
Numer Algor (2016) 73:735–760
DOI 10.1007/s11075-016-0115-x

ORIGINAL PAPER

Sharp error bounds for complex floating-point inversion

Claude-Pierre Jeannerod1 ·Nicolas Louvet2 ·
Jean-Michel Muller3 ·Antoine Plet4

Received: 26 August 2015 / Accepted: 18 February 2016 / Published online: 11 March 2016
© Springer Science+Business Media New York 2016

Abstract We study the accuracy of the classic algorithm for inverting a complex
number given by its real and imaginary parts as floating-point numbers. Our analyses
are done in binary floating-point arithmetic, with an unbounded exponent range and
in precision p; we also assume that the basic arithmetic operations (+, −, ×, /)
are rounded to nearest, so that the roundoff unit is u = 2−p. We bound the largest
relative error in the computed inverse either in the componentwise or in the normwise
sense. We prove the componentwise relative error bound 3u for the complex inversion
algorithm (assuming p � 4), and we show that this bound is asymptotically optimal
(as p → ∞) when p is even, and sharp when using one of the basic IEEE 754 binary
formats with an odd precision (p = 53, 113). This componentwise bound obviously
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leads to the same bound 3u for the normwise relative error. However, we prove that
the smaller bound 2.707131u holds (assuming p � 24) for the normwise relative
error, and we illustrate the sharpness of this bound for the basic IEEE 754 binary
formats (p = 24, 53, 113) using numerical examples.

Keywords Floating-point arithmetic · Rounding error analysis · Complex inversion

1 Introduction

This paper deals with the accuracy of the inversion of a nonzero complex number
given by its real and imaginary parts as floating-point numbers. We assume that the
underlying floating-point arithmetic has radix 2 and precision p � 2, and we also
assume an unbounded exponent range, which means that our results apply to prac-
tical floating-point calculations according to the IEEE 754 standard [6] as long as
underflow and overflow do not occur.

Given a nonzero complex number a + ib, its inverse satisfies

z = R + i I, R = a

a2 + b2
, I = − b

a2 + b2
. (1)

Assuming a and b are floating-point numbers and denoting by RN a round-to-nearest
function, we focus in this paper on the approximation ẑ = ̂R + i ̂I that can be
computed classically in floating-point arithmetic according to

̂R = RN

(

a

RN
(

RN
(

a2
) + RN

(

b2
))

)

(2)

for the real part, and with a similar expression for the imaginary part ̂I . This scheme
corresponds to Algorithm 1 below.

Algorithm 1 Inversion of a nonzero complex floating-point number a + ib.

sa ← RN
(

a2
)

sb ← RN
(

b2
)

s ← RN(sa + sb)
̂R ← RN(a/s)
̂I ← RN(−b/s)
return ̂R + i ̂I

We provide an accuracy analysis of Algorithm 1, for both the componentwise
relative error EC = max

(|R − ̂R|/|R|, |I − ̂I |/|I |) and the normwise relative error
EN = |z − ẑ|/|z|. In each case, we bound the largest error value by a function B(p)
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depending only on the precision p, and study the tightness of that bound. In this
context, we typically distinguish between three levels of quality:

• If we can show that there exist some inputs a + ib parametrized by p and for
which the bound is attained for every p � p0 (for a given p0 � 2), then we say
that the bound is optimal.

• If we can show that there exist some inputs parametrized by p and for which
the relative error E(p) satisfies E(p)/B(p) → 1 as p → ∞, then we say that
the bound is asymptotically optimal.

• In some cases, we did not manage to establish (asymptotic) optimality, but have
found input examples—either parametrized by p, or just for some values of p of
practical interest (like those corresponding to the basic IEEE 754 formats)—for
which E(p) is very close to B(p). In this case, we say that the bound is sharp.
(See [13] for a similar use of the word “sharp”.)

The componentwise relative error generated by Algorithm 1 can easily be bounded
as EC � 3u+ O(u2), where u = 2−p is the unit roundoff. Our first contribution is to
show that the term O

(

u2
)

can in fact be removed, which leads to the simpler bound
EC � 3u (assuming p � 4). Furthermore, when p is even, we show that this bound
is asymptotically optimal by providing floating-point numbers a and b parametrized

by p and for which EC � 3u − 31
2 u

3
2 + O

(

u2
)

; when p is odd, we show that the
bound 3u is sharp, especially for the corresponding basic IEEE 754 binary formats
(p = 53, 113).

The normwise relative error bound EN � 3u + O
(

u2
)

can be found in [4, p. 30],
and a direct application of our componentwise error analysis leads further to EN �
3u. The second main contribution of our paper is to show that if p � 10 then the
following smaller bound holds: EN < γ u + 9u2, where γ is an explicit constant in
(2.70712, 2.70713). When using for example the IEEE 754 binary32 format (p =
24), this implies EN < 2.707131u. The techniques and the case distinction we use
to prove this bound are inspired from [13], but we also extensively use real analysis
and differentiation for the treatment of each case. We provide numerical examples
to show that the bound we obtain is sharp for the basic IEEE 754 formats (p =
24, 53, 113).

Several authors [2, 8, 10, 11] have suggested ways of avoiding spurious overflows
and underflows in complex division, and some of them may be used in Algorithm 1.
Of course, if the computation introduces further rounding errors, which is the case
for example in Smith’s method [10], then our error bounds may not hold anymore.
However, following the technique developed by Priest in [8], it is possible to scale a
and b by a power of two in order to avoid spurious overflows and underflows without
introducing new rounding errors: in that case, our analyses are valid if neither over-
flow nor underflow occurs during the computation. Nonetheless, we do not deal with
scaling techniques here, and focus only on the largest error assuming an unbounded
exponent range.

Outline Section 2 is devoted to the componentwise relative error analysis of
Algorithm 1, and Section 3 to its normwise relative error analysis. We conclude in
Section 4 with some remarks on the implications of these error analyses for complex
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floating-point division. The technical parts of the proofs that can be skipped at first
reading are gathered in Appendix A.

Assumptions and notation For any real number t , we denote by RN(t) the binary
floating-point number that is nearest to t , with a tie-breaking strategy preserving the
following properties:

• RN(2k t) = 2kRN(t) for any integer k;
• RN(−t) = −RN(t).

In particular, either the roundTiesToEven or the roundTiesToAway rounding direction
attributes defined in the IEEE 754 standard [6] can be used.

Throughout the paper, we also rely on the following relative error bound
[7, p. 232]: for any real number t ,

RN(t) = t (1 + ε) with |ε| � u

1 + u
. (3)

Note that (3) implies the well-known inequality |RN(t) − t | � u|t |; see [5, p. 38].
Finally, we use the notation ufp(t) (unit in the first place, introduced in [9]) to

denote the weight of the most significant bit of t : if t �= 0 then ufp(t) is the unique
integer power of two such that 1 � |t |/ ufp(t) < 2, and ufp(0) = 0. The usual ulp
function (unit in the last place) is related to the ufp function through the relation
ulp(t) = 2u · ufp(t), so that

|t − RN(t)| � 1

2
ulp(t) = ufp(t)u. (4)

2 Componentwise error bound

In this section, we focus on the componentwise relative error of Algorithm 1. We
note first that since a+ ib is nonzero, R = a/(a2+b2) and I = −b/(a2+b2) cannot
both be zero, and that if one of them is zero then the returned result is very accurate.
Assume for example that R = 0 (the case I = 0 is similar). In that case, a = 0 and
I = −1/b. Using the bound in (3), it is then easily checked that the values ̂R and ̂I
returned by the algorithm are as follows:

• ̂R = 0, which means that the real part is computed exactly;
• ̂I = −RN(b/RN(b2)) and the relative error on the imaginary part is bounded by

2u (and thus smaller than the bound we are going to give in the general case).

