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Abstract When solving a sequence of related linear systems by iterative methods, it
is common to reuse the preconditioner for several systems, and then to recompute the
preconditioner when the matrix has changed significantly. Rather than recomputing
the preconditioner from scratch, it is potentially more efficient to update the previous
preconditioner. Unfortunately, it is not always known how to update a preconditioner,
for example, when the preconditioner is an incomplete factorization. A recently pro-
posed iterative algorithm for computing incomplete factorizations, however, is able
to exploit an initial guess, unlike existing algorithms for incomplete factorizations.
By treating a previous factorization as an initial guess to this algorithm, an incom-
plete factorization may thus be updated. We use a sequence of problems from model
order reduction. Experimental results using an optimized GPU implementation show
that updating a previous factorization can be inexpensive and effective, making solv-
ing sequences of linear systems a potential niche problem for the iterative incomplete
factorization algorithm.
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1 Introduction

The need to solve sequences of related linear systems arises in several contexts, for
example, in the solution of nonlinear systems and time-dependent problems. When
the linear systems are large and sparse, preconditioned Krylov subspace solvers are
preferred. In this case, it is possible to “recycle” subspace information from solve to
solve. Another way to exploit the fact that we are solving a sequence of systems is to
reuse the preconditioner for several solves. When the preconditioner becomes stale,
it is computed from scratch for the current linear system.

For certain types of preconditioners, it may be possible to update the stale pre-
conditioner, to use for the current linear system, which may be more efficient than
computing the preconditioner from scratch. In this paper, we consider updating
incomplete factorization preconditioners. These preconditioners are popular because
they are effective on a wide range of problems and are problem-independent (they
do not need information from the problem besides the matrix). Methods for updat-
ing an incomplete factorization have been proposed in the past, mainly for matrices
with (possibly complex) diagonal updates, e.g., [11, 18], but also for general updates
[19, 25].

In this paper, we consider a different, highly parallel method for updating an
incomplete factorization. This is based on a recently proposed iterative algorithm for
computing incomplete factorizations that is completely different from the standard
algorithm [21]. This algorithm offers fine-grained parallelism suitable for current
hardware architectures, including graphics processing units (GPUs). Instead of a
Gaussian elimination process, the new incomplete factorization algorithm computes
an approximation to the factorization via a fixed-point iteration. A major advantage
is that it is possible to compute a factorization starting from an initial guess. By
treating a previous factorization as an initial guess to this algorithm, an incomplete
factorization may thus be updated. This feature of the algorithm has not been studied
before.

To test our ideas, we use a realistic sequence of linear systems arising from the
computation of transformation matrices in model order reduction (MOR). The topic
of iteratively solving this sequence of problems in MOR has received only limited
attention so far. Authors have studied the reuse of subspace information for differ-
ent shift parameters in the sequence of coefficient matrices [1, 9, 10]. In contrast to
this previous work, we focus on the reuse of preconditioner information for these
sequences. Regarding parallel computations in MOR, the main development has been
on sparse direct solution of the linear systems [6, 7, 29, 30] and matrix sign function
approaches using dense matrices. For a selection of papers that either use the same
model that we use in the numerical experiments, or also employ GPUs, see, e.g.,
[8, 12, 13].

This paper is structured as follows. Section 2 introduces model order reduc-
tion as one possible origin of a sequence of related linear systems. Section 3



Numer Algor (2016) 73:611–630 613

provides background on the iterative algorithm for computing incomplete factor-
izations. Section 4 reports on experimental tests for solving the linear systems
using the iteratively computed incomplete factorizations as preconditioners. We
compare the case of updating the preconditioner from a previous factorization,
and computing the preconditioner from scratch. We also experiment with reusing
such preconditioners for more than one linear system. Section 5 concludes the
paper.

