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Abstract In this paper, we present a new tri-parametric derivative-free family of
Hansen-Patrick type methods for solving nonlinear equations numerically. The pro-
posed family requires only three functional evaluations to achieve optimal fourth
order of convergence. In addition, acceleration of convergence speed is attained
by suitable variation of free parameters in each iterative step. The self-accelerating
parameters are estimated from the current and previous iteration. These self-
accelerating parameters are calculated using Newton’s interpolation polynomials of
third and fourth degrees. Consequently, the R-order of convergence is increased from
4 to 7, without any additional functional evaluation. Furthermore, the most strik-
ing feature of this contribution is that the proposed schemes can also determine the
complex zeros without having to start from a complex initial guess as would be neces-
sary with other methods. Numerical experiments and the comparison of the existing
robust methods are included to confirm the theoretical results and high computational
efficiency.
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1 Introduction

Finding rapidly and accurately the zeros of nonlinear functions is an interesting
and challenging problem in the field of computational mathematics. In this study, we
consider iterative methods for solving a nonlinear equation of the form f (x) = 0,
where f : I ⊆ R → R is a scalar function defined on an open interval I . Ana-
lytical methods for solving such equations are almost non-existent and therefore, it
is only possible to obtain approximate solutions by relying on numerical methods
based on iterative procedure [1–27]. One of the most famous and basic tool for solv-
ing such equations is the Newton’s method [1] given by xn+1 = xn − f (xn)

f ′(xn)
, n ≥ 0.

It converges quadratically for simple roots and linearly for multiple roots. In order to
improve its local order of convergence, many higher-order methods have been pro-
posed and analyzed in [2, 3]. One such well-known scheme is the classical cubically
convergent Hansen-Patrick’s family [4] defined by

xn+1 = xn −
[

α + 1

α ± (
1 − (α + 1)Lf (xn)

)1/2

]
f (xn)

f ′(xn)
, (1.1)

where Lf (xn) = f ′′(xn)f (xn)

f ′2(xn)
and α ∈ R\{−1}. This family includes Ostrowski’s

square-root method for (α = 0), Euler’s method for (α = 1), Laguerre’s method

for
(
α = 1

ν−1 , ν �= 1
)

and as a limiting case, Newton’s method. Despite the cubic

convergence, this scheme is considered less practical from a computational point of
view because of the expensive second-order derivative evaluation. This fact motivated
many researchers to investigate the idea of developing multipoint iterative methods
for solving nonlinear equations numerically.

Multipoint iterative methods for solving nonlinear equations are of great practi-
cal importance since they circumvent the limitations of one-point methods regarding
the convergence order and computational efficiency. Generally, multipoint iterative
methods are divided into two categories: with memory and without memory methods.
The main objective in the construction of the new iterative methods is to obtain the
maximal computational efficiency. In other words, the aim is to attain convergence
order as high as possible with fixed number of functional evaluation per iteration.
According to the Kung-Traub conjecture [5], the order of convergence of any multi-
point method without memory requiring n functional evaluations per iteration, cannot
exceed the bound 2n−1, called the optimal order. Consequently, convergence order of
an optimal iterative method without memory consuming three functional evaluations
cannot exceed four. Also, efficiency of an iterative method is measured by the effi-
ciency index [6] defined as E = p1/d , where p is the order of convergence and d is
the number of functional evaluations required per step. King’s family [7], Ostrowski’s
method [6] and Jarratt’s method [8] are the well-known fourth-order multipoint meth-
ods without memory. Recently, Sharma et al. [9] introduced a modified two-step
scheme of Hansen-Patrick’s family given by⎧⎨

⎩
yn = xn − α

f (xn)
f ′(xn)

,

xn+1 = xn −
[

β+1
β±{1−(β+1)Hf (xn)}1/2

]
f (xn)
f ′(xn)

,
(1.2)
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where Hf (xn) = f ′′(yn)f (xn)

f ′2(xn)
, β (�= −1), α ∈ R. In fact, the authors calculated

second-order derivative f ′′ at yn instead of xn. It is worth mentioning that the fam-
ily of methods (1.2) (except for α = 1/3, β = 1) is not optimal in the sense of
Kung-Traub conjecture, since it requires three functional evaluations f (xn), f

′(xn)

and f ′′(yn), per full iteration, having only third-order convergence. To remove the
second-order derivative, several variants of Hansen-Patrick type methods free from
second derivative have been proposed and analyzed in [10]. In [10], the authors
proposed a new optimal fourth-order modification of Hansen-Patrick’s family given
by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yn = xn − f (xn)
f ′(xn)

,

xn+1 = xn −
⎡
⎢⎣ α + 1

α ±
{

f (xn)2−(α+3)f (xn)f (yn)−(α2−1)f (yn)2

f (xn)2+(α−1)f (xn)f (yn)

}1/2

⎤
⎥⎦ f (xn)

f ′(xn)
, α (�= −1) ∈ R

(1.3)

From computational point of view, the proposed class (1.3) requires only three
functional evaluations viz. f (xn), f ′(xn) and f (yn), per full iteration, to achieve
an optimal efficiency index E = 41/3 ≈ 1.587. But, in spite of being optimal, it
requires the evaluation of first-order derivative at each iterative step and hence cannot
be applied to non-smooth functions.

On the other hand, the basic idea for the construction of multipoint methods with
memory was introduced by Traub [1]. He improved a Steffensen-like method by the
reuse of information from the previous iteration using secant approach. In fact, he
proposed the following method with memory:⎧⎪⎪⎨

⎪⎪⎩
γ0 is given, γn = xn − xn−1

f (xn) − f (xn−1)
, n ≥ 1,

xn+1 = xn − γnf (xn)
2

f (xn + γnf (xn)) − f (xn)
,

(1.4)

having R-order of convergence [11] atleast 1 +√
2 ≈ 2.414. A similar approach was

applied to higher order multipoint methods in [12–15]. Surprisingly, this particular
class of methods with memory is not completely dealt with in the literature in spite
of their high computational efficiency.

There are many higher-order iterative methods but most of them use derivatives in
the iteration process, which is a serious disadvantage. To overcome this, we suggest
and analyze methods for solving nonlinear equations which do not require the deriva-
tive of the function. The prime motive of this work is to present a new tri-parametric
class of derivative-free methods without memory based on Hansen-Patrick’s family
having optimal fourth order of convergence. Each member of the proposed family
supports Kung-Traub conjecture for n = 3. As a matter of fact, many higher-order
derivative-free type methods without memory have been already derived in the lit-
erature using different techniques, see for instance [16–18] and the references cited
therein. Hence, the proposed families can be regarded as an additional contribu-
tion to the subject but without additional advantage. However, we do not have any
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higher-order derivative-free variants of Hansen-Patrick type methods with memory
till date.