Therefore, the rest of this section is devoted to analyzing EC = max
(|R −

̂R|/|R|, |I − ̂I |/|I |) for R and I nonzero. Repeated applications of the bound in (3)
give immediately EC � 3u + O

(

u2
)

. We show below that if p � 4 then the O
(

u2
)

term can in fact be removed, leading to the simpler bound 3u.
To do this, we prove that if p �= 3 then the relative error bound u/(1 + u) in (3)

can be replaced by u/(1+ 3u) when evaluating a square RN
(

a2
)

instead of a general
product. (When p = 3, it is easily checked that the bound u/(1+ u) is attained when
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squaring the floating-point numbers 3/2 · 2e, e ∈ Z.) This slight refinement will turn
out to be enough to show that Algorithm 1 satisfies EC � 3u.

Lemma 1 Let a be a floating-point number. If p �= 3 then |a2 − (2 + 2u)| � 4u2.

Proof If |a| < 1 then |a2 − (2 + 2u)| > 1 + 2u, and the result follows from the fact
that 1 + 2u > 4u2 when p > 0. Assume now that |a| � 1. To handle this case, we
show first that

a2 = 2 + 2u ⇒ p = 3. (5)

Since |a| is a floating-point number not smaller than 1, there exists a positive integer
A such that |a| = A · 21−p = A · 2u. The equality a2 = 2 + 2u is thus equivalent to
A2 = (2p + 1) · 2p−1 and, using the (unique) decomposition A = (2B + 1) · 2C with
B,C ∈ N, it can also be rewritten (2B + 1)2 · 22C = (2p + 1) · 2p−1. Now, p > 0
implies that 2p + 1 is odd and at least 3, so B �= 0 and (2B + 1)2 = 2p + 1. The
latter equality can be rewritten as 4B(B + 1) = 2p and its unique solution over N2

>0
is (B, p) = (1, 3), so (5) follows.

If p �= 3 then, by (5) we have a2 �= 2+2u, that is, A2 �= (2p +1) ·2p−1. Since the
latter inequality involves only integers, it is equivalent to |A2 − (2p + 1) · 2p−1| � 1
and thus to |a2 − (2 + 2u)| � 4u2.

Lemma 2 Let a be a floating-point number. If p �= 3 then RN
(

a2
) = a2(1+ ε) with

|ε| � u/(1 + 3u).

Proof We can assume that 1 � a < 2. If a = 1 then RN
(

a2
) = a2 and the result

is clear. If 1 < a <
√
2 then it follows from a being a floating-point number that

p � 4 and that a belongs to the non-empty interval [1 + 2u,
√
2). Consequently,

1 + 4u < a2 < 2 and thus |ε| � u ufp(a2)/a2 = u/a2 < u/(1 + 4u). Finally, if√
2 < a < 2 then 2 < a2 < 4 and, by Lemma 1, it suffices to consider the following

four subcases:

• If 2 < a2 � 2 + 2u − 4u2 then RN
(

a2
) = 2 and, therefore,

|ε| = 1 − 2

a2
� 1 − 2

2 + 2u − 4u2
� u

1 + 3u
.

• If 2 + 2u + 4u2 � a2 < 2 + 4u then RN
(

a2
) = 2 + 4u and, therefore,

|ε| = 2 + 4u

a2
− 1 � 2 + 4u

2 + 2u + 4u2
− 1 � u

1 + 3u
.

• If 2 + 4u � a2 < 2 + 6u then RN
(

a2
) = 2 + 4u and, therefore,

|ε| = 1 − 2 + 4u

a2
� 1 − 2 + 4u

2 + 6u
= u

1 + 3u
.
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• If 2 + 6u � a2 < 4 then ufp(a2) = 2 and |ε| � 2u/a2 � 2u/(2 + 6u) =
u/(1 + 3u).

Theorem 1 If p � 4 then the componentwise relative error for Algorithm 1 satisfies
EC � 3u.

Proof Due to the symmetry of Algorithm 1, it suffices to show that |R− ̂R| � 3u|R|.
From (3) and Lemma 2 we have

sa = a2(1+εa), sb = b2(1+εb), s = (sa+sb)(1+εs), ̂R = a

s
(1+εR)

with |εa|, |εb| � u/(1 + 3u) and |εs |, |εR | � u/(1 + u). Hence

̂R = a

a2(1 + εa) + b2(1 + εb)
· 1 + εR

1 + εs

and, using R = a/(a2 + b2), we deduce that ϕR � ̂R � ϕ′R with

ϕ := 1 − u
1+u

(1 + u
1+3u )(1 + u

1+u )
and ϕ′ := 1 + u

1+u

(1 − u
1+3u )(1 − u

1+u )
.

It is easily checked that ϕ > 1−3u and ϕ′ = 1+3u, which completes the proof.

We conclude this section by showing that the componentwise bound EC � 3u is
sharp. More precisely, when the precision p is even, the following example shows
that the componentwise error bound 3u is asymptotically optimal as p → ∞. Assum-
ing an even p � 12, let us consider the following binary floating-point numbers in
precision p:

a = 2
p
2 −1 + 5 · 2−2 + 2− p

2 +2,

b = 2p−1 + 2
p
2 −1 + 1.

With these values as inputs of Algorithm 1, we have (the details are provided in
Appendix A.1):

sa = 2p−2 + 5 · 2 p
2 −2 + 11 · 2−1,

sb = 22p−2 + 2
3p
2 −1 + 3 · 2p−1,

s = 22p−2 + 2
3p
2 −1 + 2p+1.

From this we deduce

a

s
= 2− 3p

2 +1 + 2−2p − 2− 5p
2 +1 − 2−3p+2 + O

(

2− 7p
2
)

,

and ulp
( a
s

) = 2− 5p
2 +2. Then, defining the floating-point number τ by

τ = 2− 3p
2 +1 + 2−2p − 2− 5p

2 +2,
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Table 1 Examples with p odd and a componentwise relative error close to 3u

p Inputs a and b EC/u

15 a = 16732 2.93047 . . .

b = 23252·23
17 a = 66078 2.96359 . . .

b = 93014·28
19 a = 131435 2.98509 . . .

b = 370969·28
53 a = 4508053433127332 2.97894 . . .

b = 6369149602646415·216
113 a = 5192393427440123027423416459819356 2.97647 . . .

b = 7343016638055329519853569740503421·216

it can be checked that

∣

∣

∣

a

s
− τ

∣

∣

∣ = 2− 5p
2 +1 + 2− 7p

2 +5

1 + 2− p
2 +1 + 2−p+3

<
1

2
ulp

(a

s

)

.

Hence ̂R = RN
( a
s

) = τ , which together with R = a/(a2 + b2) leads to

R − ̂R

R
= 3u − 31

2
u

3
2 + O

(

u2
)

.

As a consequence, in this example the componentwise relative error in the computed

ẑ is at least 3u− 31
2 u

3
2 +O

(

u2
)

, which shows the asymptotic optimality (as p → ∞)
of the bound when p is even.

When p is odd, we have not found an input set parametrized by the precision to
prove the asymptotic optimality of the error bound 3u. However, we illustrate the
sharpness of the bound by numerical examples in Table 1.

3 Normwise error bound

In this section, we are interested in the normwise relative error of Algorithm 1, that is,

EN =
√

a2 + b2
√

(R − ̂R)2 + (I − ̂I )2.

