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form which enables application of an efficient block matrix preconditioner that pre-
viously has been applied to solve complex-valued systems in real arithmetic. Under
certain assumptions the condition number of the so preconditioned matrix is bounded
by 2. The numerical and computational efficiency of the method in terms of number
of iterations and elapsed time is favourably compared with other published methods.
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1 Introduction

The numerical solution of partial differential equations (PDEs) leads normally to
algebraic problems of large dimensions, for which iterative solution methods are most
efficient. In distributed optimal control problems, additional variables, the control
function and the Lagrangian multiplier, appear on the scene thereby increasing the
dimensions of the problem even further. Thus, a crucial task is to construct an effi-
cient preconditioner that gives close eigenvalue bounds of the preconditioned matrix.
The contemporary scientific literature of preconditioning optimal control systems
describes various methods for constructing efficient preconditioners, including oper-
ator preconditioning using special norms [19], and the classical Schur complement
approximation [14-16]. In addition to those, in this paper we use a strategy based on
a particular matrix structure, used earlier in different contexts, [1-3, 7].

The paper has the following structure. In Section 2 we present our method and
derive its properties. In Section 3 we outline the formulation of control problems,
constrained by PDEs. Here we consider optimal control of processes governed by
scalar equations, namely, by the Poisson equation and by the convection-diffusion
equation. In Section 4 we describe various preconditioning techniques and solution
approaches for the considered problems that have already been published, as well as
how our method is applicable in the context of PDE-constrained optimization prob-
lems. Finally, in Section 5 we present numerical results on the experiments followed
by some concluding remarks. We provide performance comparison of the various
preconditioning strategies considered here for our test problems: for the Poisson case,
we consider the optimal control of the heat flow. In case of the optimal control of the
convection-diffusion control problem, we consider the objective function as in the
case of the Poisson control problem. Both these examples are also dealt with in [16].

2 A preconditioner for two-by-two block matrices of a special form

Consider two-by-two block matrices in the form

A —sz} _ 0

JZ{=|:LIBI A

where A, B;,i = 1, 2 are square matrices. We assume that A is positive semidefinite
and a and b are nonzero scalars that have the same sign. Note, that in this section A,
B, of and Z denote generic matrices, not related to any particular application.
B>

B —cA
transformed to the form (1) by scaling and transformation of the variables in the
system to be solved. In many applications B, = BlT .

Such matrices arise in various applications such as when solving complex-valued
systems (see, e. g. [2, 3] and the references therein), in some approximations of

A matrix in a similar form, such as , where ¢ > 0, can readily be
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matrices arising in discrete phase-field models (see e.g. [1, 7]) and, as shown
below, also when solving certain optimal control problems. We analyze an efficient
non-symmetric preconditioner for <7, blue namely,

_ [A —bB; j| )
" | aBy A+ Vab(B; + B>) | @

It turns out that the solution of systems with % only involves solutions of systems
with the matrices H; = oA + \/CEB,’, i = 1,2 at each iteration. Here « > 0 is a
method parameter.

We show that the eigenvalues of the correspondingly preconditioned matrix
B~ Lo/ are real and positive, and are contained in the interval % < Amin < A <
Amax < 1. We also show that under certain conditions the lower bound can be further
improved by a proper choice of the method parameter . The preconditioner is then
applied in the context of some optimal control problems.

We present below some properties of % and the preconditioned matrix 2~ !.o7.

2.1 Efficient implementation of the preconditioner %

As has been shown in earlier papers (e.g. [1, 3]), the inverse of the matrix % has the
form shown in Proposition 1 and the following result holds.

Proposition 1 Consider a matrix 2 of the form (2). Let H; = A+ +/ab B;, i = 1,2
be nonsingular. Then

H' 4+ H = mtanrt b (1 By A) B

SN (1-anrt) Hy'AH]!

Proof The validity of this expression can easily be established by a matrix multipli-
cation BB = 1. O

It follows that the solution of a system A [ ; ] = |:£1 i| can be readily performed.
2

Proposition 2 Assume that A 4+ ~/abB;,i = 1,2 are nonsingular. Then £ is
nonsingular and a linear system with the preconditioner %,

Loty 4 v+ 5 ] v ] = [
aBy A++abBi+By) ||y | | £

can be solved with only one solution with A + «~/abB1 and one with A + «/abB;.
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Proof 1t follows from Proposition 1 that an action of the inverse of % can be written
in the form

x] _[4 —bB, ey

y| | aBy A+ Vab(B; + By) f,

-1 -1 —14g-1 b -1 -1

O H = H AR 2 (- B A) H'E
—1 -1 -1 —1

—JiH " (1= AHT ) £+ H AHT '

H{1f1+g—H51Ag

| e+ feH A

[ g+ Hy'(f1 - Ag) g+h
I —\/%Hz_l(fl — Ag) —/4h

where

_ b _
g=H, ! (f1+\/;fz>, h=H, Lt — Ag).

The computation can take place using the following algorithm.

Algorithm 1 Solving the factorized operator

Solve Hyg = f; + @fz.
: Compute Ag and f; — Ag.
: Solve Hoh =f] — Ag.

: Computex=g+h andy = — /7h.

-lkwl\):—.‘

2.2 Spectral properties of 1A

Consider the generalized eigenvalue problem

x%m = ﬂ[’y‘] X[l + Iyl 0.

We study first the case where A is symmetric, B = BT, B, = B and A and B + BT
are positive semidefinite or A is positive definite. This case has been already analyzed
and tested in earlier research and applied to problems of different origin, see [1-3,
7]. For completeness, we include here the related, but somewhat extended theoretical
results.
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2.2.1 The symmetric case: A is positive semidefinite, By = BIT

Assume that B + BT is positive semidefinite and
ker(A) N ker(B) = {0}. 3)

Note that if Bx = 0, x # 0, then XT(B + BT)x = 0 and since B + BT is positive
semidefinite, (B + BT)x = 0 and therefore also B’x = 0. Then it follows that
A+ /abB and A + \/EBT, and hence also &, since B! only involves inverses
of those matrices, are nonsingular. We show first that then .o is also nonsingular.

Proposition 3 Let condition (3) hold and let also a, b € R be nonzero scalars with

the same sign. Then <7 is nonsingular.

Proof 1f
X A —bBT[x 0
ABl=la )= @

x*Ax — bx*BTy = 0,
ay*Bx +y*Ay =0

then

S0, %X*AX + clly*Ay = 0. Since A is positive semidefinite, it follows that x and y €
ker A . But it follows then from (4) that BTy = 0 and Bx = 0, implying by (3) that

o |:;:| = [ g:| has only the trivial solution. [

A —bBT

Proposition 4 Let of = [a ] , where a, b are nonzero and have the

A —bBT
aB A+ ab (B + BT)
eigenvalues of BVt are contained in the interval [%, 1].

same sign and let B = |: ] . If condition (3) holds then the

Proof For the generalized eigenvalue problem

y y
it follows from Proposition 3 that A # 0. It holds

G- )=l o]

Here A = 1 ify € ker(B + BT). If A # 1, then Ax = bB”y and

1 ["] — o H Ix]l 4+ 1yl # 0

1
(X - 1) (y*Ay + ay*Bx) = vVaby*(B + B )y,
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1.€e.,

1
(X - 1) (y*Ay + %x*Ax) = aby*(B+ BT)y.

Since both A and B + BT are positive semidefinite, it follows that A < 1.
Further, as Ax = bBTy it holds that y* Ax = by*B”y so

1
(X - 1) (by*BTy + ax*Bx) = vabx*(B + B)y

or

G - 1) (by*(B + BT)y + ax*(B + BT)x) = 2v/abx*(B + BT)y.