2 Model order reduction and shifted linear systems

Model order reduction is a technique for replacing a large and usually sparse
dynamical system

Eẋ(t) = Hx(t) + Bu(t), y(t) = Cx(t), (1)

where E, H ∈ R
n×n, B ∈ R

n×p, and C ∈ R
m×n (m,p � n), by a substantially

smaller one of the form

Ê ˙̂x(t) = Ĥ x̂(t) + B̂u(t), ŷ(t) = Ĉx̂(t), (2)

in order to perform fast simulations of the input-output behavior of the system, e.g., in
control and optimization tasks. This means one searches for matrices Ê, Ĥ ∈ R

r×r ,
B̂ ∈ R

r×p, and Ĉ ∈ R
m×r with r � n, with the property that when using the same

input u in both systems, the deviation of the outputs ‖y − ŷ‖ can be bounded in some
suitable norm. In projection based MOR, the reduced order matrices are formed by a
Petrov-Galerkin-projection approach, i.e.,

Ê = WT EV, Ĥ = WT HV, B̂ = WT B, Ĉ = CV. (3)

Several reduction techniques exist that only differ in the way how the tall and thin
matrices V, W ∈ R

n×r are computed. For a textbook discussion of the system theo-
retically motivated methods see, e.g., the book by Antoulas [3]. Many of the system
theoretic methods are in the one way or the other related to rational Krylov sub-
spaces. This is very obvious for moment matching and rational interpolation methods
like the prominent iterative rational Krylov algorithm (IRKA) [27]. In each step
of IRKA, the matrices V and W are chosen as orthogonal bases of span{(σ1E −
H)−1B, . . . , (σrE − H)−1B} and span{(σ1E − H)−1CT , . . . , (σrE − H)−1CT },
respectively, and the set � = {σ1, . . . , σr } is adapted for the next step until the
method converges.

Other methods like Balanced Truncation [31, 42] use the solutions of two Lya-
punov equations, the so called Gramians, as the basis for computing V and W . For
very large n and small m and p, these Gramians typically have low numerical rank.
This property can be used by modern solvers like the low rank alternating directions
implicit (LR-ADI) iteration [14], or the rational (block-)Krylov subspace method
(RKSM) [23] by representing the low rank factors of the Gramians in a rational
Krylov basis.
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Whenever rational Krylov subspaces are involved, the main effort in computing
the basis is the solution of linear systems of equations of the form

(σE − H) X = F, (4)

or, with the notation Aσ = (σE − H),

Aσ X = F, (5)

for varying shifts σ ∈ C. Here, the matrices H and E are the large and sparse coef-
ficients in (1), and X, F may consist of multiple columns. In the LR-ADI and IRKA
cases, for example, the dimensions coincide with either those of B or CT .

We focus on the linear systems of equations arising in the LR-ADI, when E is
symmetric and positive definite (SPD), and H is symmetric and negative definite.
This implies that the system (1) is asymptotically stable. Also, all appearing σ are
real and positive, such that the matrix in (5) is SPD, and a preconditioned conjugate
gradient (PCG) method can be used for fast iterative solution. The linear systems
arise consecutively such that the solution of the previous system contributes to the
right-hand side of the current system. Therefore, the systems can not be solved simul-
taneously, and an efficient preconditioner allows for reusing information across the
sequence of problems. The iterative algorithm for computing incomplete factoriza-
tions that we describe next provides this feature by updating a previously computed
factorization for varying shifts σ .

3 Iterative incomplete factorization algorithm

An incomplete factorization is the approximate factorization of a nonsingular sparse
matrix A into the product of a sparse lower triangular matrix L and a sparse upper
triangular matrix U , i.e.,

A ≈ LU,

where nonzeros or fill-in computed by a Gaussian elimination process is somehow
truncated to a sparsity pattern, S. For an overview, see [41]. We use incomplete
factorizations to precondition the matrices Aσ described in the previous section. A
limitation to the use of these preconditioners is the difficult-to-parallelize factor-
ization in the preconditioner setup phase [16, 22, 33, 39]. In particular, strategies
providing some parallelism fail to leverage the fine-grained parallelism of current
HPC architectures [17].