The analysis is done in radix 2 and precision p, and we assume that overflows and
underflows never occur. If we apply directly the componentwise bound obtained in
Section 2, we end up with the normwise error bound EN � 3u. In this section, we
establish the following result, which achieves a smaller bound by keeping track of
the correlations between the various rounding errors committed by the algorithm.
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Table 2 Examples with a normwise relative error close to γ u

p Inputs a and b EN /u

24 a = 11863283 2.69090 . . .

b = 11865457·212
53 a = 4503599709991314 2.70679 . . .

b = 6369051770002436·226
113 a = 2112 2.70559 . . .

b = 7343016637207171132572330391109909·256

Theorem 2 If p � 10 then the normwise relative error for Algorithm 1 satisfies
EN � γ u + 9u2, where γ is defined by

γ =
√

8778980525057 + 16793600(8
√
2 − √

127) − 550842155008
√
254

8192 (16 − √
254)

, (6)

and is such that γ ∈ (2.70712, 2.70713).

If p � 10, EN < 2.70713u + 9u2 is therefore a rigorous bound for the normwise
error of Algorithm 1. It should also be noticed that the second order term in the error
bound can be absorbed by the first order term, at the cost of a slight overestimation:
for example, for p � 24, we have 9u = 9 · 2−24 < 10−6 so that EN < 2.707131u.
The numerical examples listed in Table 2 show that the error bound of Theorem 2 is
sharp for the basic IEEE 754 formats (p = 24, 53, 113).

3.1 Preliminaries

The first step in the error analysis of Algorithm 1 is to reduce the input domain.
Since the function RN is symmetric with respect to zero, the signs of a and b are
not relevant and we can assume that both a and b are nonnegative. Swapping the
inputs a and b does not affect the relative error; moreover, if a = 0, then a simple
analysis, based on (3), leads to the upper bound 2u for EN, so we can assume that
0 < a � b. Finally, multiplying or dividing by two both a and b does not affect either
the relative error, and we can restrict the analysis to the case 1 � b < 2.

From the definition of the ufp function and this input range reduction, we know
that ufp

(

b2
) ∈ {1, 2}. Moreover, b is a floating-point number, so that 1 � b � 2−2u

and thus 1 � b2 � 4 − 4u. Since 4 − 4u is a floating-point number, and using the
monotonicity of the rounding function RN, we deduce that 1 � sb < 4. Using again
the monotonicity of RN, we also deduce that 0 < sa < 4. Hence 1 < sa + sb < 8,
which implies ufp(sa + sb) ∈ {1, 2, 4}.
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We now define δa , δb, δs , δR , and δI as follows:

sa = a2 + δau, |δa | � ufp
(

a2
)

,

sb = b2 + δbu, |δb| � ufp
(

b2),

s = sa + sb + δsu, |δs | � ufp
(

sa + sb
)

,

̂R = a

s
+ δRu, |δR | � ufp

(a

s

)

,

̂I = −
(

b

s
+ δI u

)

, |δI | � ufp

(

b

s

)

.

Let us also define δ = δa + δb + δs and ε = |δ|
a2+b2

, so that |δ|u and εu are the

absolute and relative errors, respectively, in the evaluation of a2 + b2. Since 0 < a �
b, ufp

(

b2
)

� 2 and ufp(sa + sb) � 4, we deduce that |δ| � 8. Moreover, it can be
deduced from (3) that ε � 2. (This bound on ε already appeared in [3, p. 1471].)

With these notations, we have

R − ̂R = a
s(a2+b2)

δu − δRu,

and since a similar expression holds for I − ̂I , we arrive at

E2
N

u2
=

(

a2 + b2
) (

δ2R + δ2I

)

− 2
δ(aδR + bδI )

a2 + b2 + δu
+

(

δ

a2 + b2 + δu

)2

.

Then, using the triangular inequality, we obtain

E2
N

u2
�

(

a2 + b2
)

(

ufp
(a

s

)2 + ufp

(

b

s

)2 )

+ 2
|δ|

(

ufp
( a
s

)

a + ufp
( b
s

)

b
)

a2 + b2 − |δ|u +
(

δ

a2 + b2 − |δ|u
)2

.

For p � 2, εu < 1 and we use the equality 1
a2+b2−|δ|u = 1

a2+b2

(

1 + ε
1−εu u

)

and the

inequality
(

1 + ε
1−εu u

)2
� 1 + 2ε

(1−εu)2
u to get

E2
N � f2(a, b)u2 + f3(a, b)u3, (7)

with

f2(a, b)=
(

a2 + b2
)

(

ufp
(a

s

)2 + ufp

(

b

s

)2)

+ 2
|δ|

(

ufp
( a
s

)

a + ufp
( b
s

)

b
)

a2 + b2
+

(

δ

a2 + b2

)2

(8)

and

f3(a, b) = 2
(

ufp
(a

s

)

a + ufp

(

b

s

)

b
) ε2

1 − εu
+ 2ε3

(1 − εu)2
.
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From (4), we have

ufp
(a

s

)

a + ufp

(

b

s

)

b � a2 + b2

s
� a2 + b2

a2 + b2 − |δ|u = 1

1 − εu
,

and since 0 � ε � 2, it follows that f3(a, b) � 2ε2(1+ε)

(1−εu)2
< 25 for p � 10. Moreover,

if f2 is upper bounded by κ , we can conclude from (7) that

EN �
√

κu + 25

2
√

κ
u2. (9)

3.2 Taking care of some corner cases

We can first roughly bound f2 using the inequality ufp(t) � |t |, valid for any real
t , which will allow us to conclude in some particular cases and to further reduce the
input domain. From (8) we have

f2(a, b) �
(

a2 + b2

a2 + b2 − |δ|u
)2

+ 2
|δ| (a2 + b2

)

(

a2 + b2
) (

a2 + b2 − |δ|u) +
(

δ

a2 + b2

)2

=
(

1 + ε + ε

1 − εu
u

)2

.

This last bound is increasing with respect to ε and u (i.e., decreasing with respect

to the precision p). Therefore, if ε � 1 +
√
2
2 + u, and as soon as p � 5, we have

f2(a, b) �
(

2 +
√
2
2 + 3u

)2 and, from (9),

EN �
(

2 +
√
2

2

)

u + 8u2. (10)

Below are five cases that lead to the inequality ε � 1 +
√
2
2 + u, so they can be

ignored in the following analysis.

• If a = b, then sa = sb and s = sa + sb so that δs = 0 and one can check
that ε � 1. In this case, the previous bound (10) holds and we can continue the
analysis assuming that

a < b. (11)

• If b = 1, then sb = b2 = 1 and δb = 0. Moreover, from (11) we have a < 1, so
that sa < 1, which implies ufp(1 + sa) = 1 and ε � 1. Again, the bound (10)
holds and we can continue the analysis assuming that 1 < b. In fact, since b is a
floating-point number, we can assume that

1 + 2u � b. (12)

• If a = 1, then δa = 0 and we can distinguish three cases. If ufp
(

b2
) = 1 then

ufp(1 + sb) = 2 and ε � 3
2 . If ufp

(

b2
) = 2 then either ufp(1 + sb) = 2 which

implies ε � 4
3 , or ufp(1 + sb) = 4 and then ε � 3

2 + u. In all these cases, (10)
holds, hence we can assume now that

a �= 1. (13)
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• If a2+b2 < ufp (sa + sb), then we have (sa +sb)−ufp(sa + sb) < (δa +δb)u �
(a2 + b2)u < ufp(sa + sb)u = 1

2ulp(sa + sb). Since ufp(sa + sb) is a floating-
point number, we can deduce that s = RN(sa + sb) = ufp(sa + sb) hence ε � 1
and (10) holds. In the following, we can then assume that

ufp(sa + sb) � a2 + b2. (14)

• One last case is when sa + sb �
√
2ufp(sa + sb). In this case, ε � 1 +

√
2
2 + u

and the previous bound (10) holds. Therefore, we now assume that

sa + sb <
√
2ufp(sa + sb). (15)

3.3 Overview of the case analysis

The analysis goes through the possible values of ufp(sa + sb), which are 1, 2, and 4. In
each case, we first deduce upper bounds for ufp

(

b2
)

, ufp
( a
s

)

, and ufp
( b
s

)

. This leads
to a new function g, which is greater than or equal to f2, and which depends on a
and b as well as on a third parameter, e, defined as the unique integer such that

ufp
(

a2
)

= 2−e.