Using that B 4+ BT is positive semidefinite, ||x|| 4+ |ly|l # 0, a and b have the same
sign, and A < 1, it follows from Cauchy—Schwarz inequality that

1 | < 2ab | x*(B + BT)y |
A “|b|y*(B+Bl)y+ |a|x*(B+BT)x =
thatis, A > 1. O

2.2.2 A is positive definite

We assume now that A is positive definite and consider the parameter dependent

preconditioner
B — A —bB,
“ " | aB; a?A +avab (B, + By) |°

We let the parameter « be larger or equal to 1. The generalized eigenvalue problem
takes here form

N A —bB, x| |A —bB X
aBy a®?A+avab(Bi+By) ||y| |aB1 A vy

~ —1/2
Let B; = ~/ab Ail/zBiAfl/z, i = 1, 2. By a transformation with [A 0 A—Ol/z]

from both sides, the eigenvalue problem takes the form
R L
\/%Bl o1 + a(B; + By) \/%Bl I

y y
where X = A!/2x,§ = A1/2y. It follows that A = 1 if [(>— 1) + (B} + B»)]y = 0,
in particular if y = 0, x # 0.

IfA # 1, then X = @Eﬁ and
A |:§1§2 +al + Ot(El + §2):|i =+ §1§2)3;

We let now B; = BT, B, = B and assume that B + BT is positive semidefinite.
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Then

s [BTB+a21+a(B+BT)]i=§*(1+BTB)§ (5)
where B = Vab A7'2BA~1/2 Since the matrices within brackets in (5) are
symmetrlc and positive definite the elgenvalues are real and pos1t1ve

Let ¥ be an eigenvector of B i.e. By = uy,y # 0. Since ¥ *BT = my*, where @
is the complex conjugate of w, it follows from (5) that

L+ |uf?

A=A = .
)= 2 IulP + 2aRe(o)

Hence, since Re(u) < |ul,
L+ ul

T (et uh?
An elementary computation shows that

min A >
© 1+ a2

and is taken for || = é For a fixed value of «, the function A(u) varies as shown in
Fig. 1, where A = 1/a? for || = 0 and |p| =
If Re(t) > 0, for not too large values of || < pg, namely if
(14 ) < o® + | +2a Re(w),
that is,

o
Il < 1§ = ——— Re(u), ©)

then 1/a? is also an upper bound for all values of u satisfying (6). The condition
number as a function of « is then bounded by

1 1
K( By ) < (1 +a®)=1+—.
(04 o

We have thus proved the following proposition.

1/a po |ul

Fig. 1 Function A(u) for a fixed value of ¢ > 1
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Proposition S Assume that A is positive definite and B + BT are positive semidefi-
nite and let  be an eigenvalue of B = ~/ab A~'/2BA~1/2,

Ifao > 1land |pn* < a%ilRe(u) then k(B ') <1+ a—lz

If a = 1 the bound K(%;lﬁf) < 2 holds for all values of |11|.

Remark 1 If o« = 2, Re() > |,u| and |u| < 14 =1, thenx(@lx_ld) <

1+ a_12 = 1.25. For still larger values of « the condltlon number decreases even
further if || is correspondingly bounded.

Corollary 1 If B is symmetric and positive definite and pimax = 2 —» that is, @ =

1 [1
Appr = —— + + 1, then
opt Mmax /‘ernax

K (B ) =1+

L +1)

Mmax Mmax

If max = 1 then appr = 1 + 2 and k(B o) = 1 + —-—= ~ 1.17.

(ﬁrl)2

I 0
We note that by a matrix multiplication with |: 01 I:| from both sides, the
o

preconditioner

A —bB)
aB; o?A+av ab (B1 + By)

is transformed to the matrix 4 as in (2), where a =
can be solved as described in Algorithm 1.

l&, b=Lphand systems with it
o o

2.3 Convergence of the iterative solution method

We show next that even though 4 is non-symmetric, the preconditioned matrix
P~ o/ is normal.

The preconditioned system with the matrix .7# = %~ .o/ is solved by the GMRES
method or its flexible form, FGMRES. At each iteration, the GMRES method min-
imizes the Euclidean norm of the residual vector r¥ = b — #x* with respect to
vectors X € x0 + span{r°, L%”Zro, e jfk_lro} where 0 = b — #x? is the ini-
tial residual. This means that r* = = P (¢ )r for some polynomial Py (-) of degree k,
normalized as P;(0) = 1. Hence, if .77 has a complete eigenvector space {v;}" =1
then r = > j=19jVj and v; are linearly independent, and the rate of conver-
gence is determined by a best polynomial approximation on the set of eigenvalues
{)‘/}?zl of 7 and min(pyymax;}| Pr(A)| gives an upper bound of the rate of
convergence. Since the property of complete eigenvalue space is equivalent to nor-
mality of the matrix, it is important that .7 is normal. More generally, however, if
ey, = {V;"}, m < n and V,, contains all linearly independent vectors, then the
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polynomial bound still holds. In this case, however, rounding errors occurring in the
method may cause that residual components outside V,,, arise and convergence may
slow down. As has been shown in [9], if the set of eigenvectors is incomplete, any
slow rate of convergence can be obtained for proper vectors r and one can in general
not judge the rate of convergence on polynomial approximation properties on the set
of eigenvalues. To show that .7# is normal, we use the splitting

A =P ‘/_[OB +BJ

We assume that B; = B and B, = B . Then, using the explicit expression of !,

we obtain
a1, |10 _ 0cC
H =B sz_|:01 0E |’

where C = \/% (1~ Hy ' A) B\ (By + By) and E = VabH; ' AH; (B + By).
Here E can be symmetrized by the similarity transformation

A" HyEH;'A? = VabATH\(B, + By H; ' A,
Further, since HjA~'H, = (A + «/abB) A (A + «/abBT) — A+ Jab(B +

1
BT) +abBA~'BT it follows that E has eigenvalues in the interval [0, 5] Hence,

- 1
I = |:I S E:| has eigenvalues in the interval [5, 1:|. To find its eigenvectors,

01
consider
o]
0lI—-E y
Here . = 1ifx #0,y =0andx = 0, Ey = 0, y # 0, if such vectors y exist.
For A # 1, it holds that Ey = (1 — Ay and x = 11 Cy. Since E has a complete

eigenvector space, so has 7. As in this case .7 is normal and all its eigenvalues are
real and positive, 5 is positive definite.

3 Control problems constrained by PDEs
The general form of a distributed control problem consists of a cost functional of the

form (7) to be minimized subject to a partial differential equation posed on a domain
QCRd=123:

1 1
) 2
min Fu) = EH)’ )’||L2(sz) + E'BH’”Lz(Q)
such that Z(y) = u,
9y @)
y=gpon aQp, 5, =8non 0Qy,

IR =0Qp  UIQy,  9QpNIQy = {A).

Here £ is some scalar or vector partial differential operator, y is the state function,
u is the distributed control function, y is the target (desired) solution we want to
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approach, 8 > 0 is the regularization parameter (also called the cost parameter)
which in practice is usually chosen to be small. The PDE-constraint that models the
underlying process that needs to be controlled, is referred to as the state equation.

One way to solve the minimization problem is through the first order optimality
conditions, also known as the Karush-Kuhn-Tucker (KKT) conditions. This results
in the involvement of another function, the Lagrange multiplier A (also referred as
the dual variable or adjoint state). The existence and the uniqueness of the optimal
solution is not discussed here and the reader is referred to [11, 13, 18].

We consider the optimal control of processes governed by two types of scalar
PDE’s:

Problem (1): the optimal control of processes governed by the Poisson equation,
Problem (2): the optimal control of processes governed by the convection-
diffusion equation.

Each control problem is stated as a continuous minimization problem which then
is dealt with in two steps: optimization and discretization. An important issue, related
to the order in which the two steps are carried out, can have consequences on the
resulting algebraic system and well as its solution. Therefore, which step is taken first
is determined by the following two philosophies:

— the optimize-then-discretize philosophy,
— the discretize-then-optimize philosophy.