The recently proposed iterative algorithm for computing incomplete factorizations
is different from previous approaches, as it does not try to parallelize the Gaussian
elimination process [21]. Instead, it iteratively approximates the incomplete factors
using the property

(LU)ij = aij , (i, j) ∈ S, (6)

where (LU)ij denotes the (i, j) entry of the product of the computed factors L and
U , and aij is the corresponding entry in the matrix A. In particular, the iterative
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incomplete factorization algorithm computes the unknowns

lij , i > j, (i, j) ∈ S,

uij , i ≤ j, (i, j) ∈ S

using the constraints
min(i,j)∑

k=1

likukj = aij , (i, j) ∈ S (7)

which corresponds to enforcing the property (6). The formulation

lij = 1

ujj

⎛

⎝aij −
j−1∑

k=1

likukj

⎞

⎠ , i > j, (8)

uij = aij −
i−1∑

k=1

likukj , i ≤ j (9)

suggests solving for the unknowns using a fixed-point iteration x = G(x) where x

is the vector containing the unknowns lij and uij for (i, j) ∈ S. It can be proven
that the iteration is locally convergent for standard (synchronous) and asynchronous
iterations [26]. Global convergence (from an arbitrary initial guess) can be proven
for standard iterations in certain conditions, but only with a sufficiently large number
of steps. However, convergence for an arbitrary initial x(0) in the asynchronous case
cannot be guaranteed [21].

Practically, the rate of convergence depends on the norm of the Jacobian of G.
For standard Laplacian discretizations, and using standard synchronous iterations,
Fig. 1(left) plots the 1-norm of the Jacobian, showing that it remains less than 1,
and thus the fixed-point mapping is a contraction. The middle and right figures show
the convergence of factorization in the nonlinear residual norm and in the Frobenius
norm of A − LLT , where L is the approximation to the incomplete Cholesky factor.
The latter figure shows that convergence to a steady value is rapid.

Previously it was shown that scaling A symmetrically (as a preprocessing step) to
have a unit diagonal is an aid to converging the fixed-point iterations [21]. Also, the
fixed-point iterations may be started from an initial guess for x formed from the lower
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and upper triangular parts of A. This is called the “standard initial guess”. We will
later define an alternative initial guess when computing a sequence of factorizations
of related matrices.

Algorithm 1 gives the pseudocode for the fixed-point iterations for solving the
equations (7) in the case of an SPD factorization, A ≈ UT U , which is called the
“iterative incomplete Cholesky” or “iterative IC” algorithm. In the remainder of the
paper we use this algorithm as we address sequences of SPD systems. Each “sweep”
(a term we will use repeatedly in this paper) corresponds to one fixed-point iteration
updating all the unknowns in the factor U . In contrast to the iterative IC algorithm,
we call the standard Gaussian elimination-based incomplete Cholesky algorithm the
“exact IC” algorithm, as it computes the exact IC factors.

Algorithm 1 Iterative IC algorithm

1 Set unknowns uij to initial values
2 for sweep = 1, 2, . . . until convergence do
3 parallel for (i, j) ∈ SU do
4 s = aij − ∑i−1

k=1 ukiukj

5 if i �= j then
6 uij = s/uii

7 else
8 uii = √

s

9 end
10 end
11 end

We note that Algorithm 1 assumes a fixed sparsity pattern for the incomplete fac-
torization. It is possible to design a procedure, similar to threshold-based incomplete
factorizations, that produces a factorization with a dynamically generated sparsity
pattern, i.e., one that is generated during the factorization itself. For example, starting
with an initial sparsity pattern, nonzero entries may be added or deleted after each
fixed-point sweep, depending on different criteria. This work will be reported in a
future publication.

We use a GPU implementation of Algorithm 1 described in [20]. In this imple-
mentation, subsets of the components of x are assigned to GPU thread blocks that
are scheduled onto the GPU multiprocessors. Each thread block updates the compo-
nents of x assigned to it. Usually, there are more thread blocks than multiprocessors,
which implies that some thread blocks are processed before others, and thus update
their components of x before others. Every thread block uses the latest available val-
ues for components. Hence, some updates within one fixed-point sweep may use
newer data than others. As there is in general no pre-defined order in which thread
blocks are scheduled onto multiprocessors, the iteration scheme may be considered
as “block-asynchronous” [4]. In [20], several unconventional optimization strategies
are proposed that allow for better reuse of GPU cache and control of update order,
important for the overall efficiency of the fixed point iteration.
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Based on this previous study, we use the following strategies as the default setup
for the iterative IC algorithm applied in this paper:

– The CUDA kernel performs one sweep of the iterative IC algorithm. Additional
sweeps are performed by launching this kernel multiple times.

