, μ0] we have x, y, and s satisfying the
feasibility conditions (4) and (5) for ν = μ

μ0 and such that δ(x, s; μ) ≤ τ . Reducing

μ to μ+ = (1−θ)μ, with θ ∈ (0, 1), we find new iterates x+, y+, and s+ that satisfy
(4) and (5), with ν replaced by ν+ = (1 − θ)ν, and such that δ(x+, s+; μ+) ≤ τ .

Note that

b − A(x+) = b − A(x + Δx) = νr0p − A(Δx) = νr0p − θνr0p = (1 − θ)νr0p,

and similarly,

c − AT y+ + H(x+) − s+ = c − AT (y + Δy) + H(x + Δx) − (s + Δs)

= νr0d − AT Δy + H(Δx) − Δs = νr0d − θνr0d

= (1 − θ)νr0d .

From the above equations and Lemma 10 (below), it follows that after each iteration
the residual vectors and the duality gap are reduced by a factor 1 − θ . The algorithm
stops if the norms of the residuals and the duality gap are less than the accuracy
parameter ε. At this stage, an ε-approximate optimal solution of CQSCO has been
found. A formal description of our algorithm is given in Fig. 1.

4 Analysis of the algorithm

Let x, y, and s denote the iterates at the start of an iteration, and assume
δ(x, s; μ) ≤ τ.

4.1 Upper bound for δ(v+)

As we established in previous sections, the full-NT step generates new iterates
x+, y+, and s+ that satisfy the feasibility conditions for (Pν+) and (Dν+). A crucial

Fig. 1 The algorithm
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element in the analysis is to show that after each full-NT step, we have x+, s+ ∈
intK, and such that δ(x+, s+; μ+) ≤ τ.

To this end, we consider the scaled search directions dx and ds and the variance
vector v as defined in (10). Using (10), we have

x+ = x + Δx = √
μP(w)

1
2 (v + dx), s+ = s + Δs = √

μP(w)−
1
2 (v + ds).

Since P(w)
1
2 and its inverse P(w)− 1

2 are automorphisms of int K, then x+ and s+
belong to intK if and only if v + dx and v + ds belong to intK, respectively. In this
case, by using the third equation of (11), we may write

(v + dx) ◦ (v + ds) = v ◦ v + v ◦ (dx + ds) + dx ◦ ds = (1 − θ)e + dx ◦ ds. (13)

The proof of the following lemma is similar to the proof of lemma 3.2 in [5], and is
therefore omitted.

Lemma 7 The iterate (x+, y+, s+) is strictly feasible if

(1 − θ)e + dx ◦ ds ∈ intK.

Corollary 1 The iterate (x+, y+, s+) is strictly feasible if

‖λ(dx ◦ ds)‖∞ < 1 − θ.

Proof By Lemma 7, the iterates (x+, y+, s+) are strictly feasible if (1 − θ)e + dx ◦
ds ∈ intK. ‖λ(dx ◦ ds)‖∞ < 1 − θ implies that −1 + θ < λi(dx ◦ ds) < 1 − θ for
each i = 1, . . . , r . Therefore, λi((1− θ)e + dx ◦ ds) = 1− θ + λi(dx ◦ ds) > 0. The
last inequalities mean that (1 − θ)e + dx ◦ ds ∈ intK, and the corollary follows.

In the sequel, we use the notation ω̄(v) := 1
2

(‖dx‖2F + ‖ds‖2F
)
and assume that

ω̄(v) < 1 − θ . One has

‖λ(dx ◦ ds)‖∞ ≤ ‖dx ◦ ds‖F ≤ ‖dx‖F ‖ds‖F

≤ 1

2

(
‖dx‖2F + ‖ds‖2F

)
= ω̄(v). (14)

It follows that ‖λ(dx ◦ ds)‖∞ < 1 − θ . Hence ω̄(v) < 1 − θ implies that the iterates
(x+, y+, s+) are strictly feasible, by Corollary 1. We proceed by driving an upper
bound for δ(x+, s+; μ+). By definition (12), we have

δ
(
x+, s+; μ+) = 1

2

∥
∥v+ − (

v+)−1 ∥
∥

F
,

where v+ = P(w+)
− 1
2 x+√

μ+

[

= P(w+)
1
2 s+√

μ+

]

. In what follows, we denote δ(x+, s+; μ+)

shortly by δ(v+).