In cases where the underlying PDE is self-adjoint, it does not matter which phi-
losophy is followed. The Poisson equation is an example of a self-adjoint PDE. The
convection-diffusion equation, however, is not self-adjoint due to the presence of
additional terms resulting from stabilization schemes such as the streamline upwind
Petrov-Galerkin stabilization (SUPG).

We describe next the basic mathematical framework for our optimal control prob-
lems. Let 2 be a bounded domain in R?, d = 1,2 or 3 and let 92 be its boundary
which is assumed to be sufficiently smooth. Let L2(2) and HY(Q) denote the stan-
dard Lebesgue and Hilbert spaces of functions defined on 2. We introduce another
Hilbert space, namely HOl (£2), to incorporate functions with homogeneous Dirich-
let boundary values at d€2. Further, let (-, -) and || - || denote the inner product and
norm in L%(Q), respectively, both for scalar and vector functions. Extending [19],
and based on [13], we consider now two optimal control problems.

3.1 The control problem constrained by the Poisson equation

Problem 1 Find the state y € H(} (2) and the control u € L%(S2) that minimize the
cost functional

: 1 ~2 1 2
r;l,ll? /()’714) = _”y —Y||L2(Q) + E;BHMHLZ(Q)

2
—Ay =u in Q
y=g on 92. 8)
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where ¥ € L?() is a given target state, 8 > 0 is chosen a priori and is sufficiently
small to obtain a solution close to the target state but not too small and also not too
large as this leads to ill-conditioning. The forcing term g” y||? acts as a control of
the solution to the state equation. By including the control in the cost functional, the
problem becomes well-posed.

Using the standard Galerkin finite element method (FEM) and introducing the
adjoint variable A € H(% (£2) corresponding to the PDE-constraint via the first order
optimality conditions and within the framework of either optimize-then-discretize or
discretize-then optimize, we obtain the symmetric linear system

M 0 KT y b
0 BM —M ||u|=]0]. )
K -M 0 A d

Here, M is the standard mass matrix, K is the standard stiffness matrix, b contains
the discretized terms of the target state and d contains the boundary terms. Details of
the derivation of the optimality system (9) can be found in [14-16, 19].

Note that if we discretize the state, the control and the adjoint state using the same
finite element basis functions, we can reduce the system using the relation

1
u= —A,
B
resulting in
M KT ]
b
1 Y=
K ——-M [x} [d]' (10)
g
By scaling A we can rewrite (10) in the (non-symmetric) form
M-BKT[ v 1_[b»
EHIENEH b

and then can directly apply the preconditioner from Section 2.
3.2 The control problem constrained by the convection-diffusion equation

Problem 2 Find the state y € H(} () and the control u € L?($2) that minimize the
cost functional

. 1 ~2 1 2
min 7 (v, ) = 5 ly = Tjaqy + 5800072,
st.—eAy+WwW-V)y=u inQ (12)
y=g ond<,

where w is some vector field (for instance, direction of the wind) and g is the Dirichlet
boundary data. Further, we assume that w is divergence free, i.e., V - w = 0. The
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scalar quantity ¢ (for instance, viscosity) satisfies 0 < ¢ <« 1 and the smaller the
value it takes, the more convection-dominated the problem becomes.

As already mentioned, Problem 2 requires some stabilization and the type of that
stabilization may lead to differences in the arising linear systems in the ’optimize-
then-discretize’ or ’discretize-then-optimize’ case. A detailed analysis of the SUPG
scheme applied to the optimal control of convection-diffusion equation is found in
[10]. There, the following main issues are raised.

—  The optimize-then-discretize philosophy leads to a strongly consistent but non-
symmetric system. The non-symmetry implies that there is no finite dimensional
problem for which the discretized system is an optimality system.

— The discretize-then-optimize philosophy leads to an inconsistent but symmetric
system.

These issues are addressed in [6] by using the so-called local projection stabilization
(LPS) scheme. This scheme leads to a symmetric optimality system with an optimal
convergence order. While commenting on the issues raised in [10] on the SUPG
scheme, in [15], using the LPS scheme proposed in [6], a symmetric and consistent
optimality system with both the optimize-then discretize and discretize-then optimize
approaches, is presented.

We employ LPS by introducing a projection operator 7 as discussed in [6, 15].
We use a standard Galerkin finite element method and introduce the adjoint variable
A€ HOl (£2) corresponding to the PDE-constraint via first order optimality conditions.
Within the framework of either optimize-then-discretize or discretize-then optimize,
we obtain

M 0 FT y b
0 BM —M |{u|=|0]. (13)
F —M 0 A d

Here M is the mass matrix, /' = ¢ K + N+ T, where K is the stiffness matrix defined
before and

N = /(WV(ﬁj).(ﬁ,’, i,j=1,..,n
Q

T = S/Q(w~ Vi —tp(W- Vi) X (W-Vo; — 1 (w-Vej))), i,j=1,..n.

Here m;, is a local L,-orthogonal projection operator, T : L2(2) — Vap,, where Vo,
is the set of basis functions on the coarser mesh. The stabilization parameter § is
defined locally on individual elements (cells Q';L) and depends on the Peclet number

i _ Wl
8 - 9
&

hy is the maximal diameter of the corresponding cell. Following [6], the stabilization
parameter is applied only if Pak is larger than unity, i.e.,
h
=1 Iwl’ .
0, otherwise.

if Pk > 1, (14)
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For details on the derivation on the optimality system (13) using either discretize-
then-optimize or optimize-then-discretize, see [15].

1
Using the relation u = —A and scaling A, again we can rewrite (13) in the form

E RN

and directly apply the preconditioner from Section 2.

4 Preconditioners for PDE-constrained optimization problems

We first briefly describe some previously used preconditioning techniques. The
notations used to name the preconditioners are as follows. The preconditioners for
Problem (1) are denoted by 2 and those for Problem 2 - by .

4.1 Preconditioners for the distributed optimal control problem constrained by
the Poisson equation

Recall that numerically tackling the distributed Poisson control problem leads to an
optimality system

M 0 KT
dgp =10 BM —M (15)
K —-M O
with its reduced form given by
M KT
= 1
IR K _EM . (16)

Extending the work in [16], a Schur complement approximation is derived in [14]
that is independent of the mesh size parameter /# and the regularization parameter
B. This Schur complement approximation is then used for constructing the block-
diagonal and the block lower-triangular preconditioner for preconditioning the saddle
point system (15). The reduced version of this preconditioner can be applied to the
reduced optimality system (16).

For operator preconditioning technique based on standard and non-standard
norms, see [19] and [12]. Operator preconditioning using interpolation opera-
tor, see [20] and [12], are other methods to solve the reduced optimality system
(16). All these methods lead to preconditioners that exhibit 4- and B-independent
convergence.
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We now present a basic overview of some of the preconditioners developed using
the approaches discussed above.

4.1.1 Operator preconditioning with standard norms

For the reduced optimality system (16), cf. [12, 20], operator preconditioning with
standard norms results in a symmetric positive definite block-diagonal preconditioner

—~ [ M+ BK 0
@m_[ 0 M+ﬂK]' (17)

4.1.2 Operator preconditioning with non-standard norms

Operator preconditioning with non-standard norms results in a symmetric positive
definite block-diagonal preconditioner

M + /BK 0

<@nsnz 0 é(M‘i‘\/EK) s

(18)

again for the reduced optimality system (16). This preconditioner is robust with
respect to the underlying parameters, i.e., & and .

Using a more direct derivation than in [19], we show here that the bound on the
condition number of the square of the matrix is given by

((Zaren)) <2

Let¥ = 2. /g and M = (M +/BK)~' M. Since K = %(M—F\/FK—M),
ie,(M+BK) 'K = %(1 — M), it holds
M L(1 — M)
G = VB
VBUI — M) -M
Hence,
g _[MP+aA-? 0
0 M2+ —M)? |

~ 1
that is, ¢ is an orthogonal matrix. Moreover, since 0 < M < I, it holds 5] <
M? + I — 1l71)2 < I. Hence, the condition number of 42 is bounded by 2, i.e.