– The inputs to the kernel are arrays corresponding to the matrices A and U . The
input value of U is the initial guess for the U factor. The output value of U is the
computed incomplete factor.

– We use the reverse Cuthill-McKee (RCM) ordering for the system matrix, which
is a preferred ordering for incomplete factorizations [24]. Further, RCM ordering
reduces the bandwidth of the systems, which is beneficial for cache reuse in the
iterative IC algorithm [20].

– The linear systems are scaled such that A has a unit diagonal, which improves
the convergence of the iterative IC algorithm.

4 Experimental results

In Section 4.1, we describe a sequence of linear systems arising from a model order
reduction problem that serves as our benchmark application. In Section 4.2, we
show the performance of the iterative IC preconditioner applied to solving these lin-
ear systems. Sections 4.3 and 4.4 are the main contribution of this paper, showing
results for the case of computing a factorization by updating a previous factoriza-
tion. Section 4.5 demonstrates how sparse triangular solves can also be performed
efficiently in parallel for these problems.

The experimental platform is a two socket Intel Xeon E5-2670 (Sandy Bridge)
system accelerated by an NVIDIA Tesla K40c GPU. The host system has a theoret-
ical peak of 333 GFLOP/s and the GPU has a theoretical peak of 1,682 GFLOP/s
(double precision). The main memory size is 64 GB with a theoretical peak memory
bandwidth of 51 GB/s. On the K40 GPU, 12 GB of main memory is available at a the-
oretical peak bandwidth of 288 GB/s. The implementation of the iterative incomplete
factorization GPU kernels are implemented in CUDA [35] version 6.5 [36] using a
default thread block size of 128. The PCG linear solver is from the MAGMA open-
source software library, version 1.6.0 [28]. It is able to solve with multiple right-hand
sides simultaneously. The sparse triangular solve routines are taken from the NVIDIA
cuSPARSE library [38]. All computations use double precision arithmetic.

4.1 Benchmark application

The benchmark application is the cooling process in rolling mills for steel rail pro-
duction. A uniform temperature distribution across cross-sections is needed before
applying the final rolling step, to avoid degrading material properties. A uniform
temperature distribution can be generated via applying active cooling to the surface
of the rail. To this end, the boundary of the cross-section is split into seven disjoint
parts, where different controls can be applied. These controls are realized as coolant
sprays with different temperatures or intensities. Key for a dynamic cooling process
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Fig. 2 The steel cooling example: process picture (left), sample heat distribution (center), initial grid and
boundaries (right)

is the use of real-time temperature estimators. For this purpose, model order reduc-
tion is applied to a spatial discretization using finite elements (see Fig. 2) of the
partial differential equation model. In this model, both the stiffness and mass matri-
ces are symmetric, so the PCG solver can be employed to solve equation (5). The
shift parameters are chosen according to the optimal procedure suggested for the ADI
method by Wachspress (see, e.g., [43]).

The discretization we use is a re-implementation of the steel profile example [15]
from the Oberwolfach benchmark collection for model order reduction using the
FEniCS [32] finite element software package in version 1.2.0. Like in the original
benchmark, we discretize using increasing mesh granularities via global bisection
refinement. For every granularity, we obtain a set of matrices H , E and F for
equation (4). In Table 1 we list some key properties for these matrices.