Lemma 8 If ω̄(v) < 1 − θ , then

δ
(
v+) ≤ ω̄(v)

2
√

(1 − θ)(1 − θ − ω̄(v))
.
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Proof Using Lemma 2,
√
1 − θ v+ ∼ [

P(v + dx)
1
2 (v + ds)

] 1
2 (see the proof of

lemma 3.3 in [5]), Lemma 3, Lemma 4, (13), and (14), we have

2δ
(
v+) =

∥
∥
∥v+ − (

v+)−1
∥
∥
∥

F
≤ ‖ (

v+)2 − e‖F

λmin
(
v+)

=

∥
∥
∥
∥P

(
v+dx√
1−θ

) 1
2
(

v+ds√
1−θ

)
− e

∥
∥
∥
∥

F

λmin

(

P
(

v+dx√
1−θ

) 1
2
(

v+ds√
1−θ

)) 1
2

≤
∥
∥
∥
(

v+dx√
1−θ

)
◦

(
v+ds√
1−θ

)
− e

∥
∥
∥

F

λmin

((
v+dx√
1−θ

)
◦

(
v+ds√
1−θ

)) 1
2

=
∥
∥
∥ dx◦ds

1−θ

∥
∥
∥

F

λmin

(
1 + dx◦ds

1−θ

) 1
2

≤
∥
∥
∥ dx◦ds

1−θ

∥
∥
∥

F
(
1 −

∥
∥
∥λ

(
dx◦ds

1−θ

)∥
∥
∥∞

) 1
2

≤ ω̄(v)√
(1 − θ)(1 − θ − ω̄(v))

.

This proves the lemma.

4.2 Upper bound for ω̄(v)

In this section, we obtain an upper bound ω̄(v) which will enable us to find a default
value for θ, 0 < θ < 1. For the moment, let us define

r̄p := θνr0p, r̄d := θνr0d , r̄ := (1 − θ)v−1 − v. (15)

With η := −Δy
μ
, the system (11) (by eliminating ds) reduces to

Ā(dx) = r̄p,

ĀT η + (I + H̄)(dx) = r̄ − 1√
μ
P (w)

1
2 r̄d .

(16)

Multiplying both sides of the second equation in (16) from the left with Ā(I + H̄)−1

and using the first equation of (16), it follows that

Ā
(
I + H̄

)−1 ĀT η + r̄p = Ā
(
I + H̄

)−1
(

r̄ − 1√
μ

P(w)
1
2 r̄d

)

.

Therefore,

η =
(
Ā(I + H̄)−1ĀT

)−1
[

Ā
(
I + H̄

)−1
(

r̄ − 1√
μ

P(w)
1
2 r̄d

)

− r̄p

]

. (17)

Substitution into the second equation of (16) gives

dx =(
I −P̄

)(
I +H̄

)−1
(

r̄− 1√
μ

P(w)
1
2 r̄d

)

+(
I + H̄

)−1 ĀT
(
Ā

(
I + H̄

)−1 ĀT
)−1

r̄p,
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where P̄ := (I + H̄)−1ĀT
(
Ā(I + H̄)−1ĀT

)−1Ā. Let (x∗, y∗, s∗) be the optimal
solution satisfying (2). It follows that A(x∗) = b,AT y∗ − H(x∗) + s∗ = c, 0 �K
x∗ �K ρpe and 0 �K s∗ �K ρde. Therefore, it follows that

0 �K x0 − x∗ �K ρpe, 0 �K s0 − s∗ �K ρde. (18)

Substituting r̄p = θνr0p = θν(b − Ax0) = θνA(x∗ − x0) and r̄d = θνr0d into the
expression for dx , we obtain

dx = (I − P̄ )(I + H̄)−1
(

r̄ − θν√
μ

P(w)
1
2 r0d

)

+ θν√
μ

P̄P (w)−
1
2

(
x∗ − x0

)
.

To proceed, we further simplify the above expression by defining

ux := θν√
μ

P̄P (w)−
1
2

(
x∗ − x0

)
, us := θν√

μ
(I − P̄ )(I + H̄)−1P(w)

1
2 r0d ,

r̄1 := (I − P̄ )(I + H̄)−1r̄ .

Then we may write

‖dx‖2F = ‖r̄1 − us + ux‖2F = ‖r̄1 − us‖2F + ‖ux‖2F
= ‖r̄1‖2F + ‖us‖2F − 2〈r̄1, us〉 + ‖ux‖2F
≤ ‖r̄1‖2F + ‖us‖2F + 2‖r̄1‖F ‖us‖F + ‖ux‖2F
≤ 2‖r̄‖2F + 2‖us‖2F + ‖ux‖2F .