1 1
k(9?) < 2, while ¢ has eigenvalues in the intervals <—1, ——) U (—, 1). The
V2 V2
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number of iterations for the matrix ¢ is less than twice those required for a matrix
with condition number 2 but still more than the iterations needed for the method in
Section 2.

4.1.3 Interpolation-based operator preconditioning

Scaling the reduced optimality system (16), we have

y b
=y M JBK
7 |1]=| Lol Lal (19)
A VBK —M —A —d
VB VB
The ideal preconditioners for the above system are
M 0 _[M+BkM~IK 0O
%_[o M—i—,BKM—lK} and '921_[ 0 M:|'
Define &2 = [Py, P1]1/2, namely,
B _[M. M+ BKMT'K]1) 0
P =[P, 91]1/2—[ 0 (M +BKM-'K, M1,z |

(20)
Here we follow the notations from [19], [T, Rls = TV>(T~12RT=1/20T1/2 for
some spd matrices T, R, and 6 € [0, 1].
Further, it can be observed, c.f. [19], that [M, ,BKM_1 Klip= /BK . The above
relations lead to the following preconditioner

—~ [ M+ BK 0
%/2_[ 0 M+ﬁK:|’ @D

cf. [12, 20]. This preconditioner is equivalent to the preconditioner (18) obtained
using standard norms.

4.1.4 Schur complement approximation

In [14, 16], for the saddle point system (15), the following preconditioners are
proposed,

- M 00
Ppa, =0 BM O (22)
0 0 S
and
N M 0 0
Poi=10 BM 0 (23)
K —M —-S

where M is an approximation of the mass matrix M (via 20 Chebyshev iterations,
see [14]) and S is the Schur complement approximation.
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The Schur complement approximation proposed in [16] is
Si=KM 'Kk (24)

and it is shown that the eigenvalues of :S'\f 1S are bounded as
ARIE [1ch4 +Lies 1]
: p B

where ¢ and C are real positive constants independent of the mesh size 4. Clearly, this
approximation suffers from convergence rate deterioration as 8 becomes smaller. In
order to remedy this, an improvement to the approximation of S is proposed in [14],
namely,

N 1 1
S=(K+—=M)M! (K —M). 25
: ( t7F ) T 7E 2

The approximation S5 has been proved to be both /- and S-independent, satisfying
ACRIE Ly
2 2’ :

~ 1 1
This follows easily since Sy = S + ﬁ(l( +KT), where S = KM~'K + EM. The

latter implies that

~ ~ 1 1 ~ ~ 1
M7V2M™ V2 =K 4 — 1+ —(K +1) and M~YV2sM™12 = K* + —1,
B VB B
where K = M~1/2Kk M~1/2,
For the reduced optimality system (16) the proposed preconditioner reads

o~

Py = M | 0,1 ! . (26)
[0 () s o)

4.2 Preconditioners for the distributed optimal control problem constrained by
the convection-diffusion equation

Following the discussion in [15], we consider in this paper only stabilization via LPS,
as it results in optimality systems that have the same structure whether optimize-
then-discretize or discretize-then-optimize is used. The resulting ( non-compressed)
system becomes

y M 0 FT y b
drplul=|0 BM —M ul=1{0]. 27)
A F —-M O A d

The reduced optimality system for the problem is
v M FT y b
= 1 =
al3]=] s | B=1] <28>
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We now present an overview of different preconditioners available in literature for
solving the saddle point systems (27) and (28).

4.2.1 (Negative) Schur complement approximation

In [15], to solve for the saddle point system (27), the following preconditioners are
proposed,

_ M 00
Ppa, =10 BM O (29)
0o 0 S
and
B M 0 0
Pou=|0 BM 0_ (30)
F —-M —-S

where M is the approximation of the mass matrix and S = (F + «/LBM YM~Y(F +

JLBM ) is the Schur complement approximation. The approximation S is based on the

extension of results proved in [14] with the spectral bound given by

A (§—1S) c B 1] G1)

For the reduced optimality system (28), the block-diagonal preconditioner reads as
follows, cf. [15],

o~

Gu=| M (2)
o (s (o)

4.2.2 Operator preconditioning with non-standard norms

Following the ideas from [19] as in (18), using non-standard norms we test also

M + /BF

,@nsnz 0 %(M-F\/EF)

(33)

4.3 The preconditioner from Section 2

We define our preconditioner, described in Section 2, in the current context of PDE-
constrained optimization problems.
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~ [M —BFT
'@F_[F M+\/E(F+FT)] Y

4.4 Block-diagonal and block counter-diagonal preconditioners involving only
the mass matrix

All preconditioners presented so far involve both matrices M and K or M and
F. With the aim of obtaining a cheaper preconditioner one can use a block-

diagonal or block counter-diagonal preconditioner, such as &p = |:M 0 ] for

oM
0O 0 —M
_apT
the matrix |:M pK :| and Pgcp = 0O M O for the matrix <7, =
K M
-M 0 0
BM 0 —M

0 M KT |, see [4] for the latter choice. The matrix <7 is obtained from (15)

-M K 0
using permutations.

A computation shows that the eigenvalues of both preconditioned matrices
cluster at unity when B is very small. However, the eigenvalues are complex
and depend on (Bui)'? and (Bui)'/3, respectively, where {u;} is the set of
eigenvalues of the matrix BM “lgkM~1KT. Hence, the methods are not robust
with respect to the parameters 4 and . Clearly 8 must be of order O(h%),
to achieve a good clustering. To exemplify, for & = 278 we would need
B~ 10710,

5 Numerical results

In this section we test and compare the numerical and computational efficiency of
the various preconditioning techniques on the two benchmark PDE-constrained opti-
mization problems. All results are obtained with C++ implemented code using the
open source finite element library deal.ii [5]. Further, deal.ii provides interface to
the Trilinos library [17], giving access to various data structures, iterative solution
methods and preconditioners including an Algebraic Multigrid (AMG) solver. All
experiments are performed on Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz-2.80GHz
with installed memory RAM of 4GB.

The results presented in the tables use the following conventions. For each
value of B and h, we show the number of outer (MINRES or FGMRES) iter-
ations in the first row. The adjacent brackets represent the average inner iter-
ations for each outer iteration; the first number to the left shows the average
number of AMG iterations and the number to the right shows the average num-
ber of Chebyshev semi-iterations. To further clarify, the presented number of
Chebyshev iterations reflects the number of all occurrences of M in the corre-
sponding preconditioner. The same holds for the average AMG iterations. The
number below the first row represents the CPU times to solve the problem
(in seconds).
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Table 1 Problem 1, non-reduced system, preconditioner ,5);;‘1, , MINRES as outer solver

B

Size 1072 1073 10~4 1073 10~¢ 1077 10-8 10~° 10~10

3267 11(2+14) 132+15) 13(2+16) 13(2+18) 12(2+19) 12(2+420) 12(2422) 10(2+24) 8(2+24)
0014 0017 0018 0019 0017 0018 0019 0016 0013
12675 112+12) 132+13) 132+14) 132+15) 12(2+17) 12(2+18) 12(2+19) 12(2+21) 10(2+23)
0.046 0054 0056 0059 0057 0057 0059 0.6 0.054
49923 11(24+10) 132+11) 13(2+12) 13(2+13) 12(2+14) 11(2+16) 112+17) 11(2+18) 10(2+20)
0.18 0221 0225 0232 0221 021 0215 0221  0.209
198147 11(249) 13(2+10) 13(2+10) 13(2+11) 12(2+12) 11(2+13) 11(2+15) 11(2+17) 9(2+18)
0798  0.95 0956  0.97 0932 0875 0907 0944  0.803