The function g does not involve floating-point operations anymore and can be
seen as a continuous and differentiable function over real inputs. We then look for an
upper bound on this function over a restricted domain D containing all the floating-
point numbers we are interested in. For this latter step, we mainly use real analysis,
especially partial derivatives. In some cases, we can maximize with respect to a and
b at the same time. The last step is always to maximize with respect to e, using the
change of variable x = 2−e and considering x as a continuous variable.

The analysis is split into seven cases depending on the values of some ufp func-
tions involved in the definition (8) of f2. Note that, since a2 < 4, we have e � −1. In

each case but the last one, we end up with a bound smaller than or equal to
(

2+
√
2
2

)2

for f2, from which we conclude using (9) that EN �
(

2 +
√
2
2

)

u + 5u2. The last
case is similar although we have a slightly larger bound γ 2 + 20u for f2 (we have

2+
√
2
2 = 2.70710 . . ., while γ = 2.70712 . . .), which leads to EN � γ u + 9u2. The

table below summarizes the bounds in each case, under the assumptions (11) to (15).

ufp(sa + sb) ufp
(

b2
)

e ufp
( a
s

)

f2 EN

1 1 � 2 � 2− e
2 6.565 2.6u

4 2 = −1 � 1
4

(

2 +
√
2
2

)2 (

2 +
√
2
2

)

u + 5u2

� 0 � 2−2− e
2

( 7
4 +

√
2
2

)2 2.5u

2 1 � 1 � 2−1− e
2

( 7
4 +

√
3
2

)2 2.65u

= 0 � 1
4

( 5
2

)2 5
2u + 5u2

2 � 1 � 2− 3+e
2

(

2 +
√
2
2

)2 (

2 +
√
2
2

)

u + 5u2

� 2, even = 2−1− e
2 γ 2 + 20u γ u + 9u2
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We give all the details of the analysis of the first case. For the other cases, we only
give a sketch of the analysis, while deferring the details to Appendices A.2 to A.7.

3.4 Case ufp(sa + sb) = 1

In this case, we can deduce from (15) that 1 � sa + sb <
√
2. As a consequence, we

must have b <
√
2 (otherwise we would have sa + sb > 2), hence

ufp
(

b2
)

= 1.

Since sa <
√
2 − 1 < 1

2 and sa = RN
(

a2
)

, we have a2 < 1
2 , and

e � 2.

Moreover, we know from (12) that b � 1+2u so we have b2 � b(1+2u) � b+2u,
which is a floating-point number because ufp(b) = 1. Consequently sb � b+2u and
s � sa + sb − u � sa + b + u > b, hence b

s < 1, which implies

ufp

(

b

s

)

� 1

2
.

Finally, s = RN(sa + sb) � 1 so a
s � a < 2

1−e
2 and

ufp
(a

s

)

� 2− e
2 .

Therefore, using (8) we deduce in this case that f2(a, b) � g1(a, b, e), with

g1(a, b, e) :=
(

a2 + b2
)

(

2−e + 1

4

)

+ 2
(2 + 2−e)

(

2− e
2 a + b

2

)

a2 + b2
+

(

2 + 2−e

a2 + b2

)2

.

Let us now characterize explicitly the domain over which we will bound

g1(a, b, e). First, we know that 2− e
2 � a < 2

1−e
2 . Next, since sa + sb <

√
2 and

sa > 0, we have sb <
√
2, so that b2 <

√
2 + u and 1 < b <

√√
2 + u. Finally, we

have a2 + b2 � sa + ufp
(

a2
)

u + sb + ufp
(

b2
)

u <
√
2 + 5

4u, which concludes the
domain analysis: it suffices to look for an upper bound for g1 over the domain

D1 := {

(a, b, e) | 2− e
2 � a < 2

1−e
2 , 1 � b <

√√
2 + u, a2+b2 <

√
2+5

4
u, e � 2

}

.

We now compute the partial derivatives of g1 with respect to a and b,

∂g1
∂a

= 2a

(

2−e + 1

4

)

+ 2 + 2−e

a2 + b2
21−

e
2 − 4a

(

2 + 2−e
) (

2− e
2 a + b

2

)

(

a2 + b2
)2

− 4a

(

2 + 2−e
)2

(

a2 + b2
)3

,

∂g1
∂b

= 2b

(

2−e + 1

4

)

+ 2 + 2−e

a2 + b2
− 4b

(

2 + 2−e
) (

2− e
2 a + b

2

)

(

a2 + b2
)2

− 4b

(

2 + 2−e
)2

(

a2 + b2
)3

,

and the next step is to prove that they are both negative over the domain D1. Since
1
b

∂
∂b g1(a, b, e)− 1

a
∂
∂a g1(a, b, e) = 2+2−e

a2+b2

(

1
b − 1

a 2
1− e

2

)

< 0 over D1, it is sufficient



Numer Algor (2016) 73:735–760 747

to prove that ∂
∂a g1(a, b, e) < 0. Since 2a 2+2−e

a2+b2
> 0, we can rewrite this inequality

as
(

2−e + 1
4

)

(

a2 + b2
)

2 + 2−e
+ 2− e

2

a
< 2

2− e
2 a + b

2

a2 + b2
+ 2

2 + 2−e

(

a2 + b2
)2

.

This inequality follows from the following three relations:
(

2−e + 1
4

)

(

a2 + b2
)

2 + 2−e
+ 2− e

2

a
<

√
2 + 5

4u

4
+ 1 for (a, b, e) ∈ D1,

√
2 + 5

4u

4
+ 1 <

1√
2 + 5

4u
+ 4

(√
2 + 5

4u
)2

for p � 3,

1√
2 + 5

4u
+ 4

(√
2 + 5

4u
)2

< 2
2− e

2 a + b
2

a2 + b2
+ 2

2 + 2−e

(

a2 + b2
)2

for (a, b, e) ∈ D1.

Since both ∂g1
∂a and ∂g1

∂b are negative over D1, since (a, b, e) ∈ D1 implies

a � 2− e
2 and b � 1, and since (2− e

2 , 1, e) ∈ D1, we deduce that g1(a, b, e) �
g1(2− e

2 , 1, e) =: h1(x), with x = 2−e and

h1(x) = (x + 1)

(

x + 1

4

)

+ (x + 2)(2x + 1)

x + 1
+

(

x + 2

x + 1

)2

.

Since e � 2, we have 0 < x � 1
4 and

h′
1(x) = 8x4 + 37x3 + 63x2 + 43x + 1

4(x + 1)3
> 0.

Overall, we thus have f2(a, b) � g1(a, b, e) � h1(x) � h1
( 1
4

) = 6.565.

3.5 Case ufp(sa + sb) = 4

From (15) and (11), we know that 4 � sa+sb < 4
√
2 and sa < sb. As a consequence,

we have 2 < sb which implies 2 < b2, so that

ufp
(

b2
) = 2 and

√
2 < b � 2 − 2u.

Since 4 is a floating-point number, we have s = RN(sa + sb) � 4 and b
s � b

4 < 1
2

hence

ufp

(

b

s

)

� 1

4
.

In the same way, a
s � a

4 < 2− 3+e
2 so that

ufp
(a

s

)

� 2−2− e
2 .