With this aim, we further attempt to increase the convergence order of the
proposed family by applying an accelerating procedure based on varying self-
accelerating parameters calculated by Newton’s interpolation polynomials in each
iterative step. The R-order of convergence of the proposed two-point derivative-free
methods with memory is 7. As a result, efficiency index increases from E = 41/3 ≈
1.587 to E = 71/3 ≈ 1.913, which is even better than optimal sixteenth order meth-
ods without memory. It is noteworthy that the significant increase of convergence
speed is achieved without additional functional evaluations. This means that the pro-
posed methods with memory possess a very high computational efficiency, which is
the main advantage of these methods in comparison to the methods without memory.
Moreover, it is shown by way of illustration that the proposed schemes can determine
the complex zeros without having to start from a complex number as would be nec-
essary with other methods. It is found that the proposed methods are highly efficient
in multi-precision computing environment.

2 Derivative-free two-point Hansen-Patrick’s family and convergence
analysis

In this section, we intend to develop a new derivative-free class of two-point Hansen-
Patrick type methods having optimal fourth-order convergence.

Let yn = xn − f (xn)
f ′(xn)

be the Newton’s iterate. We consider Taylor’s expansion of
f (yn) about a point x = xn as follows:

f (yn) ≈ f (xn) + f ′(xn)(yn − xn) + 1

2
f ′′(xn)(yn − xn)

2,

which implies

f ′′(xn) ≈ 2f ′(xn)
2f (yn)

f (xn)2
. (2.1)

Substituting the above approximate value of f ′′(xn) in scheme (1.1), we obtain

xn+1 = xn −
⎡
⎢⎣ α + 1

α +
(

1 − 2(α+1)f (yn)
f (xn)

)1/2

⎤
⎥⎦ f (xn)

f ′(xn)
, α ∈ R\{−1}. (2.2)

Re-writing (2.2) in predictor-corrector form, we get two-point iterative methods
given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
yn = xn − f (xn)

f ′(xn)
,

xn+1 = yn −
[
−1 + α+1

α+
(

1− 2(α+1)f (yn)
f (xn)

)1/2

]
f (xn)
f ′(xn)

, α ∈ R\{−1}.
(2.3)

In order to obtain optimal derivative-free methods, we replace derivatives in both
steps of family (2.3) by suitable approximations that use already available data.
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Therefore, we introduce a new tri-parametric derivative-free family of iterative
methods given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yn = xn − f (xn)

f [xn,wn] + λf (wn)
, wn = xn + γf (xn), γ, λ ∈ R\{0},

xn+1 = yn − f (xn)

f [yn, wn] + λf (wn)

[
−1 + α+1

α+
(

1− 2(α+1)f (yn)
f (xn)

)1/2

]
H(τ), τ = f (yn)

f (xn)
,

(2.4)

where α ∈ R\{−1}, f [x, y] = f (x)−f (y)
x−y

denotes a first-order divided difference
(without index n) and H is a real variable weight function. Theorem 1 illustrates that
under what conditions on weight function, convergence order of the family (2.4) will
arrive at the optimal level four.

2.1 Convergence analysis

Theorem 1 Assume that function f : I ⊆ R → R is sufficiently differentiable and
has a simple zero ξ ∈ I . If an initial guess x0 is sufficiently close to ξ ∈ I , then the
iterative scheme defined by (2.4) has optimal fourth-order convergence when

H(0) = 1, H ′(0) = −(α + 1)

2
, |H ′′(0)| < ∞, α ∈ R\{−1}.

It satisfies the following error equation

en+1 = 	1
(
1 + γf ′(ξ)

)2
(λ + c2)e

4
n + O(en)

5,

where

⎧⎪⎨
⎪⎩

	1 = −1

4

[ (
3 + 4α + α2 + 2H ′′(0)

)
(1 + γf ′(ξ))λ2 + 2a1λc2 + a2c

2
2 + 4c3

]
,

a1 = −1 + 2H ′′(0) + 3γf ′(ξ) + 2H ′′(0)γf ′(ξ) + 4α(1 + γf ′(ξ)) + α2(1 + γf ′(ξ)),

a2 = −5 + 2H ′′(0) + 3γf ′(ξ) + 2H ′′(0)γf ′(ξ) + 4α(1 + γf ′(ξ)) + α2(1 + γf ′(ξ)).

Proof Let en = xn − ξ be the error at nth iteration and cn = 1

n!
f (n)(ξ)

f ′(ξ)
, n =

2, 3, . . . . Taking taking into account that f (ξ) = 0, we can expand f (xn) and f (wn)

about xn = ξ . Therefore, we get

f (xn) = f ′(ξ)
[
en + c2e

2
n + c3e

3
n + c4e

4
n

]
+ O(e5

n), (2.5)

and

f (wn) = f ′(ξ)
[
en,w + c2e

2
n,w + c3e

3
n,w + c4e

4
n,w

]
+ O(e5

n,w), (2.6)

where en,w := wn − ξ.
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Now, using (2.5) and (2.6) in (2.4), we get

en,y = yn − ξ = (
1 + γf ′(ξ)

)
(λ + c2)e

2
n +

( (
−
(

2 + 2γf ′(ξ) + f ′(ξ)2γ 2
)

λc2

−
(

2 + 2γf ′(ξ) + f ′(ξ)2γ 2
)

c2
2

−(1 + f ′(ξ)γ )
(
(1 + f ′(ξ)γ )λ2 − (2 + f ′(ξ)γ )c3

)) )
e3
n + O(e4

n). (2.7)

Expanding f
(
xn − f (xn)

f [xn,wn]
)

about xn = ξ , we have

f (yn) = f ′(ξ)
[
en,y + c2e

2
n,y + c3e

3
n,y + c4e

4
n,y

]
+ O(e5

n,y), (2.8)

and

τ = f (yn)

f (xn)
= (1 + f ′(ξ)γ )

(
λ + c2

)
en +

(
−
(

2 + 2f ′(ξ)γ + f ′(ξ)2γ 2
)
λc2

−
(

2 + 2f ′(ξ)γ + f ′(ξ)2γ 2
)
c2

2

−(1 + f ′(ξ)γ )c2

(
λ + c2

)
− (1 + f ′(ξ)γ )

×
(
(1 + f ′(ξ)γ )λ2 − (2 + f ′(ξ)γ )c3

))
e2
n + O(e3

n). (2.9)