5.1 Distributed optimal control problem constrained by the Poisson equation

Consider Problem 1 with = [0, 1]? and let y be the desired state given by

1 2
2x1 — D22x — ¥ ifx e [0, E] ;

0 otherwise.

y=

This problem is also considered in [8, 16]. Recall that numerically dealing with the

distributed optimal control of the Poisson equation leads to the optimally system (15)
M 0 KT y

b
0 M —-M |[|u|=]0 (35)
K -M 0 py d

Table 2 Problem 1: non-reduced system, preconditioner @1,2, FGMRES as outer solver

B

Size 1072 1073 1074 1073 10-© 1077 108 1079 1010

3267 13(2+10) 15Q2+11) 152+13) 17(2+14) 152+14) 17(2+17) 17(2+19) 16(2+20) 13(2+21)
0.033  0.02 0.021 0033 0021 0034 0035 0026  0.022
12675 13(2+8) 152+9) 17(2+9) 18(2+11) 19(2+12) 17(2+13) 17(2+14) 18(2+16) 17(2+18)
0.054 0065 0082 0083 0095 0082 008 0092  0.091
49923 16(24+6) 152+7) 16(2+8) 18(2+9) 19(2+10) 192+11) 17(2+11) 18(2+13) 18(2+15)
0269 0255 0278 0319 0357 0352 0318 0346 0362
198147 14(24+6) 16(2+6) 162+7) 16(2+6) 17(2+8) 17(2+8) 192+9) 19(2+10) 21(2+12)
1018  L.166  1.175 1327 1279 1287 1469 1521 172
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Table 3 Problem 1: reduced system, preconditioner ,@dz, MINRES as outer solver

B

Size 1072 1073 10~4 1073 10~¢ 1077 10-8 10~° 10~10

2178 11(2+8) 14(2+8) 15(249) 16(2+9) 17(2+11) 16(24+12) 13(2+13) 9(2+13) 5(2+14)
0.008 0.01 0.01 0.011 0.013 0.012 0.01 0.007 0.008

8450  14(2+11) 14(2+11) 15(24+10) 16(2+10) 17(2+9) 17(24+10) 15(2+11) 13(2+12) 9(2+12)
0.053 0.052 0.054 0.057 0.059 0.061 0.057 0.05 0.034

33282 11(2+11) 13(2+11) 15(2+10) 16(2+10) 172+9) 17(24+9) 15(2+9) 15(2+10) 12(2+11)

0167  0.191 0217 0228 0239 0235 021 0217 0.8
132098 18(2+11) 152+11) 152+11) 16(2+10) 17Q2+10) 172+9) 16(2+9) 15(2+8) 13(2+10)
1162 0974 0967 1.0l 1.056  1.042 097 0.9 0.818

with its reduced form as in (16)
M KT
b
1 Y=
c—tw | []=La] 9
B
The state y, the control u and the adjoint A are all discretized using the Q1 basis

functions. We solve the problem with the five different preconditioners discussed
earlier, i.e., Ppa,, Ppir, &), dy> Psn, and Pr. The relative convergence tolerance of

the outer solver is set to 107 in the L?(£2) norm. The mass matrix is approximated
using at most 20 Chebyshev semi-iterations with a relative convergence tolerance set

to 10™* in the L?(£2) norm. To approximate the blocks M + /BK and K + «/LFM we

apply one V-cycle AMG iteration with two pre-smoothing and two post-smoothing
steps by a symmetric Gauss-Seidel (smoother) method with a relative convergence
tolerance set to 10™* in the L2(2) norm. In case of the block corresponding to the

Table 4 Problem 1: reduced system, preconditioner ?;77,,“1, MINRES as outer solver

B

Size 1072 1073 1074 1073 1076 1077 1078 1079 1010

2178 12(240) 14(240) 14(240) 13240) 12(240) 12(2+0) 1124+0) 9(2+0)  7(2+0)
0.005 0006 0006 0005 0005 0005 0005 0004  0.003
8450  14(240) 14(2+0) 14(24+0) 14(2+0) 12(24+0) 12(2+0) 11(24+0) 112+0) 9(2+0)
0.035 0035 0035 0035 0031 0031 003 0.029  0.023
33282 12(240) 14(2+0) 14(2+0) 14(240) 13(2+0) 12(2+0) 12(2+0) 11(24+0) 11(2+0)
0.125  0.144  0.144 0.145 0134 0.125 0125 0.115 0.114
132098 14(2+0) 14(2+0) 14(2+0) 14(2+0) 13(2+0) 12(240) 12(2+0) 11(240) 11(2+0)
0.607  0.608 0607  0.609 0567 0528 0528 0489  0.489
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Table 5 Problem 1: reduced system, preconditioner ,@p, FGMRES as outer solver

B

Size 1072 1073 104 1073 106 1077 1078 1079 10710

2178 6(240) 6(2+40) 72+0) 7(2+0) T2+0) 7T2+0) 6(2+0) 6(2+0) 4(2+0)
0.003 0003 0004 0004 0004 0004 0003 0007  0.002
8450  6(240) 72+0) T2+0) T2+0) 6(2+0) 6(2+0) 6(2+0) 6(2+0) 52+0)
0018 0.02 0021 0021 0018 0018 0019 0018  0.019
33282 5(240) 6(2+0) 6(24+0) 6(2+0) 6(2+0) 6(2+0) 6(2+0) 52+0) 5(2+0)
0061 0072 0072 0072 0072 0072 0072 0061  0.061
132098 6(2+0) 6(2+0) 6(2+0) 6(2+0) 6(2+0) 6(2+0) 6(2+0) S52+0)  5(2+0)
0305 0306 0304 0304 0305 0304 0305 0261 0262

discrete differential operator (K + \/LBM)M -k + \/LBM)T, the transposed part

(K + «/LBM )T is approximated similarly to (K + \/LBM ). The results are presented in
Tables 1, 2, 3,4 and 5.

Remark 2 The theory of the convergence of MINRES requires a fixed precondi-
tioner, thus a fixed number of Chebyshev iterations has to be performed, otherwise
the preconditioning becomes (slightly) variable. Despite of that we have used a vari-
able number of Chebyshev iterations. Numerical tests, not reported here, show that
the outer iterations remain the same or are decreased by one in a very few cases. The
execution time, however exhibits a slight increase.

In Table 1, we present the results of preconditioning the saddle point system (35)
with the block-diagonal preconditioner &4, defined in (22).
In Table 2, we present the results of preconditioning (35) by Py, , defined as

M 0 0
> _|0pM 0
P, PR {(K . JLBM) -l (K . \/LEM>T} 37

Table 3 shows the results of preconditioning the reduced optimality system (36)
with the block-diagonal preconditioner &4, , defined in (26).

The results of preconditioning the reduced optimality system (36) by @m,
defined in (18), are presented in Table 4.

The results, presented in Table 5, illustrate the performance of the preconditioner

~ [M —BKT
‘@F_[K M+2\/BK] (38)
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Table 6 Problem 1: cost functional _# and related quantities

B Ter — ful Iy=512 Ll J lb~efels Time
2e—02 5 4.7e+0 3.96e—2 3.96e—1 2.25e—1 3.94e—7 0.011
2e—03 6 2.6e+1 2.87e—2 2.87e—1 6.70e—1 1.56e—6 0.012
2e—04 6 7.1e+1 1.42e-2 1.42e—1 5.0le—1 1.76e—6 0.012
2e—05 6 1.2e+2 4.55¢—3 4.55e—2 1.5le—1 1.69e—6 0.012
2e—06 6 1.6e+2 1.22e-3 1.22e—-2 2.49e—-2 1.74e—6 0.012
2e—07 6 1.8e+2 3.09e—4 3.08e—3 3.20e—3 1.68e—6 0.012
2e—08 6 1.9e+2 8.32e—5 8.32e—4 3.68e—4 1.48e—6 0.012
2e—09 6 2.0e+2 3.95e-5 3.94e—4 4.06e—5 1.08e—6 0.012
2e—10 5 2.1e+2 3.60e—5 3.60e—4 4.36e—6 2.87e—6 0.010

M —BKT
K M
solve the system, which requires one AMG solve to approximate the block M ++/BK
twice.

applied to the transformed system ,QZQT = |: :| We use Algorithm (1) to

5.2 Discussion

The regularization parameter 8 determines how close the state y approaches the
desired state y. We now illustrate the behavior of the cost functional _# for different
values of S. For this purpose, we reproduce Table 6 as in [8], with slight modifi-
cations. We observe that as B decreases, y — y. Another observation is that |ju/||
increases with decreasing B. As commented in [8], otherwise the cost functional _#
becomes more insensitive to ||u[| as 8 becomes small.