We now distinguish two subcases, namely e = −1 and e � 0.
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3.5.1 Subcase e = −1

We have ufp
( a
s

)

� 2− 3
2 , hence ufp

( a
s

)

� 1
4 , thus we deduce from (8) that f2(a, b) �

g2(a, b) with

g2(a, b) := a2 + b2

8
+ 4(a + b)

a2 + b2
+

(

8

a2 + b2

)2

.

From (15), we know that sa + sb < 4
√
2, which implies a2 + b2 < 4

√
2 + 4u. The

domain of interest is then given by

D2 := {(a, b) | √
2 � a � b < 2, a2 + b2 < 4

√
2 + 4u}.

Computing the partial derivatives of g2 with respect to a and b, and proving that they
are both negative over the domain D2 (detailed computations are in Appendix A.2),

we end up with f2(a, b) � g2(
√
2,

√
2) = (

2 +
√
2
2

)2.

3.5.2 Subcase e � 0

Since |δ| � ufp
(

a2
)+ ufp

(

b2
)+ ufp(sa + sb) = 6+ 2−e and ufp

( a
s

)

� 2−2− e
2 , from

(8) we get f2(a, b) � g3(a, b, e) with

g3(a, b, e) := (a2 + b2)
(

2−e + 1
)

16
+ (6 + 2−e)(2− e

2 a + b)

2
(

a2 + b2
) +

(

6 + 2−e

a2 + b2

)2

.

From (14), a2 + b2 is lower bounded by 4, and we restrict the analysis of g3 to the
domain

D3 := {(a, b, e) | 2− e
2 � a � 2

1−e
2 ,

√
2 � b < 2, 4 � a2 + b2 < 4

√
2+ 4u, e � 0}.

First, it can be checked that the partial derivative of g3 with respect to b is negative
overD3 (details are inAppendix A.3). Since b �

√
4 − a2, and (a, b, e) ∈ D3 implies

(a,
√
4 − a2, e) ∈ D3, we deduce that g3(a, b, e) � g3(a,

√
4 − a2, e), where

g3(a,
√

4 − a2, e) = 2−e + 1

4
+ (6 + 2−e)(2− e

2 a + √
4 − a2)

8
+

(

6 + 2−e
)2

16
.

We then compute ∂
∂a g3(a,

√
4 − a2, e) = 6+2−e

8

(

2− e
2 − a√

4−a2

)

, which is nonneg-

ative because a2 � 2a2

1+2−e � 4·2−e

1+2−e . Since (2
1−e
2 ,

√
4 − 21−e, e) ∈ D3, we have

g3(a, b, e) � g3(2
1−e
2 ,

√
4 − 21−e, e) =: h3(x), with x = 2−e and

h3(x) = x + 1

4
+ (6 + x)(

√
2x + √

4 − 2x)

8
+ (6 + x)2

16
.
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Since

h′
3(x) = 1 + x

8

(

1 + √
2
)

+
√
4 − 2x

8
+ x + 6

8

(√
2 − 1√

4 − 2x

)

is positive for 0 < x � 1, we deduce f2(a, b) � h3(1) = ( 7
4 +

√
2
2

)2 = 6.037 . . ..

3.6 Case ufp(sa + sb) = 2

From (14) we have 2 � a2 + b2, and from (15) we have 2 � sa + sb < 2
√
2 hence

e � 0.

Since 2 is a floating-point number, we know that s � 2. Therefore a
s < 2− 1+e

2 , hence

ufp
(a

s

)

� 2−1− e
2 , (16)

and b
s < 1 so that

ufp

(

b

s

)

� 1

2
.

We handle separately the two possible values, 1 and 2, for ufp
(

b2
)

.

3.6.1 Subcase ufp
(

b2
) = 1

We distinguish the cases e � 1 and e = 0.

• Subsubcase e � 1: From (8) we have f2(a, b) � g4(a, b, e) with

g4(a, b, e) :=
(

a2 + b2
) (

2−e + 1
)

4
+

(

3 + 2−e
)

(

2− e
2 a + b

)

a2 + b2
+

(

3 + 2−e

a2 + b2

)2

.

From (14), we know that a2 + b2 is lower bounded by 2. On the other hand, we
have a2 + b2 � sa + sb + (

ufp
(

a2
) + ufp

(

b2
))

u < 2
√
2+ 2u and 1 < b <

√
2,

hence we can restrict the analysis to the domain

D4 := {(a, b, e) | 2− e
2 � a < 2

1−e
2 , 1 < b <

√
2, 2 � a2 + b2 < 2

√
2 + 2u, e � 1}.

We can first compute the partial derivative of g4 with respect to b and prove
it is negative over D4 for p � 4 (see the details in Appendix A.4). Since
(a,

√
2 − a2, e) is in D4, we deduce that g4(a, b, e) � g4(a,

√
2 − a2, e), and

we have

g4(a,
√

2 − a2, e) = 2−e + 1

2
+

(

3 + 2−e
)

(

2− e
2 a + √

2 − a2
)

2
+

(

3 + 2−e
)2

4
.
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Next, we can compute the derivative of g4(a,
√
2 − a2, e) with respect to a (see

Appendix A.4) and check that the maximum is attained at a0 = 2− e
2

√

2
1+2−e , so

that g4(a, b, e) � g4(a0,
√

2 − a20, e) =: h4(x) with

h4(x) = x + 1

2
+ 3 + x

2

(

x

√

2

1 + x
+

√

2 − 2x

1 + x

)

+ (3 + x)2

4
.

Since h′
4(x) > 0 for 0 < x � 1

2 , we conclude that f2(a, b) � g4(a, b, e) �
h4

( 1
2

) = ( 7
4 +

√
3
2

)2.
• Subsubcase e = 0: According to (13), we assume that 1 < a, so that ufp

(

b2
) =

ufp
(

a2
) = 1. It follows that s � sa+sb−2u � a2+b2−4u, hence a

s � a
a2+b2−4u

.
Since a and b are both floating-point numbers, and from (11), we know that
b � a + 2u so that b2 − 4u > a2. By computing its partial derivative, it can
then be checked that a

a2+b2−4u
is increasing with respect to a, which implies

a
s � b−2u

(b−2u)2+b2−4u
. This last expression is decreasing with respect to b, and

since b � 1 + 2u we deduce a
s � 1

2(1+2u2)
< 1

2 . Thus,

ufp
(a

s

)

� 1

4
.

In the same way, it can be derived from b
s � b

a2+b2−4u
that

ufp

(

b

s

)

� 1

4
.

Combining these bounds on ufp
( a
s

)

and ufp
( b
s

)

with (8) gives f2(a, b) �
g5(a, b), where

g5(a, b) := a2 + b2

8
+ 2 (a + b)

a2 + b2
+ 16

(

a2 + b2
)2

.

Hence it remains to bound g5(a, b) over the domain D5 defined by

D5 := {(a, b) | 1 � a � b <
√
2 and a2 + b2 < 2

√
2 + 2u}.

In this domain, we have ∂
∂b g5(a, b) < 0 (details are in Appendix A.5), so that

g5(a, b) � g5(a, a) = a2
4 + 4

a4
+ 2

a , which is maximal for a = 1. Therefore, we

deduce that f2(a, b) � g5(a, b) � g5(1, 1) =
(

5
2

)2
.

3.6.2 Subcase ufp
(

b2
) = 2

In this paragraph, a2 < 1 (otherwise we would have sa + sb � 2+ 1 while from (15)
we have sa + sb < 2

√
2), hence e � 1 . We split the inequality (16) into two possible
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cases. Either ufp
( a
s

)

< 2−1− e
2 which implies ufp

( a
s

)

� 2− 3+e
2 , or ufp

( a
s

) = 2−1− e
2

in which case e is even.