Now, expanding the weight function H(τ) in the neighborhood of origin using
Taylor expansion, we get

H(τ) = H(0) + H ′(0)τ + 1

2!H
′′(0)τ 2 + 1

3!H
′′′(0)τ 3 + O(τ 4). (2.10)

Using (2.5)–(2.10) in scheme (2.4), we obtain the following error equation

en+1 = − c2
(
H(0) − 1

)(
1 + γf ′(ξ)

)
(λ + c2)

+
[

−
(

2 + 2f ′(ξ)γ + f ′(ξ)2γ 2
)
λc2 −

(
2 + 2f ′(ξ)γ + f ′(ξ)2γ 2

)
c2

2

− H ′(0)(1 + f ′(ξ)γ )2
(
λ + c2

)
2 − (1 + f ′(ξ)γ )

(
(1 + f ′(ξ)γ )λ2 − (2 + f ′(ξ)γ )c3

)
− 1

2
H(0)

(
2
(

− 1 + α(1 + f ′(ξ)γ )2
)
λc2

+
(

− 3 − 2f ′(ξ)γ − f ′(ξ)2γ 2 + α(1 + f ′(ξ)γ )2
)
c2

2 + (1 + f ′(ξ)γ )

×
(
(−1 + α)(1 + f ′(ξ)γ )λ2 + 2(2 + f ′(ξ)γ )c3

))]
e3
n

+ 
4e
4
n + O(e5

n),

(2.11)
where 
4 = 
4

(
c2, c3, c4, α, γ, λ, H(0), H i(0)

)
for i = 1, 2.

Therefore, to achieve fourth-order convergence, co-efficients of e2
n and e3

n should
vanish simultaneously. Hence, substituting co-efficients of e2

n and e3
n in (2.11) equal

to zero, we get the following conditions

H(0) = 1, H ′(0) = −(α + 1)

2
, |H ′′(0)| < ∞, α ∈ R\{−1}.
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Thus, the iterative scheme (2.4) satisfies the following error equation

en+1 = 	1
(
1 + γf ′(ξ)

)2
(λ + c2)e

4
n + O(en)

5, (2.12)

where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

	1 = −1

4

[ (
3 + 4α + α2 + 2H ′′(0)

)
(1 + γf ′(ξ))λ2 + 2a1λc2 + a2c

2
2 + 4c3

]
,

a1 = −1 + 2H ′′(0) + 3γf ′(ξ) + 2H ′′(0)γf ′(ξ) + 4α(1 + γf ′(ξ)) + α2(1 + γf ′(ξ)),

a2 = −5 + 2H ′′(0) + 3γf ′(ξ) + 2H ′′(0)γf ′(ξ) + 4α(1 + γf ′(ξ)) + α2(1 + γf ′(ξ)).

This reveals that the modified derivative-free two-point Hansen-Patrick’s family
(2.4) attains fourth-order convergence requiring only three functional evaluations,
viz., f (xn), f (wn) and f (yn), per step. Hence, optimal efficiency index of the
proposed class is E = 3

√
4 ≈ 1.587. This completes the proof.

Remark 1 Error relation (2.12) plays an important role to construct new derivative-
free iterative methods with memory in Section 4.

3 Special cases

In what follows, we present some concrete explicit representations of our proposed
class (2.4) by choosing different weight functions satisfying all the conditions of the
Theorem 1.

Case 1 Let us consider the following weight function

H1(τ ) = 1 − α + 1

2
τ. (3.1)

Using the above weight function in scheme (2.4), we get

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yn = xn − f (xn)

f [xn, wn] + λf (wn)
, wn = xn + γf (xn), γ, λ ∈ R\{0}

xn+1 = yn − f (xn)

f [yn, wn] + λf (wn)

⎛
⎜⎝−1 + α + 1

α +
(

1 − 2(α+1)f (yn)
f (xn)

)1/2

⎞
⎟⎠
(

1 − α + 1

2

f (yn)

f (xn)

)
,

(3.2)
where α ∈ R\{−1}.

This is a new tri-parametric optimal fourth-order derivative-free class of Hansen-
Patrick type methods and one can easily get many new families of methods by
choosing different values of parameters γ, λ and α. By fixing one of the free
disposable parameters, we display some interesting special cases of family (3.2).
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Sub special cases of optimal family (3.2)

(i) For α = 0, family (3.2) reads as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yn = xn − f (xn)

f [xn, wn] + λf (wn)
, wn = xn + γf (xn), γ, λ ∈ R\{0},

xn+1 = yn − f (xn)

f [yn, wn] + λf (wn)

⎡
⎢⎣−1 + 1√

1 − 2f (yn)
f (xn)

⎤
⎥⎦[

1 − 1

2

f (yn)

f (xn)

]
.

(3.3)
This is a new optimal fourth-order derivative-free modification of

Ostrowski’s square-root method.
(ii) For α = 1, family (3.2) reads as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yn = xn − f (xn)

f [xn, wn] + λf (wn)
, wn = xn + γf (xn), γ, λ ∈ R\{0},

xn+1 = yn − f (xn)

f [yn, wn] + λf (wn)

⎡
⎢⎣−1 + 2

1 +
√

1 − 4f (yn)
f (xn)

⎤
⎥⎦[

1 − f (yn)

f (xn)

]
.

(3.4)

This is a new optimal fourth-order derivative-free modification of Euler’s
method.

(iii) Taking α = 1
ν−1 (ν �= 1), family (3.2) reads as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yn = xn − f (xn)

f [xn, wn] + λf (wn)
, wn = xn + γf (xn), γ, λ ∈ R\{0},

xn+1 = yn − f (xn)

f [yn, wn] + λf (wn)

⎡
⎢⎣−1 + ν

1 + (ν − 1)

√
1 + 2νf (yn)

(ν−1)f (xn)

⎤
⎥⎦[

1 + ν

2(1 − ν)

f (yn)

f (xn)

]
.

(3.5)

This is a new optimal fourth-order derivative-free modification of
Laguerre’s method.