For ‖ds‖F , we have

‖ds‖2F = ‖r̄ − dx‖2F = ‖r̄‖2F + ‖dx‖2F − 2〈r̄ , dx〉
≤ 2‖r̄‖2F + 2‖dx‖2F ≤ 6‖r̄‖2F + 4‖us‖2F + 2‖ux‖2F .

Therefore, we may write

ω̄(v) = 1

2

(
‖dx‖2F + ‖ds‖2F

)
= 4‖r̄‖2F + 3

2

(
2‖us‖2F + ‖ux‖2F

)
. (19)

Due to the definitions ux and us , we have

2‖us‖2F + ‖ux‖2F ≤ θ2ν2

μ

(
2
∥
∥P(w)

1
2 r0d

∥
∥2

F
+ ∥

∥P(w)−
1
2

(
x∗ − x0

) ∥
∥2

F

)
. (20)

We now obtain the upper bounds for ‖P(w)− 1
2 (x∗ −x0)‖2F and ‖P(w)

1
2 r0d‖2F . Using

that P(w)
1
2 is self-adjoint with respect to the inner product and P(w)−1e = w−2,

we have

‖P(w)−
1
2 (x∗ − x0)‖2F = 〈

P(w)−
1
2 (x0 − x∗), P (w)−

1
2 (x0 − x∗)

〉

= 〈
P(w)−1(x0 − x∗), x0 − x∗〉

= 〈
P(w)−1(x0−x∗),ρpe

〉−〈
P(w)−1(x0−x∗), ρpe−(x0−x∗)

〉

≤ 〈
P(w)−1(x0 − x∗), ρpe

〉 = ρp

〈
P(w)−1e, x0 − x∗〉

= ρp

〈
P(w)−1e, ρpe

〉 − ρp

〈
P(w)−1e, ρpe − (x0 − x∗)

〉

≤ ρ2
p tr(w−2).
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Since x0 = ρpe, y0 = 0, s0 = ρde and ρd ≥ ‖ρpHe + c‖F , it follows that 2ρde �
r0d � 0. Therefore, we have

‖P(w)
1
2 r0d‖2F = 〈

P(w)
1
2 r0d , P (w)

1
2 r0d

〉 = 〈
P(w)r0d , r0d

〉

= 〈
P(w)r0d , 2ρde

〉 − 〈
P(w)r0d , 2ρde − r0d

〉

≤ 〈
P(w)r0d , 2ρde

〉 = 2ρd

〈
P(w)e, r0d

〉

= 2ρd

〈
P(w)e, 2ρde

〉 − 2ρd

〈
P(w)e, 2ρde − r0d

〉

≤ 4ρ2
d

〈
P(w)e, e

〉 = 4ρ2
d tr(w2).

Substituting of the two last inequalities into (20) gives

2‖us‖2F + ‖ux‖2F ≤ θ2ν2

μ

(
8ρ2

d tr
(
w2

)
+ ρ2

ptr
(
w−2

) )

≤ θ2ν2

μ

(
8ρ2

d tr
(
x2

)

μλmin(v)2
+ ρ2

p tr
(
s2

)

μλmin(v)2

)

≤ θ2ρ(δ)2

(
8 tr

(
x2

)

ρ2
p

+ tr
(
s2

)

ρ2
d

)

, (21)

where the last inequality follows by Lemma 6 and μ = νρpρd . Using the orthogonal-
ity of v−1 and v−1 − v with respect to the trace inner product, the triangle inequality
and ‖v‖2F = tr(e) = r , we get

‖r̄‖2F = ‖(1 − θ)(v−1 − v) − θv‖2F ≤ 4(1 − θ)2δ(v)2 + θ2r. (22)

Substitution of (21) and (22) into (19) yields that

ω̄(v) ≤ 16(1 − θ)2δ(v)2 + 4θ2r + 3θ2ρ(δ)2

2

(
8 tr

(
x2

)

ρ2
p

+ tr
(
s2

)

ρ2
d

)

. (23)

To continue, we need upper bounds for tr(x) and tr(s), which is contained in the
following lemma.