• Subsubcase ufp
( a
s

)

< 2−1− e
2 : We deduce from (8) and |δ| � 4 + 2−e that

f2(a, b) � g6(a, b, e) with

g6(a, b, e) :=
(

a2 + b2
) (

2−1−e + 1
)

4
+

(

4 + 2−e
)

(

2− 1+e
2 a + b

)

a2 + b2
+

(

4 + 2−e

a2 + b2

)2

.

We can compute the derivatives of g6 (details are provided in Appendix A.6)
with respect to a and b and prove that they are negative over the domain

D6 := {(a, b, e) | 2− e
2 � a < 2

1−e
2 ,

√
2 � b < 2,

2 � a2 + b2 < 2
√
2 + (

2 + 2−e) u, e � 1}.
For (a, b, e) ∈ D6, we deduce that g6(a, b, e) � g6(2− e

2 ,
√
2, e) =: h6(x) with

h6(x) = (x + 2)
( x
2 + 1

)

4
+

√
2 (4 + x)

( x
2 + 1

)

x + 2
+

(

4 + x

x + 2

)2

, x = 2−e.

We can maximize h6(x) for 0 < x � 1
2 , which leads to f2(a, b) � h6(0) =

(

2 +
√
2
2

)2.
• Subsubcase ufp

( a
s

) = 2−1− e
2 : In this case, e is even, hence e � 2. We have

f2(a, b) � g7(a, b, e) with

g7(a, b, e) :=
(

a2 + b2
) (

2−e + 1
)

4
+

(

4 + 2−e
)

(

2− e
2 a + b

)

a2 + b2
+

(

4 + 2−e

a2 + b2

)2

.

The lower bound 2− e
2 for a does not lead to a sufficiently tight bound for f2

in this case: to get a better bound, we exploit further the hypothesis ufp
( a
s

) =
2−1− e

2 . This gives s2−1− e
2 � a, which implies a2 −21+ e

2 a+b2 + δu � 0, hence

a � 2
e
2 −

√

2e − 2 + (4 + 2−e)u = a0 + η(u)

with

a0 = 2
e
2 − √

2e − 2, η(u) < 0, |η(u)| ∈ O(u).

Therefore, we analyze g7 over the domain

D7 := {(a, b, e) | a0 + η(u) � a < 2
1−e
2 ,

√
2 � b < 2,

2 � a2 + b2 < 2
√
2 + (

2 + 2−e) u, e � 2, e even}.
First, we can compute the partial derivative of g7 with respect to b and prove

(see Appendix A.7) that it is negative over the domain D7, hence we know that
g7(a, b, e) � g7(a,

√
2, e).

It can be checked that a0 + η(u) belongs to
[

2−1− e
2 , 2

1−e
2

]

and

that g7(a,
√
2, e) is decreasing with respect to a over

[

2−1− e
2 , 2

1−e
2

]

;
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see Appendix A.7. We then deduce that g7(a,
√
2, e) � g7(a0 + η(u),

√
2, e),

for any (a, b, e) ∈ D7.
Next, it can be proved that g7(a0+η(u),

√
2, e) � g7(a0,

√
2, e)+20u (again,

the details are provided in Appendix A.7). As a consequence, for any (a, b, e) ∈
D7 we have g7(a, b, e) � g7(a0,

√
2, e) + 20u.

The last step is to bound g7(a0,
√
2, e) for e an even positive integer. With

y = √
1 − 21−e, we have g7(a0,

√
2, e) =: h7(y) with h7(y) a rational function

in y. The variable y belongs to
[√

2/2, 1
]

, and h′
7(y) = P(y)

32 (y+1)2
with

P(y) = 3y7 + 11y6 − 5y5 − (12
√
2 + 85)y4 − (32

√
2 + 143)y3

− (23 − 8
√
2)y2 + (64

√
2 + 113)y + 36

√
2 + 33.

Using Descartes’ rule of signs, one can check that P has exactly one root in the

interval
[√

2/2, 1
]

, and since the evaluation of P is positive at
√
1 − 2−5 and

negative at
√
1 − 2−7, we deduce that h7 is increasing over

[√
2/2,

√
1 − 2−5

]

and decreasing over
[√

1 − 2−7, 1
]

. Comparing the values of h7 at the points√
1 − 2−5 and

√
1 − 2−7, we conclude that h7(

√
1 − 2−7) is an upper bound for

h7.
Finally, it can be checked that h7(

√
1 − 2−7) = γ 2 hence we get f2(a, b) �

γ 2 + 20u. From (9), we derive the final upper bound γ u + 9u2 for EN, which
concludes the proof of Theorem 2.

4 Implications for complex floating-point division

Let us conclude with some remarks about complex division. The conventional com-
plex division algorithm for computing an approximation ẑ = ̂R+ i ̂I of (a+ ib)/(c+
id) in floating-point arithmetic consists in evaluating the real part as

̂R = RN

(

RN(RN(ac) + RN(bd))

RN
(

RN
(

c2
) + RN

(

d2
))

)

(17)

and using a similar scheme for the imaginary part. An approximate quotient ẑ can
also be obtained by first computing an inverse of c + id using Algorithm 1, and then
multiplying it by a + ib by means of the classic complex multiplication algorithm.
Note that both algorithms require 3 additions/subtractions, 6 multiplications, and 2
divisions.

Normwise relative accuracy analyses of the method based on (17) can be found
in [4, 5] and [12]. To our knowledge, the best known upper bound for the normwise
relative error generated by this method is (3 + √

5)u + O
(

u2
) ≈ 5.2u: as noted

in [1], this bound can be derived from the bound
√
5u from [3] on the normwise

relative error for the classic complex multiplication algorithm. On the other hand,
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it can be checked using Theorem 2 and, again, the bound
√
5u from [3] that the

algorithm combining inversion and multiplication admits the smaller normwise error
bound (γ +√

5)u+O
(

u2
) ≈ 4.9u. The following examples of complex quotients in

precision p = 11 show that in both cases the largest normwise relative error cannot
be bounded by γ u + O

(

u2
) ≈ 2.7u as for inversion:

• with a + ib = 1575 + i 1419 and c + id = 1457 + i 1480, using (17) gives
|̂z − z|/(u|z|) = 4.67973 . . .;

• dividing 1506 + i 1512 by 1491 + i 1504 using the inversion-multiplication
approach leads to |̂z − z|/(u|z|) = 4.34446 . . .

However, these examples are not sufficient to conclude about the sharpness of the
bounds (3 + √

5)u + O
(

u2
)

and (γ + √
5)u + O

(

u2
)

, and further investigation is
needed to understand the accuracy of complex floating-point division.

Acknowledgments We thank the associate editor and the anonymous reviewers for their helpful
comments and suggestions.

Appendix

A Details omitted in the proofs

A.1 Asymptotic optimality of the componentwise error bound

We briefly detail the computations of sa , sb and s in the example parametrized by p
given in Section 2. We assume that p � 12 is even, and we recall that

a = 2
p
2 −1 + 5 · 2−2 + 2− p

2 +2,

b = 2p−1 + 2
p
2 −1 + 1.