Case 2 Let us consider the following weight function

H2(τ ) = 1

1 + (1 + α)τ
. (3.6)

Using the above weight function in scheme (2.4), we get

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yn = xn − f (xn)

f [xn,wn] + λf (wn)
, wn = xn + γf (xn), γ, λ ∈ R\{0},

xn+1 = yn − f (xn)

f [yn,wn] + λf (wn)

⎡
⎢⎣−1 + α + 1

α +
(

1 − 2(α+1)f (yn)
f (xn)

)1/2

⎤
⎥⎦[

f (xn)

f (xn) + (1 + α)f (yn)

]
,

(3.7)

where α∈R\{−1}. This is another new tri-parametric optimal fourth-order derivative-
free class of Hansen-Patrick type methods.
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Sub special cases of optimal family (3.7)

(i) For α = 0, family (3.7) reads as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yn = xn − f (xn)

f [xn, wn] + λf (wn)
, wn = xn + γf (xn), γ, λ ∈ R\{0},

xn+1 = yn − f (xn)

f [yn, wn] + λf (wn)

⎡
⎢⎣−1 + 1√

1 − 2f (yn)
f (xn)

⎤
⎥⎦
[

f (xn)

f (xn) + f (yn)

]
.

(3.8)

This is another new optimal fourth-order derivative-free modification of
Ostrowski’s square-root method.

(ii) For α = 1, family (3.2) reads as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yn = xn − f (xn)

f [xn,wn] + λf (wn)
, wn=xn + γf (xn), γ, λ ∈ R\{0},

xn+1 = yn− f (xn)

f [yn,wn] + λf (wn)

⎡
⎢⎣−1+ 2

1 +
√

1 − 4f (yn)
f (xn)

⎤
⎥⎦[

f (xn)

f (xn) + 2f (yn)

]
.

(3.9)

This is another new optimal fourth-order derivative-free modification of
Euler’s method.

(iii) Taking α = 1
ν−1 (ν �= 1), family (3.2) reads as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yn = xn− f (xn)

f [xn,wn] + λf (wn)
, wn = xn + γf (xn), γ, λ ∈ R\{0},

xn+1 = yn− f (xn)

f [yn,wn] + λf (wn)

⎡
⎢⎣−1+ ν

1+(ν−1)

√
1+ 2νf (yn)

(ν−1)f (xn)

⎤
⎥⎦[ f (xn)

f (xn)+(ν/(ν−1))f (yn)

]
.

(3.10)

This is another new optimal fourth-order derivative-free modification of
Laguerre’s method.

Some more simple weight functions satisfying the conditions of Theorem (1) are
given below:

H3(τ ) = 1

1 + α+1
2 τ + β1τ 2

, H4(τ ) = 1 + τ

1 + α+3
2 τ

, H5(τ ) = 1 + β2τ
2

1 + α+1
2 τ

,

where α\{−1}, β1, β2 are free disposable parameters.

4 Development of new methods with memory and convergence analysis

In this section, we are going to construct new iterative methods with memory from
(2.4) using two self-accelerating parameters.

It is clear from error (2.12) that the order of convergence of the family (2.4)
is four, when γ �= −1/f ′(ξ) and λ �= −c2. Therefore, it is possible to increase
the convergence speed of the proposed class (2.4), if γ = −1/f ′(ξ) and λ =
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−c2 = −f ′′(ξ)/(2f ′(ξ)). However, the values of f ′(ξ) and f ′′(ξ) are not avail-
able in practice and such acceleration is not possible. Instead of that, we could use
approximations f̃ ′(ξ) ≈ f ′(ξ) and f̃ ′′(ξ) ≈ f ′′(ξ), calculated by already available
information. Therefore, by setting γ = −1/f̃ ′(ξ) and λ = −c2 = −f̃ ′′(ξ)/(2f̃ ′(ξ)),
we can increase the convergence order without using any new functional evaluations.
Hence, the main idea in constructing methods with memory consists of the calcula-
tion of the parameters γ = γn and λ = λn as the iteration proceeds by the formulas
γn = −1/f̃ ′(ξ) and λn = −c2 = −f̃ ′′(ξ)/(2f̃ ′(ξ)) for n = 1, 2, 3, . . .. Further, it is
also assumed that the initial estimates γ0 and λ0 should be chosen before starting the
iterative process, for example, using one of the ways proposed in [1].
In what follows, we use symbols →, O and ∼ according to the following convention:
If limn→∞ f (xn) = C, we write f (xn) → C or f → C, where C is a nonzero
constant. If f

g
→ C, we will writef = O(g) or f ∼ g.

Therefore, we approximate

γn = −1

f̃ ′(ξ)
= −1

N ′
3(xn)

, (4.1)

and

λn = − N ′′
4 (wn)

2N ′
4(wn)

, (4.2)

in iterative scheme (2.4). Here, N3(t) = N3(t; xn, xn−1, yn−1, wn−1) and N4(t) =
N4(t; wn, xn, wn−1, yn−1, xn−1) are Newton interpolating polynomials of third
and fourth degree, set through available nodal points (xn, xn−1, yn−1, wn−1) and
(wn, xn, wn−1, yn−1, xn−1), respectively.

If we use lower degree interpolating polynomials, then slower acceleration is
achieved. Secondly, the other choices of nodes (of worse quality) gives approxima-
tions for γn and λn in (2.4) of somewhat less accuracy. Therefore, we have considered
the best possible choices for nodal points to obtain the maximal order.

It is worth mentioning that the evaluation of the self-accelerating parameters γn

and λn depends on the data available from the current and the previous iterations.
Therefore, order of convergence will be increased significantly without using an extra
functional evaluation. Finally, replacing fixed parameters γ and λ in (2.4) by the
varying parameters γn and λn defined by (4.1) and (4.2), we shall obtain new methods
with memory. Hence, with memory versions of derivative-free methods (2.4) can be
presented as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0, γ0, λ0 are given, then w0 = x0 + γ0f (x0),

γn = −1

N ′
3(xn)

, wn = xn + γnf (xn), λn = − N ′′
4 (wn)

2N ′
4(wn)

, n = 1, 2, . . . ,

yn = xn − f (xn)

f [xn, wn] + λnf (wn)
, wn = xn + γnf (xn),

xn+1 = yn − f (xn)

f [yn, wn] + λnf (wn)

⎡
⎢⎣−1 + α + 1

α +
(

1 − 2(α+1)f (yn)
f (xn)

)1/2

⎤
⎥⎦H(τ), τ = f (yn)

f (xn)
,

(4.3)
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where the weight function H(τ) satisfy the conditions H(0) = 1, H ′(0) =
−(α+1)

2 , |H ′′(0)| < ∞ and α ∈ R\{−1}.
In the next subsection, we will establish the convergence results for the new

derivative-free with memory variants (4.3) which are based on Hansen-Patrick type
methods.

4.1 Convergence analysis

Here, we attempt to prove that the R-order of convergence of a new derivative-free
methods (4.3) with memory is seven. For this purpose, we state the following lemma
[19].