Table 6 is produced using the preconditioner QZF For mesh size 27°, we show
the number of outer FGMRES iterations represented as “iter”. ||u|| represents the
L?(2) norm of the control u, ||y — y]|| measures how closely the state y matches the
desired state y and ||y — y||/||]| measures the relative error. ¢ is the calculated cost
functional.! The ratio ||b — «/x||/| || represents the relative residual norm of the
KKT system to show that the system has converged in the L?(2) norm. Finally, the
last column shows the time (sec) required to solve the system. Moreover, observing
the iteration count presented in Tables 1-3, it is clear that all five preconditioners are
robust with respect to mesh size / and the regularization parameter B.

We observe that the preconditioner & is the most efficient compared to the
others tested. The preconditioner &, takes the 2nd place. The results for precondi-
tloners del and «@bn are in line w1th what is obtained in [14]. The preconditioner
gzbdz being the reduced version of «@ba’p does not however appear to perform any
better.

I'The differences between the cost functionals using all other preconditioners are insignificant.
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Fig. 2 State (y) and control (u) distribution for different values of 8

The CPU time (sec) required to solve the relevant saddle point systems for vari-
ous values of B shows that the preconditioner WF appears to be the most efficient,
followed by the preconditioner ﬂnsn Moreover, the preconditioner szdz for the
reduced optimality system performs better compared to the preconditioners szdl
and ,@1, for the full optimality system. Thus, reducing the optimality system shows
clear advantage in decreasing the amount of time needed to solve the problem.
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Table 7 Problem 2: non-reduced system, preconditioner ,%d]

B

Size 1072 1073 104 1073 106 1077 10-8 1072 10710

e = 1/500
3267 23(2+17) 21(2+16) 24(2420) 20(24+22) 16(2+23) 12(2423) 9(2423) 8(2+24) 8(2-+25)
0031 0026 0033 0028 0022 0016 0012 0011 0011

12675 29(2+15) 27(2+14) 23(2+17) 19(24+20) 20(2+22) 14(2+22) 11(2+22) 10(2+22) 8(2+23)
0.129 0.116 0.103 0.088 0.097 0.067 0.053 0.049 0.04

49923  37(2+13) 33(2+13) 25(2+16) 192+16) 19(2+20) 18(2+21) 14(2+21) 102+21) 9(2+22)
0725 063 048 0372 0397 0385 0296 0215  0.196

198147 48(2+11) 46(2+11) 292+12) 192+14) 192+17) 17(2+19) 15(2+20) 12(2+21) 9(2+20)
3934 3773 2472 1655 179 1667 1485 1226  0.937

e = 1/1500

3267 29(2+17) 28(2+17) 28(2+20) 22(2+22) 16(2+23) 12(2+23) 10(2+24) 8(2+24) 7(2+24)
0.04 0038  0.04 0.03 0022 0016 0014 0011 001

12675 46(2+16) 42(2+16) 36(2+19) 24(2+22) 18(2+22) 12(2+22) 10(2+23) 8(2+23) 8(2+24)
0213 0.19 0.18 0.116  0.08 0057 0048 0039 004

49923  54(2+14) 52(2+14) 46(2+17) 302+21) 192+21) 16(2+22) 12(2+22) 10(2+22) 8(2+23)
0993 0966 0889  0.661 0398 0335 0253 0214  0.174

198147 56(2+12) 80(2+12) 49(2+14) 25(2+16) 21(2+19) 17(2+21) 142+21) 11(2+22) 9(2+22)
4544 6494 4145 2187 1991 1648 1365  1.105 0918

Finally, using the preconditioner ﬁp to solve the problem, we reproduce the plots
for the state y and the control u for various values of $, as obtained in [8].

Figure 2a, c and e represent the state y of the system while Fig. 2b, d and f
represent the control u.

5.3 Distributed optimal control problem constrained by the
convection-diffusion equation

Consider Problem 2, where Q = [0, 112, w represents divergence-free wind, and
e > 0 represents viscosity. We choose w = [cos@, sinf] for & = Z so that the

maximum value of ||w]|2 is equal to 1 on €. Further, y is the desired state given by

. 1
Q2x1 — D2Q2xy — D?ifx € [o, 5} ,
V= (39)

0 otherwise.
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Table 8 Problem 2: non-reduced system, preconditioner ,%1,

B

Size 1072 1073 1074 1075 1076 1077 108 1079 1010

e = 1/500
3267 23(24+16) 21(2+15) 21(2+19) 20(2+22) 16(2+23) 12(2423) 9(2+23) 8(2+23) 8(2+24)
0.03 0026 0029 0029 0023 0017 0013 0012 0012

12675 29(2+14) 27(2+13) 23(24+17) 192+19) 18(2+21) 14(24+22) 11(2+22) 9(2+22) 8(2+23)
0.133 0.116 0.107 0.091 0.089 0.07 0.055 0.046 0.042

49923 38(2+13) 33(2+11) 25(2+14) 19Q2+16) 17(2+19) 16(2+20) 13(2+21) 11(2+22) 9(2+22)
0729 0614 0488 0382 0359 0344 0283 0245 0202

198147 48(2+10) 43(2+8) 27(2+11) 19(2+14) 17(2+16) 17(2+19) 15(2+20) 11(2+20) 11(2+21)
3959 3435 2333 1682 1584 1666 1521 1099  1.137

& =1/1500

3267 29(2+17) 28(2+16) 28(2+21) 20(2+22) 14(2+23) 12(2+23) 10(2+24) 8(2+24) 6(2+24)
0.05 0038 0041 0028 0019 0017 0014 0011  0.009

12675 46(2+17) 37(2+15) 34(2+19) 24(2+22) 18(2+21) 12(2+22) 10(2+23) 8(2+23) 8(2+24)
0207 0172 0.175 0.2 0088 0059  0.05 0.041  0.041

49923 52(2+14) 52(24+12) 37(2+15) 23(2+18) 20(2+20) 16(2+21) 12(24+22) 10(2+22) 8(2+22)
0988 0957 0719 0472 0422 0341 0258 0219  0.178

198147 56(2+12) 80(2+10) 49(2+11) 27(2+15) 21(2+20) 17(2+20) 14(2+21) 11(2+22) 9(2+22)
4667 6491 4057 2421  2.02 1651 1382  1.091  0.908

This problem is also considered in (Chapter 6, [16]). As already stated, discretizing
and using LPS leads to the optimality systems Ar and Ag as in (27).