The main effort (usually more than 90 % of the execution time in the case of the
LR-ADI iteration mentioned in Section 2) towards the computation of the projection
matrices V and W (see equation (3)) is to solve equation (5) for different shifts σ and
block right-hand sides, each containing 7 vectors. We attempt to accelerate this stage
of the MOR process by providing a fast preconditioning strategy for the sequence
of shifted linear systems. The length of the sequence of shifts, as well as the shift

Table 1 Properties of the discretizations of the rail problem, showing matrix dimension n, number of
nonzeros nnz, number of shifts or matrices in the sequence, the maximum and minimum shift values, and
the minimum and maximum condition numbers of matrices in the sequence

problem size n nnz(Ai) #σi maxi (σi ) mini (σi ) mini (κ(Ai)) maxi (κ(Ai))

DISC 1 371 2,343 22 1.02e+00 7.90e-05 3.57e+01 5.58e+02

DISC 2 1,357 8,997 25 4.59e+00 7.91e-05 4.67e+01 2.46e+03

DISC 3 5,177 35,241 28 2.00e+01 7.91e-05 5.26e+01 1.05e+04

DISC 4 20,209 139,473 30 8.35e+01 7.90e-05 5.47e+01 4.01e+04

DISC 5 79,841 554,913 33 3.42e+02 7.90e-05 5.53e+01 1.77e+05

DISC 6 317,377 2,213,697 35 1.39e+03 7.98e-05 5.56e+01 7.10e+05

DISC 7 1,265,537 8,842,881 39 5.64e+03 1.23e-05 5.58e+01 2.44e+06
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Fig. 3 Plot of the sequence of shifts σi for the distinct discretizations (left) and the condition numbers for
the matrices (σiE − A) for the DISC 5problem (right)

values themselves, depend on the discretization, the accuracy bound we demand for
the model order reduction, and the method we employ for computing V and W . In
this paper, we use shifts according to a bound of 10−5 for the error ‖y − ŷ‖ when
using the same input u in the original and the reduced system and applying LR-ADI
based Balanced Truncation. Figure 3 (left) shows the shift values for the different
discretizations. The variation of the matrix condition numbers along the sequence of
shifts shows a characteristic pattern which is similar for the different discretizations.
The condition numbers are plotted for the example problem DISC 5in Fig. 3 (right).

4.2 Results on iterative incomplete Cholesky factorization

In this section, we first consider the entire set of shifted matrices for DISC 5and show
the PCG iteration counts when using IC preconditioners computed approximately
using the iterative IC algorithm. The right-hand side of each system is the block of
7 vectors denoted as matrix F in Eq. (5). The systems were diagonally scaled on the
left and right such that the matrices remain symmetric but have unit diagonal. The
iterations start with a zero initial guess, and they are stopped when the residual norm
relative to the initial residual norm has been reduced below 10−6 for the first vector.
We always use the level 0 incomplete Cholesky factorization in this paper, but this is
not a limitation of the iterative IC algorithm. We recall that the standard initial guess
is used for computing the iterative IC factorization, which is the upper triangular part
of the scaled coefficient matrix.

Table 2 shows the PCG iteration counts when the iteratively computed IC factor-
ization, using 0 to 5 sweeps, is used as a preconditioner. (Zero sweeps corresponds
to only using the initial guess, and resembles using symmetric Gauss–Seidel pre-
conditioning.) Solver iteration counts are also shown for the incomplete Cholesky
preconditioner computed exactly using a Gaussian elimination process (labelled
“Exact IC”), and for no preconditioning (labelled “No Prec”). The results for the iter-
ative IC algorithm are averaged over 10 runs. Note that the increasing iteration counts
for decreasing shift magnitudes are consistent with the increasing condition numbers
depicted in Fig. 3. Figure 4 plots the PCG iteration count data for up to 3 sweeps of
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Table 2 Solver iteration counts using the preconditioner generated via an exact IC factorization or with
up to 5 sweeps of the iterative counterpart. The linear systems are the set of shifted matrices for the
DISC 5discretization