Lemma 1 Let γn = −1

N ′
3(xn)

and λn = − N ′′
4 (wn)

2N ′
4(wn)

, where en = xn − ξ, en,w =
wn − ξ and en,y = yn − ξ, then the following asymptotic relations hold:

1 + γnf
′(ξ) ∼ ψ1en−1en−1,wen−1,y and c2 + λn ∼ ψ2en−1en−1,wen−1,y, (4.4)

where ψ1 and ψ2 are some asymptotic constants.

Now, we state the convergence theorem for the scheme (4.3).

Theorem 2 If an initial guess x0 is sufficiently close to the zero ξ of f (x) and the
parameters γn and λn in the iterative scheme (4.3) are recursively calculated by
the forms given in (4.1) and (4.2), respectively, then the R-order of convergence of
methods with memory (4.3) is at least seven.

Proof Let {xn} be a sequence of approximations generated by an iterative method
(IM). If this sequence converges to the zero ξ of f with the R-order (≥ r) of IM,
then we write

en+1 ∼ Dn,re
r
n, en = xn − ξ,

where Dn,r tends to the asymptotic error constant Dr of IM, when n → ∞. Thus

en+1 ∼ Dn,r

(
Dn−1,r e

r
n−1

)r = Dn,rD
r
n−1,r e

r2

n−1. (4.5)

Assume that the iterative sequences {wn} and {yn} have R-orders r1 and r2,
respectively. Therefore, we obtain

en,w = wn − ξ ∼ Dn,r1e
r1
n ∼ Dn,r1

(
Dn−1,r e

r
n−1

)r1 = Dn,r1D
r1
n−1,r e

rr1
n−1, (4.6)

and

en,y = yn − ξ ∼ Dn,r2e
r2
n ∼ Dn,r2

(
Dn−1,r e

r
n−1

)r2 = Dn,r2D
r2
n−1,r e

rr2
n−1. (4.7)

Using (4.6), (4.7) and Lemma 1, we obtain

1 + γf ′(ξ) ∼ ψ1en−1,wen−1,yen−1 = ψ1Dn−1,r1Dn−1,r2e
r1+r2+1
n−1 ,

λn + c2 ∼ ψ2Dn−1,r1Dn−1,r2e
r1+r2+1
n−1 .

(4.8)
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In view of two-point methods (2.4) without memory, we have the following error
relations

en,w = (
1 + γf ′(ξ)

)
en + O(en)

2, (4.9)

en,y = c2
(
1 + γf ′(ξ)

)
(λ + c2)e

2
n + O(en)

3, (4.10)

en+1 = 	1
(
1 + γf ′(ξ)

)2
(λ + c2)e

4
n + O(en)

5, (4.11)

where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

	1 = −1

4

[ (
3 + 4α + α2 + 2H ′′(0)

)
(1 + γf ′(ξ))λ2 + 2a1λc2 + a2c

2
2 + 4c3

]
,

a1 = −1 + 2H ′′(0) + 3γf ′(ξ) + 2H ′′(0)γf ′(ξ) + 4α(1 + γf ′(ξ)) + α2(1 + γf ′(ξ)),

a2 = −5 + 2H ′′(0) + 3γf ′(ξ) + 2H ′′(0)γf ′(ξ) + 4α(1 + γf ′(ξ)) + α2(1 + γf ′(ξ)).

According to the error relations (4.9)–(4.11) with self-accelerating-parameters
γ = γn and λ = λn, we can write the corresponding error relations for the methods
(2.4) with memory as follow:

en,w ∼ (
1 + γnf

′(ξ)
)
en, (4.12)

en,y ∼ c2
(
1 + γnf

′(ξ)
)
(λn + c2)e

2
n, (4.13)

en+1 ∼ an,4
(
1 + γnf

′(ξ)
)2

(λn + c2)e
4
n, (4.14)

where an,4 is clear from (4.11) and depends on iteration index since γn and λn are
re-calculated in each step.

Using Lemma 1 and (4.12)–(4.14), we get

en,w ∼ (
1 + γnf

′(ξ)
)
en ∼ (

ψ1en−1en−1,wen−1,y

)
en ∼ ψ1Dn−1,r1 Dn−1,r2 Dn−1,r e

r+r1+r2+1
n−1 ,

(4.15)

en,y ∼ c2
(
1 + γnf

′(ξ)
)
(λn + c2)e

2
n ∼ c2ψ1ψ2D

2
n−1,r1

D2
n−1,r2

D2
n−1,r e

2r+2r1+2r2+2
n−1 , (4.16)

en+1 ∼ an,4
(
1 + γnf

′(ξ)
)2

(λn + c2)e
4
n ∼ an,4ψ

2
1 ψ2D

3
n−1,r1

D3
n−1,r2

D4
n−1,r e

4r+3r1+3r2+3
n−1 .

(4.17)

Now, comparing the error exponents of en−1 on the right hand sides of pairs (4.6)–
(4.15), (4.7)–(4.16) and (4.5)–(4.17), respectively, we obtain the following system⎧⎪⎨

⎪⎩
rr1 − r − r1 − r2 = 1,

rr2 − 2r − 2r1 − 2r2 = 2,

r2 − 4r − 3r1 − 3r2 = 3.

Therefore, non-trivial solution of this system of equations is given by r1 = 2, r2 =
4 and r = 7. Thus, we can conclude that the lower bound of the R-order of the
methods with memory (4.3) is seven.

Remark 2 It can be easily seen that the improvement of convergence order from 4 to
7 (75 % of an improvement) is attained without any additional functional evaluations,
which points to a very high computational efficiency of the proposed methods (4.3).
Therefore, the efficiency index of the proposed methods (4.3) E = 71/3 ≈ 1.913
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which is much higher than the E-values viz., E = 41/3 ≈ 1.587, E = 81/4 ≈ 1.682
and E = 161/5 ≈ 1.741 of the optimal fourth, eighth and sixteenth order methods,
respectively.

Remark 3 We also emphasize that the further increase in the convergence speed
may be obtained at the cost of introducing more self-accelerating parameters in the
proposed iterative processes. However, keeping in mind that methods with memory
have somewhat complex structure dealing with information from two successive iter-
ations; we observe that the presented derivative-free Hansen-Patrick type methods
with memory have somewhat simpler body structures using only two accelerating
parameters.

5 Numerical examples and conclusion

In this section, we shall check the convergence behavior of newly proposed schemes
(2.4) and (4.3) using different weight functions with some other methods having same
order of convergence. All computations have been performed using the programming
package Mathematica 7 [20] in multiple precision arithmetic environment. We have
considered 2000 digits floating point arithmetic so as to minimize the round-off errors
as much as possible. It is assumed that the initial estimates γ0 and λ0 should be
chosen before starting the iterative process, and also x0 is given suitably.