M 0 FT y b
0 BM —M ||u|=]0 (40)
F -M 0 A d

with its reduced form given by

M FT v b
1 =
r-tw | L-1a] <41>
p
where F is a non-symmetric block. The state y, control u and the adjoint A are
discretized using Q1 basis functions. We solve the problem with the five different
preconditioners discussed earlier, i.e., Zpa,, Ppir, &), &y Psn» and Pr. Solving for
the optimality systems (40) and (41) using the LPS scheme is discussed in Appendix
A . The relative convergence tolerance of the outer solver (FGMRES) is set to 1076

in the L?(£2) norm. Each operation on the mass matrix is approximated using at most
20 Chebyshev semi-iterations with a relative convergence tolerance set to 10~ in
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Table 9 Problem 2: reduced system, preconditioner ,Q}dez

B
Size 1072 1073 1074 1073 10~¢ 1077 1078 10~° 10-10
e =1/500

2178 24(2+7) 372+7) 34(2+8) 23(2+9) 14(2+10) 92+10) 7(2+10) 52+11) 52+11)
0022 0037 0036 0022 0013 0008 0007 0005 0.005

8450  32(2+6) 47(2+5) 422+7) 27(2+8) 20(2+9) 12(249) 8(2+9) 7T(2+10) 5(2+11)
0097 0132  0.124 0083 0062 0037 0025 0023 0.017

33282 40(2+5) 702+5) S512+5) 39Q2+7) 24Q2+7) 172+8) 11(2+8) 8(2+9) 7(2+9)
0534 0921 0678 0544 0338 0245 0158 0.118  0.106

132098 48(2+4) 105(2+4) 73(2+5) 42(2+5) 28(2+6) 212+7) 15(2+8) 102+8) 8(2+8)
2751 6015 4278 2544 1755 1336 0972 0661  0.545

e =1/1500

2178 34(2+8) 512+7) 402+9) 212+10) 12(2+10) 8(Q2+10) 6(2+11) 52+12) 5(2+12)
0034 0048 0041 0.2 0011 0007 0006 0005  0.005

8450  46(2+7) 78(2+6) 54(2+8) 28(2+8) 16(2+9) 9(2+10) 8(2+10) 5(2+10) 5(2+11)
0136 0228  0.165 0089 0049 0028 0025 0017  0.017

33282 53(2+6) 142(2+5) 105(2+6) 43(2+7) 22(2+8) 13(249) 8(2+9) 7(249) 6(2+10)
0719 1913 1427 0607 0313 019 0119 0.106  0.094

132098 57(2+5) 200(2+5) 168(2+5) 58(2+6) 29(2+7) 18(2+8) 11(2+9) 8(2+9) 7(2+9)
3396 11876 9923 3538 1829 1177 0735 0549 0495

the L*(£2) norm. To approximate each block corresponding to higher order discrete
differential operators M + /BF and F + «/LEM we use again a V-cycle AMG-
preconditioned FGMRES with two pre-smoothing and two post-smoothing steps by
a block Gauss-Seidel (smoother) method with a relative convergence tolerance set to
10~* in the L?(£2) norm. In case of the block corresponding to the discrete differ-
ential operator (F + \/LEM)M”(F + \/LEM)T, the transpose part (F + \/LEM)T is

approximated analogously to (F + \/LBM ). The results® are presented in Tables 7, 8,

9,10 and 11.

We present results for ¢ = 1/500 and for the particularly convection-dominated
case, ¢ = 1/1500. We find tpgt all five preconditioners are also robust to smaller
values of . We again find &?F to be the best in terms of parameter robustness,
iteration count and run time requirements.

2The LPS scheme requires computing the approximate solutions ¥ and . In our numerical experiments,
we use one outer iteration for this purpose, but it is not accounted for in the iteration count presented in
Tables 7-11.
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Table 10 Problem 2: reduced system, preconditioner f%,”,

B

Size 1072 1073 1074 1073 1076 1077 1078 1079 10~10

e = 1/500
2178 24(240) 22(240) 22(2+0) 202+0) 16(2+0) 102+0) 8(2+0) 6(2+0)  6(2+0)
0016 0014 0014 0012 001 0006 0005 0004  0.004
8450  31(2+40) 28(2+0) 26(2+0) 22(2+0) 18(2+0) 14(2+0) 102+0) 8(2+0)  6(2+0)
0079 0068 0062 0051 0041 0032 0023 0019 0014
33282 392+40) 37(240) 31(240) 23(24+0) 202+0) 16(2+0) 12(240) 8(2+0)  6(2+0)
0424 0404 0347 0248 0214 0.7 0129 0088  0.068
132098 45(2+0) 47(2+0) 35(240) 25(2+0) 21(2+0) 192+0) 16(24+0) 102+0) 8(2+0)
2157 2251 1705 1.197 1023 0906 0762 0484 0395
e =1/1500
2178 31(240) 26(24+0) 26(2+0) 202+0) 142+0) 102+0) 7(2+0) 6(2+0)  5(2+0)
0023 0018 0018 0012 0008 0006 0004 0004  0.003
8450  44(2+40) 39(24+0) 33(240) 24(24+0) 18(2+0) 12(2+0) 8(2+0) 6(2+0)  6(2+0)
0103 0095 0083 0057 0041 0027 0019 0015 0015
33282 51(2+40) 53(2+0) 45(2+40) 28(24+0) 22(2+0) 14(2+0) 102+0) 8(2+0)  6(2+0)
0.55 0573 048 0306 0236 0149 0108 0088  0.068
132098 55(2+0) 80(2+0) 62(2+0) 352+0) 24(2+0) 18(2+0) 12(24+0) 8(2+0)  6(2+0)
2641 3843 3016 1705 1151 0857 0575 0395 0308

In Table 7 we present the results of preconditioning the saddle point system (40)
with the block-diagonal preconditioner &4, , defined in (29).

In Table 8, we present the results of preconditioning the saddle point system (40)
with the block lower-triangular preconditioner &y, from (30).

In Table 9 we present the results of preconditioning the reduced optimality system
(41) with the block-diagonal preconditioner %4, from (32).

Next, in Table 10, we present the results of preconditioning the reduced optimality
system (41) with the block-diagonal preconditioner &2, from (33). e

Finally, in Table 11, we show the performance of the preconditioner ¢ from

. M —pFT Tyl _ [b
(34), applied to the transformed system [ F oM ] I:Xi| = |: d:|' To solve

~

systems with &F, we use Algorithm 1.
5.4 Discussion

From the iteration counts in Tables 7—11, it is clear that all these preconditioners are
robust with respect to mesh size 4 and the regularization parameter §.
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Table 11 Problem 2: reduced system, preconditioner (&jp

B

Size 1072 1073 104 1073 107° 1077 10°8 107° 10710

e =1/500
2178 112+0) 112+0) 112+0) 92+0) 72+0) 52+0) 3(2+0) 3(2+0) 2(3+0)

0007 0007 0007 0005 0004 0003 0002 0002  0.002
8450  142+0) 14Q2+0) 122+0) 92+0) 8(2+0) 52+0) 4Q2+0) 3(2+0) 2(3+0)

0032 0.03 0025 0019 0017 0012 001 0.008  0.006
33282 17Q24+0) 16(2+0) 132+0) 102+0) 8(2+0) 6(2+0) 4(2+0) 3(2+0) 3(2+0)
0.19 0176 0143  0.111 009 007 005 004 004

132008 19(2+0) 18(2+0) 152+0) 10(2+0) 8(2+0) 7(2+0) 5(2+0) 4(2+0) 3(2+0)
0946  0.888 0742 0504 042 0364 0272 0227  0.182

e =1/1500

2178 15Q240) 14(2+0) 132+0) 92+0) 6(2+0) 42+0) 3(2+0) 3(2+0) 2(3+0)
0.01 0009 0008 0005 0004 0003 0002 0002  0.002

8450  1924+0) 17(240) 152+0) 102+0) 7(240) 52+0) 3(2+0) 3(240) 2(3+0)
0047 0036 0032 0022 0016 0012 0008 0008  0.006

33282 21240) 23(2+0) 202+0) 12Q240) 8(2+0) 6(2+0) 4(2+0) 3(2+0) 2(3+0)
0235 026 0219 0132 009 007 005 004 0031

132098 22(240) 32(240) 27(24+0) 14Q2+0) 9(240) 7(2+0) 5(2+0) 3(2+0) 3(2+0)
1097 1645 1343 0693 0455 0363 0274 0.182  0.182