Exact Number of sweeps

Shift σi No Prec IC 0 1 2 3 4 5

−3.42e+02 13 5 5 5 5 5 5 5

−2.74e+02 13 4 5 5 4 4 4 4

−1.90e+02 13 4 5 4 4 4 4 4

−1.22e+02 12 4 5 4 4 4 4 4

−7.60e+01 12 4 5 4 4 4 4 4

−4.68e+01 11 4 4 4 4 4 4 4

−2.87e+01 13 4 5 4 4 4 4 4

−1.76e+01 17 5 6 5 5 5 5 5

−1.08e+01 22 6 8 7 6 6 6 6

−6.58e+00 27 8 10 8 8 8 8 8

−4.02e+00 35 10 12 10 10 10 10 10

−2.46e+00 44 12 15 13 12 12 12 12

−1.50e+00 55 15 19 16 15 15 15 15

−9.19e-01 69 18 24 20 19 18 18 18

−5.62e-01 85 22 30 24 23 22 22 22

−3.44e-01 105 27 36 29 28 27 27 27

−2.10e-01 129 33 45 36 34 33 33 33

−1.28e-01 161 39 56 44 41 40 40 39

−7.86e-02 195 47 67 54 50 48 47 47

−4.80e-02 233 56 80 65 60 57 57 56

−2.94e-02 280 66 96 79 72 69 67 67

−1.80e-02 330 78 113 93 83 81 80 80

−1.10e-02 391 89 134 104 100 97 94 92

−6.72e-03 440 109 151 130 119 108 107 107

−4.11e-03 528 128 180 147 138 133 131 130

−2.51e-03 630 150 215 178 162 156 154 153

−1.54e-03 707 166 241 199 181 173 170 169

−9.40e-04 796 190 271 226 206 198 195 193

−5.77e-04 903 216 305 252 230 224 221 220

−3.55e-04 1000+ 244 349 290 264 254 250 248

−2.21e-04 1000+ 256 381 315 283 270 264 261

−1.42e-04 1000+ 279 438 363 329 301 292 289

−9.85e-05 1000+ 313 451 378 341 327 322 320

−7.90e-05 1000+ 319 464 382 345 334 329 326
∑

σi
: 11269+ 2930 4231 3500 3193 3055 3004 2982

relative to IC: 3.85+ 1.00 1.44 1.19 1.09 1.04 1.03 1.02
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Fig. 4 PCG iteration counts for
DISC 5using an exact IC
factorization or up to 3 sweeps
of the iterative IC algorithm
starting with the standard initial
guess
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Figure 5 (left) shows that after three sweeps the nonlinear residual norm has only
been reduced 1–2 orders of magnitude. Since we saw in Fig. 4 that using three sweeps
was sufficient for good preconditioning, we conclude that it is not necessary to con-
verge the nonlinear residual norm to a high tolerance in order to produce useful
preconditioners. Figure 5 (right) shows that the IC residual norm, however, converges
after a very small number of sweeps.

Referring back to Fig. 4, it can be observed the factorizations converge faster or
slower for different values of the shift. More precisely, fewer sweeps of the iterative
IC algorithm are needed to match the exact IC results for low shift indices than for
high shift indices. Generally, matrices earlier in the sequence are easier to solve than
matrices later in the sequence. This roughly corresponds to the condition numbers
of the matrices shown in Fig. 3 (right). Although the convergence of the iterative IC
algorithm is related to the norm of the Jacobian of the fixed-point iteration matrix,
these Jacobians have smaller norms if the system matrix have large diagonal elements
relative to off-diagonal elements [21], which in turn could be related to the condition
number. In any case, connections between matrix properties and the convergence of
the iterative IC algorithm are important to make.

Although we have only shown results DISC 5, the results are qualitatively similar
for other discretizations. Figure 6 shows the convergence of the relative nonlinear
residual norm and the relative IC residual norm for one system for each problem size.
Each system corresponds to the last shift of each sequence, which corresponds to the
hardest problem of that sequence. The results show only negligible differences in the
convergence of the two different residual norms for different problem sizes.

The iterative IC algorithm is much faster than the conventional IC algorithm on
highly parallel architectures such as GPUs. Table 3 lists the runtimes for the NVIDIA
cuSPARSE [37] implementation of IC, and for 1, 3, and 5 sweeps of the iterative
IC algorithm, for different sizes of our MOR problem (the shift used is immaterial
here). The results show very significant speedups over the cuSPARSE factorization
code, even when the iterative IC algorithm uses 5 sweeps. Note that 3 sweeps typi-
cally generate a preconditioner of comparable quality as the exact IC factorization,
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Table 3 Time [ms] for the exact incomplete Cholesky factorization using NVIDIAs cuSPARSE
library [38] and 1, 3, and 5 sweeps of the iterative counterpart – and the respective speedups