For comparisons, we have considered the following concrete methods:

Derivative-free fourth-order Kung-Traub method without memory (KTM4) [5]⎧⎪⎪⎨
⎪⎪⎩

yn = xn − f (xn)

f [xn, wn] , wn = xn + βf (xn), β ∈ R\{0},

xn+1 = yn − f (yn)f (wn)[
f (wn) − f (yn)

]
f [xn, yn] .

(5.1)

Derivative-free fourth-order Zheng et al. method (ZLM4) without memory [21]⎧⎪⎪⎨
⎪⎪⎩

yn = xn − f (xn)

f [xn, wn] , wn = xn + βf (xn), β ∈ R\{0},

xn+1 = yn − f (yn)

f [xn, yn] + (yn − xn)f [xn, wn, yn] .
(5.2)

Derivative-free fourth-order Soleymani et al. method (SSLT4) without memory
[22]⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yn = xn − f (xn)

f [xn,wn] , wn = xn + γf (xn), γ ∈ R\{0},

xn+1 = xn − f (xn) + f (yn)

f [xn,wn] −
(

2f (xn) + af (yn)

f [xn,wn]
(

f (yn)

f (yn)

)2
)(

1 − γf [xn,wn]
2 + 2γf [xn,wn]

)
, a ∈ R.

(5.3)
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Table 1 f1(x) = |x2 − 4|, ξ = 2, x0 = 2.25

Without memory methods |x1 − ξ | |x2 − ξ | |x3 − ξ | ρc

KTM4 (5.1) (β = −0.01) 0.8333e−4 0.1389e−17 0.1071e−72 4.0000

ZLM4 (5.2) (β = −0.01) 0.4413e−4 0.5460e−19 0.1280e−78 4.0000

SSLT4 (5.3) (γ = −0.01, a = 5) 0.3066e−4 0.1295e−20 0.4119e−86 4.0000

Our method (2.4) using H1(τ ) (α = 1/2) 0.3278e−4 0.1210e−19 0.2252e−81 4.0000

Our method (2.4) using H3(τ ) (α = 1/4, β1 = −1/2) 0.1717e−4 0.2804e−21 0.1996e−88 4.0000

Bold face numbers denote the least error among the displayed methods in case of convergence to the
desired root

Derivative-free seventh-order Cordero et al. method (CLBT7) with memory [23]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0, γ0, λ0 are given, then w0 = x0 + γ0f (x0),

γn = −1

N ′
3(xn)

, wn = xn + γnf (xn), λn = − N ′′
4 (wn)

2N ′
4(wn)

, n = 1, 2, . . . ,

yn = xn − f (xn)

f [xn, wn] + λnf (wn)
, wn = xn + γnf (xn),

xn+1 = yn − f (xn)

f [xn, yn] + (yn − xn)f [xn, wn, yn] .

(5.4)

Derivative-free seventh-order Dzunic’s method (D7) with memory [24]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0, γ0, λ0 are given, then w0 = x0 + γ0f (x0),

γn = −1

N ′
3(xn)

, wn = xn + γnf (xn), λn = − N ′′
4 (wn)

2N ′
4(wn)

, n = 1, 2, . . . ,

yn = xn − f (xn)

f [xn, wn] + λnf (wn)
, wn = xn + γnf (xn),

xn+1 = yn − f (yn)

f [yn, wn] + λnf (wn)
g(tn), tn = f (yn)

f (xn)
,

(5.5)

where g(t) is a real-valued weight function such that g(0) = 1, g′(0) = 1 and
|g′′(0)| < ∞.

Table 2 f2(x) = x + e sin x − M, ξ = 2, x0 = M + e, e = 0.9995, M = 0.01

Without memory methods |x1 − ξ | |x2 − ξ | |x3 − ξ | ρc

KTM4 (5.1) (β = −0.01) 0.1219e+0 0.2257e−2 0.6781e−9 3.5156

ZLM4 (5.2) (β = −0.01) 0.9395e−1 0.4876e−3 0.6066e−12 3.7378

SSLT4 (5.3) (γ = −0.01, a = 5) 0.1196e+0 0.1602e−2 0.2762e−10 3.8923

Our method (2.4) using H1(τ ) (α = 1/2) 0.6957e−1 0.9289e−4 0.5172e−15 3.8436

Our method (2.4) using H3(τ ) (α = 1/4, β1 = −1/2) 0.7804e−1 0.6873e−4 0.5912e−17 3.8083

Bold face numbers denote the least error among the displayed methods in case of convergence to the
desired root
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Table 3 f3(x) = sin (πx)ex2+x cos x−1 + x log (x sin x + 1), ξ = 0, x0 = 0.50

Without memory methods |x1 − ξ | |x2 − ξ | |x3 − ξ | ρc

KTM4 (5.1) (β = −0.01) 0.8766e−2 0.7426e−2 0.3801e−32 3.9979

ZLM4 (5.2) (β = −0.01) 0.8709e−2 0.1700e−8 0.2282e−35 4.0028

SSLT4 (5.3) (γ = −0.01, a = 5) 0.8683e−2 0.3081e−8 0.6065e−34 3.9829

Our method (2.4) using H1(τ ) (α = 1/2) 0.8111e−2 0.4249e−10 0.3741e−43 3.9902

Our method (2.4) using H3(τ ) (α = 1/4, β1 = −1/2) 0.8089e−2 0.2229e−8 0.1401e−34 3.9921

Bold face numbers denote the least error among the displayed methods in case of convergence to the
desired root

To check the theoretical order of convergence, we calculate the computational
order of convergence [25] (COC) denoted by ρc using the following formula

ρc = log (|f (xn)/f (xn−1)|)
log (|f (xn−1)/f (xn−2)|) ,

taking into consideration the last three approximations in the iteration process. We
have considered variety of test functions of different nature to compute the errors
|xn − ξ | of approximations. For example, the test function f4 is a polynomial of
Wilkinson’s type with real zeros 1,2,3,4,5. It is well-known that this class of poly-
nomials is ill-conditioned and small perturbations in polynomial coefficients cause
drastic variations of zeros. Therefore, most of the iterative methods encounter serious
difficulties in finding the zeros of Wilkinson-like polynomials.