• Computation of sa = RN
(

a2
)

:

a2 = 2p−2 + 5 · 2 p
2 −2 + 11 · 2−1 + 2−4 + 10 · 2− p

2 + 2−p+4

ulp
(

a2
)

= 2−1

s̃a := 2p−2 + 5 · 2 p
2 −2 + 11 · 2−1

|a2 − s̃a | = 2−4 + 10 · 2− p
2 + 24−p

� 2−4 + 10 · 2−6 + 2−8

< 2−2 = 1

2
ulp

(

a2
)

Hence sa = s̃a .
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• Computation of sb = RN
(

b2
)

:

b2 = 22p−2 + 2
3p
2 −1 + 2p + 2p−2 + 2

p
2 + 1

s̃b := 22p−2 + 2
3p
2 −1 + 3 · 2p−1

ulp
(

b2
)

= 2p−1

|b2 − s̃b| = 2p−2 − 2
p
2 − 1

< 2p−2 = 1

2
ulp

(

b2
)

Hence sb = s̃b.

• Computation of s = RN(sa + sb):

sa + sb = 22p−2 + 2
3p
2 −1 + 3 · 2p−1 + 2p−2 + 5 · 2 p

2 −2 + 11 · 2−1

s̃ = 22p−2 + 2
3p
2 −1 + 2p+1

ulp(sa + sb) = 2p−1

|sa + sb − s̃| = 2p−2 − 5 · 2 p
2 −2 − 11 · 2−1

< 2p−2 = 1

2
ulp(sa + sb)

Hence s = s̃.

A.2 Partial derivatives of g2

Computing the partial derivatives of g2 with respect to a and b gives

∂g2
∂a

= a

4
+ 4

a2 + b2
− 8a(a + b)

(

a2 + b2
)2

− 256a
(

a2 + b2
)3

,

∂g2
∂b

= b

4
+ 4

a2 + b2
− 8b(a + b)

(

a2 + b2
)2

− 256b
(

a2 + b2
)3

.

First, we know that b > a so 1
b

∂
∂b g2(a, b) < 1

a
∂
∂a g2(a, b). We just have to prove that

∂
∂a g2(a, b) < 0, that is,

(

a2 + b2
)2

4
+ 4

(

a2 + b2
)

a
< 8(a + b) + 256

a2 + b2
.

Since for (a, b) ∈ D2 we have
√
2 < a, b, and a2 + b2 < 4

√
2 + 4u, it is enough to

check that
(

4
√
2 + 4u

)2

4
+

4
(

4
√
2 + 4u

)

√
2

< 16
√
2 + 256

4
√
2 + 4u

,

which holds for p � 2.
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A.3 Partial derivative of g3

We compute the partial derivative of g3 with respect to b, and check that this
derivative is negative over the domain D3. We have

∂g3
∂b

= b
(

2−e + 1
)

8
+ 6 + 2−e

2
(

a2 + b2
) − b

(

6 + 2−e
) (

2− e
2 a + b

)

(

a2 + b2
)2

− 4b

(

6 + 2−e
)2

(

a2 + b2
)3

,

and we check that

b
(

2−e + 1
)

8
+ 6 + 2−e

2
(

a2 + b2
) < b

(

6 + 2−e
) (

2− e
2 a + b

)

(

a2 + b2
)2

+ 4b

(

6 + 2−e
)2

(

a2 + b2
)3

.

Multiplying both sides by (a2+b2)2

b(6+2−e)
and since 1 � b, it is enough to prove that

(

2−e + 1
) (

a2 + b2
)2

8
(

6 + 2−e
) + a2 + b2

2
< 2− e

2 a + b + 4
6 + 2−e

a2 + b2
.

This follows from the following sequence of three inequalities

(

2−e + 1
) (

a2 + b2
)2

8
(

6 + 2−e
) + a2 + b2

2
<

2
(

4
√
2 + 4u

)2

48
+ 4

√
2 + 4u

2
,

2
(

4
√
2 + 4u

)2

48
+ 4

√
2 + 4u

2
< 4

6

4
√
2 + 4u

+ 1 for p � 3,

4
6

4
√
2 + 4u

+ 1 < 4
6 + 2−e

a2 + b2
+ 2− e

2 a + b.

A.4 Partial derivatives of g4

The partial derivative of g4 with respect to b is given by

∂g4
∂b

= b
(

2−e + 1
)

2
+ 3 + 2−e

a2 + b2
− 2b

(

2− e
2 a + b

)

(

3 + 2−e
)

(

a2 + b2
)2

− 4b

(

3 + 2−e
)2

(

a2 + b2
)3

.

We want to prove that ∂
∂b g4(a, b, e) < 0 or, equivalently, that

(

a2 + b2
)2 (

2−e + 1
)

2
(

3 + 2−e
) + a2 + b2

b
< 2

(

2− e
2 a + b

)

+ 4
3 + 2−e

a2 + b2
.
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This inequality can be derived from the following ones:

(

a2 + b2
)2 (

2−e + 1
)

2
(

3 + 2−e
) + a2 + b2

b
<

2
(

2
√
2 + 2u

)2

6
+ 2

√
2 + 2u,

(

2
√
2 + 2u

)2

3
+ 2

√
2 + 2u < 2 + 12

2
√
2 + 2u

for p � 4,

2 + 12

2
√
2 + 2u

< 2
(

2− e
2 a + b

)

+ 4
3 + 2−e

a2 + b2
.

The partial derivative of g4(a,
√
2 − a2, e) with respect to a is

∂

∂a
g4(a,

√

2 − a2, e) = 3 + 2−e

2

(

2− e
2 − a√

2 − a2

)

,

which is zero if a = a0 with a0 = 2− e
2

√

2
1+2−e , positive if a < a0, and negative if

a > a0.

A.5 Partial derivative of g5

We have
∂g5
∂b

= b

4
+ 2

a2 + b2
− 4 (a + b)

(

a2 + b2
)2
b − 64

(

a2 + b2
)3
b,

and it can be checked that this partial derivative is negative using the following
inequalities:

(

a2 + b2
)2

4
+ 2

b

(

a2 + b2
)

<

(

2
√
2 + 2u

)2

4
+ 2

(

2
√
2 + 2u

)

,

(

2
√
2 + 2u

)2

4
+ 2

(

2
√
2 + 2u

)

< 8 + 64

2
√
2 + 2u

for p � 2,

8 + 64

2
√
2 + 2u

< 4 (a + b) + 64

a2 + b2
.

A.6 Partial derivatives of g6

The partial derivatives of g6 with respect to a and b are

∂g6
∂a

= a

4

(

2−e + 2
)+ 4 + 2−e

a2 + b2
2− 1+e

2 −2a

(

2− 1+e
2 a + b

)

(

4 + 2−e
)

(

a2 + b2
)2

−4a

(

4 + 2−e
)2

(

a2 + b2
)3

and

∂g6
∂b

= b

4

(

2−e + 2
) + 4 + 2−e

a2 + b2
− 2b

(

2− 1+e
2 a + b

)

(

4 + 2−e
)

(

a2 + b2
)2

− 4b

(

4 + 2−e
)2

(

a2 + b2
)3

.
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For (a, b, e) ∈ D6, it can be checked that ∂g6
∂a (a, b, e) < 0 and ∂g6

∂b (a, b, e) < 0 as

follows. Note first that 2− e
2 � a implies

4 + 2−e

a2 + b2
2− 1+e

2 � 4 + 2−e

√
2

(

a2 + b2
)a,

and that
√
2 � b implies

4 + 2−e

a2 + b2
� 4 + 2−e

√
2

(

a2 + b2
)b.

Thus, the same expression can be used as an upper bound for both 1
a

∂g6
∂a and 1

b
∂g6
∂b .

Then, multiplying it by (a2+b2)2

4+2−e , it is enough to prove that

(

a2 + b2
)2 (

2−1−e + 1
)

2
(

4 + 2−e
) + a2 + b2√

2
< 2

(

2− 1+e
2 a + b

)

+ 4
4 + 2−e

a2 + b2
.