We now illustrate the behavior of the cost functional ¢ for different values of .
Recall that how closely the state y approaches the desired state y is determined by the
regularization parameter 5. However we observe (across all tested preconditioners)

Table 12 Problem 2: the cost functional _# and related quantities

Ib—2 x|l

g er  full ly =3l Lk J lbeefxle  Time
le—02 14 5.7%+1 6.98e—2 6.98e—1 1.67e+1 4.40e—8 0.032
1le—03 14 4.94e+1 1.09e—2 1.09e—1 1.22e+0 7.46e—9 0.030
le—04 12 4.94e+1 1.98e—3 1.98e—2 1.22e—1 3.69e—8 0.025
le—05 9 5.08e+1 3.77e—4 3.77e—-3 1.29e—-2 4.95e—8 0.019
le—06 8 5.19e+1 6.6le—5 6.60e—4 1.34e—3 1.51e—8 0.017
le—07 5 5.22e+1 3.62e—5 3.62e—4 1.36e—4 5.32e—8 0.012
le—08 4 5.22e+1 3.61le—5 3.6le—4 1.36e—5 8.63e—9 0.010
le—09 3 5.22e+1 3.61le—5 3.6le—4 1.36e—6 6.94e—9 0.008
le—10 2 5.22e+1 3.61le—5 3.6le—4 1.37e—7 3.58e—8 0.006
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state(y) control(u)

036299
0

E-2

E-A

-6

075

|-

025

0
-0.000957 -6.48822
(@) p=10"* (b)B=10"4
state(y) control(u)
030112
0
075 25
3 ‘5
Eo,s
E =75
025 E
E -10
0
-9.449e-5 -11.5129
& | &

s 4

(c)p=10"¢ (d)B=10"6

Fig. 3 State (y) and control (u) distribution for different values of 8

that ||y — 31| stops to decrease any further around 8 < 105. Further, we observe that
|lu|| stops increasing further around 8 < 10~°. This indicates that the optimal value
of B for the problem is around 107°. -

Table 12 is produced using the preconditioner Zf. For mesh size 276, we show
the number of outer FGMRES iterations represented as “iter”. ||u|| represents the
L?(2) norm of the control u, ||y — y]| measures how closely the state y matches the
desired state y and |y — y||/||y|l measures the relative error. _# is the calculated
cost functional, ||b — o/ x||/||b|| represents the residual norm of the KKT system of
equations to show the system converged in the L2(2) norm. Finally, the last column
tells us the time (sec) it took to solve the system. The differences between the cost
functionals using all other preconditioners are insignificant.

The comparison of the performance of the different preconditioners in terms
of iterations required to solve the relevant saddle point systems for various values
of B clearly shows that the preconditioner &r outperforms all the other four
preconditioners.

The comparison of the performance of the five preconditioners in terms of the CPU
time (sec) required to solve the relevant saddle point systems for various values of
shows a clear advantage of reducing the optimality system. Again, the preconditioner
P performs exceptionally well.
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__The results of our numerical experiments clearly indicate that the preconditioner
Pr is very effective for solving convection-diffusion control problems. Further, it is
shown that this preconditioner is also robust to the mesh size 4 and the regularization
parameter 3.

Finally, we produce the plots for the state y and the control u for two different
values of 8 to give a visual clue to the solutions obtained. The mesh size is set to
h = 27% and we use the preconditioner Z to solve the problem.

Figure 3a and c represent the state y of the system while Fig. 3b and f represent
the control u.

6 Conclusions

All of the tested methods have the important property of robust performance with
respect to the meshsize & and the optimality control parameter 8. The most efficient
of the preconditioning techniques are &y, and . It has been proven that both
lead to a condition number of the corresponding preconditioned matrix, bounded by
2. However, for £2,, it holds for the square of the preconditioned matrix, which is
indefinite. Therefore it needs about twice the number of iterations, compared to the
P r-preconditioned method.
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Appendix A: Some details regarding the local projection scheme and its
implementation in deal.ii

We include the details below in order to ensure reproducibility of the numerical
experiments, presented in this paper.

We follow the discussion on the LPS scheme in [6]. Consider a two-dimensional
mesh 7y consisting of open cells, in our case quadrilaterals.

[ ] [ ] o ® { ] ® L ] L J
[ { L L L]
[ ] [ ] ° ¢ ® ® L ®
[ { L ° L]
[ ] ° ° ® { L ° ®

Fig. 4 Jy with 4 cells (left) and refined mesh .7, with 16 cells and 4 patches (each patch portrayed by a
different color) with ® representing the support on the patches (right)
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A uniform refinement of the mesh 7y gives us a refined mesh .7}, where each
refined cell on Jy creates four cells in .7}, referred to as a patch P; so we will have
four patches in this case.

LPS uses standard finite element discretization with stabilization based on local
projections. Next we define an L?(P) orthogonal projection operator. (Note that
an orthogonal projection operator gives a good average approximation of a func-
tion, compared to an interpolation operator. However, both these operators have
difficulties in approximating highly oscillatory or discontinuous functions.) Let

Py L2(Q) — Vi,
on the patches of the domain, with V™’ being a cell-wise> constant function on
the patches. Further, this operator satisfies the following approximation and stability
properties on the patches, c.f. [6]:

I Prvll 2y < cllvllz2e) Vv e L*(P).

1
||U — P/’lU”LZ(P) E Ch”VUHLZ(P) VU S H (P)
We now introduce a positive stabilization parameter § associated with a bilinear
symmetric stabilization form r;f 1 Vi, x Vi, = R given by

t,‘f(uh, vp) =8(W-Vuyp — PL(w-Vuy) x (w-Vu, — P,(w-Vuy))).
In terms of finite element basis functions we write
T ={t); Jijetins T =9 /Q (W-Vpi — Py (W-V) x (W-V'; — Py (W-V')))).
Consider the solution of the following convection-diffusion equation
—eAu+WwW-Vu=f inQ
u = gonds2,

where g is continuous and w = [sin6, cos6].
The stabilization parameter &; is defined locally on individual elements and
depends on the (local) Peclet number

hi|lw
pt — ulwl
e
The parameter §y is given by
h
£ Pk >,
=1 lIwl .
0, otherwise.

The discretization of the convection-diffusion equation with LPS scheme leads to

e(Vup, Vup) + (W.Vuy, vy) + S (I — Pp)wW.Vuy, w.Vuo,) = f
or

e(Vup, Vup) + (W.Vuy, vp) + S(W.Vuy, wVuy) = f + Sk Ph(Ww.Vup, w.Vup).

3There are four cells in a patch in our considered example.
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We now split the above equation as follows
e(Vup, Vo) + 8k (W.Vuy, w.Vup) + (W.Vup, vp) = f + 6ikén

Py(W.NVup, vp)ég = 6kw.(Vup, vp),

where £ is a cell-wise constant function of patches and &, is the interpolation of £y
to .

The following algorithm solves the discrete convection-diffusion equation using
the LPS scheme.

—_—

Set &, = 0.

2.  Assemble (42).

3. Compute iy solving e(Vuy, Vup) + Sk (W.Vup, w.NVu)(W.Vuy, vp) = f + &,
using one iteration of FGMRES.

4. Interpolate iy, to i g. This takes the nodes @ (see Fig. 4) from the fine mesh .7,

to the coarse mesh 7.

Compute gradient of ii 7, i.e., Viig.

Assemble (42),i.e., Mp,Eg = §(W.Viiy, vy) and solve for &g.

7. Interpolate £y back to &;,. This replaces the nodes @ (see Fig. 4) on the fine mesh
I, with the values &y computed on the coarse mesh 7.

8. Assemble (42) and solve using FGMRES to convergence.

SANNG
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