In the second example, we consider Kepler’s equation given by f2(x) = x −
e sin x − M = 0, where 0 ≤ e ≤ 1 and 0 ≤ M ≤ π. A numerical study, for different

Table 4 f4(x) = ∏5
i=1(x − i), ξ = 3, x0 = 3.25

With memory methods |x1 − ξ | |x2 − ξ | |x3 − ξ | ρc

CLBT7 (5.4) (γ0 = −0.01, λ0 = −0.01) 0.4231e−2 0.2727e−18 0.1454e−135 7.2432

D7(5.5) using g(t) = 1 + t , 0.7207e−2 0.5369e−17 0.4840e−126 7.2083

(γ0 = −0.01, λ0 = −0.01)

D7(5.5) using g(t) = 1/(1 − t), 0.5478e−2 0.1102e−17 0.4292e−131 7.2252

(γ0 = −0.01, λ0 = −0.01)

Our method (4.3) using H1(τ ) (α = 1/2) 0.3945e−2 0.1889e−18 0.9667e−137 7.2252

Our method (4.3) using H1(τ ) (α = 1) 0.3312e−2 0.7684e−19 0.1257e−139 7.2612

Our method (4.3) using H2(τ ) (α = 1/2) 0.6816e−2 0.1421e−17 0.7832e−130 7.1590

Our method (4.3) using H2(τ ) (α = 1) 0.1430e−1 0.2233e−16 0.1254e−116 6.7708

Our method (4.3) using H3(τ ) 0.1803e−2 0.3850e−20 0.2951e−149 7.3068

(α = 1/2, β1 = −1/2)

Our method (4.3) using H3(τ ) 0.1914e−3 0.1569e−24 0.6215e−182 7.4647

(α = 1, β1 = −1/2)

Bold face numbers denote the least error among the displayed methods in case of convergence to the
desired root
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Table 5 f5(x) = e−x2+x+2 − 1, ξ = −1, x0 = −0.8

With memory methods |x1 − ξ | |x2 − ξ | |x3 − ξ | ρc

CLBT7 (5.4) (γ0 = −0.01, λ0 = −0.01) 0.9764e−3 0.2109e−21 0.3538e−152 7.0060

D7(5.5) using g(t) = 1 + t , 0.2525e−2 0.2258e−18 0.5913e−131 7.0145

(γ0 = −0.01, λ0 = −0.01)

D7(5.5) using g(t) = 1/(1 − t), 0.1902e−2 0.3000e−19 0.4282e−137 7.0133

(γ0 = −0.01, λ0 = −0.01)

Our method (4.3) using H1(τ ) (α = 1/2) 0.6635e−3 0.8121e−23 0.4473e−162 6.9935

Our method (4.3) using H1(τ ) (α = 1) 0.2976e−3 0.8014e−24 0.4015e−169 7.0638

Our method (4.3) using H2(τ ) (α = 1/2) 0.3192e−2 0.5515e−22 0.1904e−139 5.9432

Our method (4.3) using H2(τ ) (α = 1) 0.2813e−2 0.1804e−18 0.2260e−133 7.0952

Our method (4.3) using H3(τ ) 0.2782e−5 0.2989e−32 0.4050e−228 7.2628

(α = 1/2, β1 = −1/2)

Our method (4.3) using H3(τ ) 0.1277e−2 0.1044e−20 0.2518e−147 7.0006

(α = 1, β1 = −1/2)

Bold face numbers denote the least error among the displayed methods in case of convergence to the
desired root

values of M and e has been performed in [26]. Therefore, we take values M = 0.01
and e = 0.9995 that the authors consider out of the limit for getting convergence with
Newton’s method. In this case the solution is ξ = 0.3899777749463621. Also, test
function f1 is also included to show that our proposed methods are also applicable
for non-smooth functions. The errors |xn − ξ | of approximations to the correspond-
ing zeros of test functions and computational order of convergence ρc are displayed
in Tables 1, 2, 3, 4, 5, 6, 7 and 8, where A(−h) denotes A × 10−h. All the numerical
results are calculated by taking initial estimates γ0 = λ0 = −0.01 in our schemes.

Table 6 f6(x) = ex3−x − cos (x2 − 1) + x3 + 1, ξ = −1, x0 = −1.5

With memory methods |x1 − ξ | |x2 − ξ | |x3 − ξ | ρc

CLBT7 (5.4) (γ0 = −0.01, λ0 = −0.01) 0.2225e−2 0.8385e−17 0.1956e−120 7.1850

D7(5.5) using g(t) = 1 + t , 0.2380e−2 0.1135e−16 0.1634e−119 7.1810

(γ0 = −0.01, λ0 = −0.01)

D7(5.5) using g(t) = 1/(1 − t), 0.2303e−2 0.9816e−17 0.5933e−120 7.1829

(γ0 = −0.01, λ0 = −0.01)

Our method (4.3) using H1(τ ) (α = 1/2) 0.2215e−2 0.8249e−17 0.1757e−120 7.1852

Our method (4.3) using H1(τ ) (α = 1) 0.2172e−2 0.7569e−17 0.9629e−121 7.1863

Our method (4.3) using H2(τ ) (α = 1/2) 0.1023e−2 0.1587e−17 0.1391e−125 7.2965

Our method (4.3) using H2(τ ) (α = 1) 0.5126e−3 0.2444e−18 0.6158e−132 7.4143

Our method (4.3) using H3(τ ) (α = 1/2, β1 = −1/2) 0.2132e−2 0.6965e−17 0.5384e−121 7.1873

Our method (4.3) using H3(τ ) (α = 1, β1 = −1/2) 0.2055e−2 0.5921e−17 0.1729e−121 7.1895

Bold face numbers denote the least error among the displayed methods in case of convergence to the
desired root
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Table 7 f7(x) = (x − 1)3 − 1, ξ = 2, x0 = 3.5

With memory methods |x1 − ξ | |x2 − ξ | |x3 − ξ | ρc

CLBT7 (5.4) (γ0 = −0.01, λ0 = −0.01) 0.1991e+0 0.6470e−6 0.5272e−44 6.6595

D7(5.5) using g(t) = 1 + t , 0.2929e+0 0.4546e−5 0.4456e−38 6.6952

(γ0 = −0.01, λ0 = −0.01)

D7(5.5) using g(t) = 1/(1 − t), 0.2683e+0 0.2839e−5 0.1652e−39 6.7301

(γ0 = −0.01, λ0 = −0.01)

Our method (4.3) using H1(τ ) (α = 1/2) 0.1834e+0 0.3130e−6 0.3269e−46 6.8401

Our method (4.3) using H1(τ ) (α = 1) 0.1016e+0 0.1950e−7 0.1191e−54 7.0765

Our method (4.3) using H2(τ ) (α = 1/2) 0.2340e+0 0.4260e−7 0.7070e−53 6.6954

Our method (4.3) using H2(τ ) (α = 1) 0.1620e−1 0.5619e−15 0.1104e−122 8.0063

Our method (4.3) using H3(τ ) (α = 1/2, β1 = −1/2) 0.1527e+0 0.1017e−6 0.1253e−49 6.8755

Our method (4.3) using H3(τ ) (α = 1, β1 = −1/2) 0.1728e+0 0.1065e−5 0.1728e−42 7.1674

Bold face numbers denote the least error among the displayed methods in case of convergence to the
desired root

On the accounts of results obtained in the Tables 1–8, it can be concluded that the
proposed methods are highly efficient as compared to the existing robust methods,
when the accuracy is tested in the multi-precision digits. Additionally, the compu-
tational order of convergence (COC) of these methods also confirmed the above
conclusions to a great extent.