This last inequality follows from the following three ones:

(

a2 + b2
)2 (

2−1−e + 1
)

2
(

4 + 2−e
) + a2 + b2√

2
<

(

2
√
2 +

(

2 + 1
2

)

u
)2 (

1
4 + 1

)

8
+2+ 2 + 1

2√
2

u,

(

2
√
2 +

(

2 + 1
2

)

u
)2 (

1
4 + 1

)

8
+ 2 + 2 + 1

2√
2

u < 2
√
2 + 16

2
√
2 +

(

2 + 1
2

)

u
for p � 2,

and

2
√
2 + 16

2
√
2 +

(

2 + 1
2

)

u
< 2

(

2− 1+e
2 a + b

)

+ 4
4 + 2−e

a2 + b2
.

A.7 Analysis of g7

In this section, we provide some details about the analysis of g7 that were omitted in
Section 3.6.2.

• Let us first maximize g7 with respect to b. We have

∂g7
∂b

= b
2

(

2−e + 1
) + 4+2−e

a2+b2
− 2b

(

2− e
2 a+b

)

(4+2−e)

(a2+b2)
2 − 4b (4+2−e)

2

(a2+b2)
3 .

We want to prove that ∂
∂b g7(a, b, e) < 0 over D7. Multiplying by (a2+b2)2

(4+2−e)b and

using the inequality 1
b < 1, we only need to prove that

(

a2 + b2
)2 (

2−e + 1
)

2
(

4 + 2−e
) + a2 + b2 < 2

(

2− e
2 a + b

)

+ 4
4 + 2−e

a2 + b2
.
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Since e � 2, we can derive this inequality for p � 2 from the three following ones
using the definition of D7:

(

a2 + b2
)2 (

2−e + 1
)

2
(

4 + 2−e
) + a2 + b2 <

(

2
√
2 +

(

2 + 1
4

)

u
)2 (

1
4 + 1

)

8
+ 2

√
2 +

(

2 + 1

4

)

u,

(

2
√
2 +

(

2 + 1
4

)

u
)2 (

1
4 + 1

)

8
+ 2

√
2 +

(

2 + 1

4

)

u < 2
√
2 + 16

2
√
2 +

(

2 + 1
4

)

u
,

and

2
√
2 + 16

2
√
2 +

(

2 + 1
4

)

u
< 2

(

2− e
2 a + b

)

+ 4
4 + 2−e

a2 + b2
.

Therefore, g7 is decreasing with respect to b, and for all (a, b, e) in D7, g7(a, b, e) �
g7(a,

√
2, e).

• We now maximize g7(a,
√
2, e) with respect to a. Let us recall that in D7,

a � a0 + η(u) = 2
e
2 −

√

2e − 2 + (4 + 2−e)u;
and prove that

a0 + η(u) � 2−1− e
2 .

Using the notation x = 2−e, the inequality a0 + η(u) � 2−1− e
2 is equivalent to

( 14 − u)x � −1 + 4u which holds for p � 2 since 1
4 − u � 0 � −1 + 4u.

Moreover, we have

(a2 + 2)2

a(4 + 2−e)

∂

∂a
g7(a,

√
2, e) = (2−e + 1)(a2 + 2)2

2(4 + 2−e)
+ 2− e

2

a
(a2 + 2)

− 2
(

2− e
2 a + √

2
)

− 4
4 + 2−e

a2 + 2
,

with (a2+2)2

a(4+2−e)
> 0 for a ∈ I := [

2−1− e
2 , 2

1−e
2

]

. For e � 2 and a ∈ I , we have

(a2 + 2)2

a(4 + 2−e)

∂

∂a
g7(a,

√
2, e) <

125

128
+ 5 − 2

√
2 − 32

5
< 0.

As a consequence, g7(a,
√
2, e) is decreasing with respect to a over I , and since

a0 + η(u) ∈ I , the maximum of g7(a,
√
2, e) for a ∈ [

a0 + η(u), 2
1−e
2

]

is g7(a0 +
η(u),

√
2, e).

Thus, for (a, b, e) in D7, we have g7(a, b, e) � g7(a,
√
2, e) � g7(a0 +

η(u),
√
2, e).

• Let us prove that g7(a0 + η(u),
√
2, e) � g7(a0,

√
2, e) + 20u. For this purpose,

we first show that |η(u)| < 2u. We have

|η(u)| =
√

2e − 2 + (4 + 2−e)u − √
2e − 2
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and a short calculation shows that |η(u)| < 2u. It can also be checked that a0 < 2
1−e
2

using again x = 2−e and a short calculation. Since e � 2, this implies a0 �
√
2
2 < 1.

Let us now consider

λ0(u) = 1

(a0 + η(u))2 + 2
.

We have

λ0(u) = 1

a20 + 2
− 2a0 + η(u)

(a20 + 2)((a0 + η(u))2 + 2)
η(u),

and using −2u < η(u) � 0, we deduce

λ0(u) <
1

a20 + 2
+ a0u.

Moreover, we have

λ0(u)2 =
(

1

a20 + 2

)2

− 4a0
(a20 + 2)2((a0 + η(u))2 + 2)

η(u)

+ (2a0 + η(u))2 − 2((a0 + η(u))2 + 2)

(a20 + 2)2((a0 + η(u))2 + 2)2
η(u)2,

and using both −2u < η(u) � 0 and a0 < 1, we also deduce

λ0(u)2 <

(

1

a20 + 2

)2

+ a0u.

From the definition of g7, using 0 < a0 + η(u) < a0 and the previous upper bounds
on λ0(u) and λ0(u)2, we obtain

g7(a0 + η(u),
√
2, e) <

(

a20 + 2
) (

2−e + 1
)

4
+ (

4 + 2−e)
(

2− e
2 a0 + √

2
)

(

1

a20 + 2
+ a0u

)

+ (4 + 2−e)2

(

1

(a20 + 2)2
+ a0u

)

,

and g7(a0+η(u),
√
2, e) < g7(a0,

√
2, e)+(4+2−e)

(

2− e
2 a0 + √

2 + 4 + 2−e
)

a0u.

The inequality g7(a0 + η(u),
√
2, e) < g7(a0,

√
2, e)+ 20u then follows from e � 2

and a0 �
√
2
2 .

• Finally, we check that the function h7 is increasing over
[√

2/2,
√
1 − 2−5

]

and

decreasing over
[√

1 − 2−7, 1
]

. We have h7(y) = H(y)
64(y+1) with

H(y) = y7 + 3y6 − 7y5 − (8
√
2 + 45)y4 − (16

√
2 + 53)y3

+ (64
√
2 + 113)y2 + (144

√
2 + 315)y + 72

√
2 + 249.
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Hence h′
7(y) = P(y)

32 (y+1)2
where P is the polynomial

P(y) = 3y7 + 11y6 − 5y5 − (12
√
2 + 85)y4 − (32

√
2 + 143)y3

− (23 − 8
√
2)y2 + (64

√
2 + 113)y + 36

√
2 + 33.

This polynomial has 0 or 2 positive roots according to Descartes’ rule of signs (there
are two sign changes in the sequence of coefficients). Moreover,

P(y + 1) = 3y7 + 32y6 + 124y5 + (160 − 12
√
2)y4 − (208 + 80

√
2)y3

− (784 + 160
√
2)y2 − (640 + 64

√
2)y − 96 + 64

√
2,

with only one sign change, so there is exactly one root of P greater than 1 and at

most one root of P in
[√

2/2, 1
]

. Since P(
√
1 − 2−5) > 0 and P(

√
1 − 2−7) <

0, we deduce that P(y) is positive for y ∈
[√

2/2,
√
1 − 2−5

]

, and negative for

y ∈
[√

1 − 2−7, 1
]

, which implies that h7 is increasing over the former interval, and

decreasing over the latter.
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