Lemma 9 Let (x, y, s) be feasible for the perturbed problem pair (Pν) and (Dν).
With (x0, y0, s0) as defined in (1) and ρp and ρd as defined in (2), we have

tr(x) ≤ rρp

(
2 + ρ(δ)2

)
, tr(s) ≤ rρd

(
2 + ρ(δ)2

)
.

Proof Let (x∗, y∗, s∗) be the optimal solution satisfying (2). Then from the fea-
sibility conditions of the perturbed problem pair (Pν) and (Dν), it is easily
seen that

A(x − νx0 − (1 − ν)x∗) = 0,

AT (y − νy0 − (1− ν)y∗) −H(x − νx0 − (1− ν)x∗) + (s − νs0 − (1− ν)s∗) = 0.
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Since H is self-adjoint positive semidefinite linear operator, we have

0 ≤ 〈
H(x − νx0 − (1 − ν)x∗), x − νx0 − (1 − ν)x∗〉

= 〈
H(x − νx0 − (1 − ν)x∗), x − νx0 − (1 − ν)x∗〉

+
m∑

i=1

−(yi − νy0
i − (1 − ν)y∗

i )〈ai, x − νx0 − (1 − ν)x∗〉

= 〈
H(x − νx0 − (1 − ν)x∗), x − νx0 − (1 − ν)x∗〉

+〈−AT (y − νy0 − (1 − ν)y∗), x − νx0 − (1 − ν)x∗〉
= 〈

s − νs0 − (1 − ν)s∗, x − νx0 − (1 − ν)x∗〉

= 〈x, s〉 − ν
(〈x0, s〉 + 〈x, s0〉) − (1 − ν)

(〈x∗, s〉 + 〈x, s∗〉)

+ν2〈x0, s0〉 + ν(1 − ν)
(〈x∗, s0〉 + 〈x0, s∗〉) + (1 − ν)2〈x∗, s∗〉. (24)

Since (x0, y0, s0) is as defined in (1), we have

〈x0, s0〉 = ρpρd tr(e) = ρpρdr, 〈x0, s〉 + 〈x, s0〉 = ρp tr(s) + ρd tr(x),

〈x∗, s0〉 + 〈x0, s∗〉 = ρd tr(x∗) + ρptr(s
∗) = 2ρpρdr.

Furthermore, using (10) and Lemma 6, we get

〈x, s〉 = μ
〈P(w)− 1

2 x√
μ

,
P (w)

1
2 s√

μ

〉
= μ〈v, v〉 = μ‖v‖2F ≤ μρ(δ)2r.

Substituting these into (24), also using 〈x∗, s∗〉 = 0 and μ = νρpρd , we obtain

ρptr(s) + ρd tr(x) ≤ rρpρd(2 + ρ(δ)2).

The required results follow from the last inequality and the fact that x �K 0 and
s �K 0. This completes the proof.

By substituting the results of Lemma 9 into (23), we derive an upper bound for
ω̄(v) as follows

ω̄(v) ≤ 16(1 − θ)2δ(v)2 + 4θ2r + 27

2
r2θ2ρ(δ)2(2 + ρ(δ)2)2. (25)

4.3 The effect on the duality gap

The following lemma shows that, in each iteration of the algorithm, the duality gap
is reduced by the factor 1 − θ .

Lemma 10 If the iterate (x+, y+, s+) is strictly feasible, then

〈x+, s+〉 ≤ 2(1 − θ)μr.
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Proof Since

〈x+, s+〉 =
〈√

μ+P
(
w+) 1

2 v+,
√

μ+P
(
w+)− 1

2 v+〉
= μ+〈v+, v+〉

= (1 − θ)μ‖v+‖2F = (1 − θ)μ

r∑

i=1

λi

(
v+)2

≤ (1 − θ)μrλmax
(
v+)2

. (26)

On the other hand, by Lemma 4 and (13), we have

λmax(v
+)2 = λmax

(

P

(
v + dx√
1 − θ

) 1
2
(

v + ds√
1 − θ

))

≤ λmax

((
v + dx√
1 − θ

)

◦
(

v + ds√
1 − θ

))

= 1

1 − θ
λmax

(
(v + dx) ◦ (v + ds)

)

= 1

1 − θ
λmax

(
(1 − θ)e + dx ◦ ds)

)

≤ 1 + 1

1 − θ
‖λ(dx ◦ ds)‖∞ < 2,

where the last inequality follows by Corollary 1. Substituting this bound into (26),
we obtain the inequality in the lemma.