Furthermore, we have also included two pathological examples (see, [27]) to show
that our all proposed methods (2.4) and (4.3) will converge to the complex root
without having to start with a complex number.

Example 1 g1(x) = x4 + 4x3 + 9x2 + 4x + 8.

Table 8 f3(x) = sin (πx)ex2+x cos x−1 + x log (x sin x + 1), ξ = 0, x0 = 0.50

With memory methods |x1 − ξ | |x2 − ξ | |x3 − ξ | ρc

CLBT7 (5.4) (γ0 = −0.01, λ0 = −0.01) 0.8121e−2 0.1820e−14 0.4854e−102 6.9211

D7(5.5) using g(t) = 1 + t , 0.8214e−2 0.1755e−14 0.4063e−102 6.9146

(γ0 = −0.01, λ0 = −0.01)

D7(5.5) using g(t) = 1/(1 − t), 0.8173e−2 0.1761e−14 0.4165e−102 6.9160

(γ0 = −0.01, λ0 = −0.01)

Our method (4.3) using H1(τ ) (α = 1/2) 0.8111e−2 0.1769e−14 0.4294e−102 6.9179

Our method (4.3) using H1(τ ) (α = 1) 0.8077e−2 0.1773e−14 0.4357e−102 6.9190

Our method (4.3) using H2(τ ) (α = 1/2) 0.8770e−2 0.2518e−14 0.5618e−104 7.1459

Our method (4.3) using H2(τ ) (α = 1) 0.8928e−2 0.3672e−14 0.2467e−101 7.0359

Our method (4.3) using H3(τ ) (α = 1/2, β1 = −1/2) 0.8068e−2 0.1774e−14 0.4372e−102 6.9193

Our method (4.3) using H3(τ ) (α = 1, β1 = −1/2) 0.8014e−2 0.1778e−14 0.4448e−102 6.9210

Bold face numbers denote the least error among the displayed methods in case of convergence to the
desired root
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The zeros here are complex and are not on the right half-plane. Starting with any
real negative initial guess x0 in (2.4) and (4.3) for any α ∈ R\{−1}, we shall get a
complex root. For instance, starting from the real initial guess x0 = −2.5, the optimal
fourth-order derivative method (2.4) using H1(τ ) for (α = 1/4, γ = −0.01, λ =
−0.01) takes only 6 iterations to converge to the complex root −2 − 2I with error
in the approximation as 2.889e-359 + 5.24e-360I and method (2.4) using H3(τ ) for
(α = 1/2, β1 = −1/2, γ = −0.01, λ = −0.01) takes only 7 iterations to converge
to the complex root −2 − 2I with error in the approximation as −2.365e-135 +
2.159e-135I .

On the other hand, with memory method (4.3) using H1(τ ) for (α = 1/4, γ0 =
−0.01, λ0 = −0.01) takes 6 iterations to converge to the complex root −2 − 2I with
error in the approximation as 2.852e-195−3.29e-196I and method (4.3) using H3(τ )

for (α = 1/2, β1 = −1/2, γ0 = −0.01, λ0 = −0.01) takes 6 iterations to converge
to the complex root −2 − 2I with error in the approximation as 8.44e-122 − 1.573e-
121I . The other existing methods get no solution, no matter how many iterations are
performed. This also demonstrates the advantage of our methods in finding complex
roots without having to start with a complex initial guess.

Example 2 g2(x) = x3 − 3x2 + 2x + 0.4.
In this pathological example, starting from the real initial guess x0 = 1.5, the opti-

mal fourth-order derivative method (2.4) using H1(τ ) for (α = 1/4, γ = −0.01, λ =
−0.01) takes only 6 iterations to converge to the complex root −2 − 2I with error
in the approximation as 2.4263e-6 − 4.3698e-8I and method (2.4) using H3(τ ) for
(α = 1/2, β1 = −1/2, γ = −0.01, λ = −0.01) takes only 6 iterations to converge to
the complex root −2−2I with error in the approximation as 2.426e-6−4.3898e-8I .

While, our new with memory scheme (4.3) using H1(τ ) for (α = 1/4, γ0 =
−0.01, λ0 = −0.01) takes 6 iterations to converge to the complex root −2 − 2I with
error in the approximation as 2.426e-6 − 4.4e-8I and method (4.3) using H3(τ ) for
(α = 1/2, β1 = −1/2, γ0 = −0.01, λ0 = −0.01) takes 6 iterations to converge to
the complex root −2 − 2I with error in the approximation as 2.426e-6 − 4.4e-8I .
On the other hand, other existing methods fail to give complex roots starting from
any real guess.

Similar numerical experiments have been carried out on variety of problems which
confirm the above conclusions to a great extent. Finally, we can conclude from
numerical experiments that new proposed schemes confirm the theoretical results and
show consistent convergence behavior.

6 Concluding remarks

In this study, we contribute further to the development of the theory of iteration pro-
cesses and propose new accurate and efficient higher-order derivative-free iterative
methods with and without memory for solving nonlinear equations numerically. The
significant increase in the convergence speed of the proposed methods is attained
without additional functional evaluations, which points to a very high computation-
ally efficiency. In other words, the efficiency index of the proposed family with
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memory is E = 71/3 ≈ 1.913, which is much better than optimal three, four and five-
point methods without memory having efficiency indexes E = 81/4 ≈ 1.681, E =
161/5 ≈ 1.741, E = 321/6 ≈ 1.781, respectively. The another most striking fea-
ture of this contribution is that the proposed methods can locate the complex roots
without having to start from a complex number as would be necessary with other
methods. Numerical experiments and the comparison of the existing robust meth-
ods are included to confirm the theoretical results and high computational efficiency.
Finally, we conclude with the remark that the presented derivative-free families of
Hansen-Patrick type methods with memory would be valuable alternative for solving
nonlinear equations.
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