4.4 Values for θ and τ

Our aim is to find a positive number τ such that if δ(v) ≤ τ holds, then δ(v+) ≤ τ .
By Lemma 8, this will hold if

ω̄(v) < 1 − θ, (27)
ω̄(v)

2
√

(1 − θ)(1 − θ − ω̄(v))
≤ τ. (28)

Using (25), the inequality (27) holds if

16(1 − θ)2δ(v)2 + 4θ2r + 27

2
r2θ2ρ(δ)2(2 + ρ(δ)2)2 < 1 − θ.

Assuming δ(v) ≤ τ , we therefore need to find τ such that the above inequality holds,
with θ as large as possible. One easily verifies that the left-hand side expression
in the above inequality is monotonically increasing with respect to δ(v). Hence, it
suffices if

16(1 − θ)2τ 2 + 4θ2r + 27

2
r2θ2ρ(τ)2(2 + ρ(τ)2)2 < 1 − θ. (29)

In the rest of this section, we show that (29) and (28) hold if θ and τ are taken as
follows:

θ = 1

53r
, τ = 1

16
. (30)
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At this case, defining

g(r, τ ) = 16
(
1 − 1

53r

)2
τ 2 + 4

2809r
+ 27

5618
ρ(τ)2(2 + ρ(τ)2)2, r ≥ 1,

we get g(r, τ ) − (1 − θ) ≤ −0.8661 < 0. This means that the inequality (29) holds,
i.e., the iterate (x+, y+, s+) is strictly feasible. Note that g(r, τ ) provides an upper
bound for ω̄(v), by (25). From Lemma 8, it follows that

δ(v+) ≤ ω̄(v)

2
√

(1 − θ)(1 − θ − ω̄(v))
≤ g(r, τ )

2
√

(1 − θ)(1 − θ − g(r, τ ))
≤ 0.0624 < τ.

Therefore, the algorithm is well-defined in the sense that the property δ(x, s; μ) ≤ τ

is maintained in all iterations.

4.5 Complexity analysis

We have found that if at the start of an iteration the iterates (x, y, s) satisfying
δ(x, s; μ) ≤ τ and τ and θ are defined as in (30), then after the full step, the new
iterate (x+, y+, s+) is strictly feasible and δ(x+, s+; μ+) ≤ τ . This establishes the
algorithm to be well-defined. At each iteration, both the values of tr(x ◦ s) and the
norm of the residual vectors are reduced by the factor 1− θ . Hence, the total number
of main iterations is bounded above by

1

θ
log

max
(
tr(x0 ◦ s0), ‖r0p‖F , ‖r0d‖F

)

ε
.

Thus, we may state the main result of our work.

Theorem 1 If (P) and (D) have an optimal solution (x∗, y∗, s∗) such that ‖x∗‖∞ ≤
ρp and ‖s∗‖∞ ≤ ρd for ρp > 0 and ρd > 0, then after at most

53r log
max

(
tr

(
x0 ◦ s0

)
, ‖r0p‖F , ‖r0d‖F

)

ε
.

iterations the algorithm finds an ε-solution of (P) and (D).

5 Numerical results

To test the method, we use a number of test problems from the test set given in [15].
We use (x0, y0, s0) = (3e, 0, e), b = 3Ae and c = −3He + e as the starting values.
The results are listed by using MATLAB version 7.8.0.347 (R2009a) on a PC with
2GB RAM under Windows XP to solve the selected test problems. We set ε = 10−1,
and we take the set of parameters τ = 1

16 and θ = 1
53n for the proposed algorithm.

In Table 1 ‘Iter.’=number of iterations, ‘time’=CPU time (s), ‘dual-gap’= xT s
n

and
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Table 1 Numerical results

Name n m Iter. Time Dual-gap Opt.

primal1 325 85 158,208 1610.568951 3.0768e-04 −645.0018

primal2 649 96 339,722 13,230.334885 1.5408e-04 −1.2930e+003

primal3 745 111 395,421 84,226.285055 1.3423e-04 −1.4850e+03

primal4 1489 75 844,964 172,892.618194 6.7159e-05 −2.9731e+03

primalc1 230 9 107,747 262.684171 4.3476-04 −372.3328

cvxqp1m 1000 500 546,370 41,091.772428 9.9999e-05 −2.0267e+07

cvxqp3m 1000 750 546,370 45,551.455874 9.9999e-05 −2.0267e+07

cvxqp1s 100 50 42,430 56.955248 9.9995e-04 −2.0423e+05

cvxqp2s 100 25 42,430 48.678467 9.9995e-04 −2.0423e+05

cvxqp3s 100 75 42,430 63.679049 9.9995e-04 −2.0423e+05

gouldqp2 699 349 368,645 10,259.584279 1.4306e-04 1.0470e+03

gouldqp3 699 349 368,645 10,162.697975 1.4306e-04 −4.3617+e03

dual1 85 1 35,333 178.191453 0.0012 −50883

dual2 96 1 40,525 259.038709 0.0010 −34605

dual3 111 1 47,712 416.832747 9.008e-004 −42876

dual4 75 1 30,678 124.237973 0.0013 −25632

dualc1 9 215 2668 27.547797 0.0111 −21009411

dualc2 7 229 1982 18.185493 0.0143 −6.2784e+006

dualc5 8 278 2322 32.318771 0.0125 −909408

dualc8 8 503 2322 48.30303788 0.0125 −7.7594e+007

tame 2 1 432 0.206462 0.0500 6

hs21 2 1 432 0.500003 0.0500 −3.3923

qsc205 203 205 93,754 538.460147 4.9261e-04 −410.9995

ksip 20 1001 6778 127.193175 0.0050 43.8102

genhs28 10 8 3021 0.673330 0.0100 −294.1681

‘Opt.’= cT x + 1
2x

T Hx provided for the selected problems. The results are given in
Table 1.

From the above table, we see that the proposed algorithm converges for the
selected problems. Although, in theory, the convergence is not guaranteed for bigger
θ values, we performed a MATLAB experiment for θ = 0.5 and ε = 10−8. Results
are given in Table 2.

It can be seen from tables that for θ = 1
53n and θ = 1

2 the algorithm gives the
same optimal values, whereas it requires smaller number of iteration and consumes
less CPU time for θ = 1

2 .
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Table 2 Results of numerical tests

Name n m Iter. Time Dual-gap Opt.

primal1 85 325 37 2.919720 2.1828e-011 −6.4500e+002

primal2 649 96 38 8.089346 1.0914e-011 −1.2930e+003

primal3 745 111 38 13.847444 1.0914e-011 −1.4850e+003

primal4 1489 75 39 57.604279 5.4570e-012 −2.9730e+003

primalc1 230 9 37 1.186898 2.1828e-011 −3.7233e+002

cvxqp1m 1000 500 39 22.799327 5.4570e-012 −2.0267e+007

cvxqp1s 100 50 35 0.428151 8.7311e-011 −2.0422e+005

cvxqp3m 1000 750 39 24.309886 5.4570e-012 −2.0267e+007

dual1 85 1 35 1.365417 8.7311e-011 −50883

dual2 96 1 35 1.738733 8.7311e-011 −34605

dual3 111 1 35 2.190599 8.7311e-011 −42876

dual4 75 1 35 1.101488 8.7311e-011 −25632

qpcstair 467 356 38 4.809967 1.0914e-011 −2.1722e+004

aug3d 3873 1000 41 868.188402 1.3642e-012 −1.7460e+003

aug3dc 3873 1000 41 802.639363 1.3642e-012 −7.0453e+003

aug3dcqp 3873 1000 41 846.513214 1.3642e-012 −7.0453e+003

aug3dqp 3873 1000 41 804.434460 1.3642e-012 −1.7460e+003

mosarqp2 900 600 38 14.95639 1.0914e-011 −2.3107e+004

mosarqp1 2500 700 40 228.949336 2.7285e-012 −1.2505e+004

qscsd1 760 77 38 9.841303 1.0914e-011 −1.2187e+004

yao 2002 200 40 132.507548 2.7285e-012 −4.0040e+003

cvxqp3s 100 75 35 0.791434 8.7311e-011 −2.0423e+005

gouldqp2 699 349 38 7.308872 1.0917e-011 1.0470e+003

gouldqp2 699 349 38 7.782762 1.0914e-011 −4.3617e+003

hs21 2 1 30 0.090634 2.7940e-009 −3.3925

6 Conclusions

In this paper, we presented an infeasible interior-point method for convex quadratic
symmetric cone optimization based on full-NT step. Our algorithm is used only one
feasibility step in each iteration. The obtained complexity bound coincides with the
best-known iteration bound for IIPMs. We provided results for θ = 1

53n and θ = 0.5
in Tables 1 and 2. Results of numerical tests are given in Section 5.
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