Time [ms] Speedup

Number of sweeps Number of sweeps

IC 1 3 5 1 3 5

DISC 1 4.88 0.03 0.06 0.08 167.70 87.14 57.48

DISC 2 9.01 0.03 0.06 0.08 309.62 158.07 107.39

DISC 3 15.60 0.04 0.08 0.12 421.62 200.00 134.48

DISC 4 32.00 0.08 0.19 0.30 405.58 167.54 105.26

DISC 5 66.40 0.23 0.62 1.01 286.21 106.58 65.74

DISC 6 142.00 0.78 2.25 3.73 182.75 63.11 38.07

DISC 7 323.00 2.94 8.77 14.50 109.86 36.83 22.28

as shown earlier. We also note that for the iterative IC kernel for smaller problems,
the GPU kernel launch overhead is a significant fraction of the total time.

4.3 Results on updating the factorization in the MOR problem sequence

The tests shown so far have solved each shifted system independently, using the
standard initial guess (which we now abbreviate as “SIG”) for the iterative IC factor-
ization. We now address solving each shifted system in sequence. For simplicity, we
use the same set of shifted systems for the DISC 5problem presented in Section 4.1.
As shown in Fig. 3, the systems generally increase in difficulty for increasing shift
index, but the shifts also decrease in size, making the systems with high shift index
more similar to each other than the systems with low shift index.

To solve the shifted matrices in sequence, we begin by assuming that we have a
factorization of the first matrix. We use an exact IC factorization for this, although
an inexact factorization computed using the iterative IC procedure can also be used.
Then, each subsequent matrix is factorized by updating the factorization of the
previous matrix using some number of sweeps.

Figure 7 shows the PCG iteration counts when the iterative IC factorization was
computed using this procedure (which we call using the previous factorization initial
guess, or “PFIG”). The results using SIG and exact IC are also shown for compari-
son. In the Figure, each graph shows the results using 0, 1, or 2 sweeps. PFIG using
0 sweeps corresponds to using the exact IC factorization for the first system to pre-
condition the entire sequence of problems. As can be observed, these PCG iteration
counts depart rapidly from those for exact IC.

PFIG with 1 sweep gives results very close to those of exact IC computed for every
shift. SIG with 1 sweep does not match exact IC for the harder problems with high
shift indices. Assuming 1 sweep, the total cost for using PFIG is one exact factoriza-
tion for the first matrix, and one sweep per each additional matrix. In summary, PFIG
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Fig. 7 PCG iteration counts
using a preconditioner generated
after 0, 1, and 2 sweeps of the
iterative IC algorithm. The ‘IC’
plot uses the exact IC
factorization for every system of
the sequence. The ‘SIG’ plot
computes the factorization using
a given number of sweeps on the
standard initial guess. The
‘PFIG’ plot computes the
factorization using a given
number of sweeps on the
previous factorization. In this
case, the IC factorization of the
first matrix of the sequence was
computed exactly

Shift index

5 10 15 20 25 30

P
C

G
 i
te

r
a
ti
o
n
s

0

50

100

150

200

250

300

350

400

450

500

IC

SIG

PFIG

Shift index

5 10 15 20 25 30

P
C

G
 i
te

r
a
ti
o
n
s

0

50

100

150

200

250

300

350

400

450

500

IC

SIG

PFIG

Shift index

5 10 15 20 25 30

P
C

G
 i
te

r
a
ti
o
n
s

0

50

100

150

200

250

300

350

400

450

500

IC

SIG

PFIG

using 1 sweep appears sufficient for good performance when an update is performed
for every shift. SIG using even 2 sweeps does not match this level of performance.

4.4 Reusing the factorization for many systems

An incomplete factorization preconditioner may be reused for more than one sys-
tem in a sequence, which can save computations. In this section, we show results for
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DISC 5from computing an incomplete factorization for every 3rd, 5th, and 7th sys-
tem, i.e., the factorization is reused for 3, 5, or 7 consecutive systems. Below, we use
� to denote the recomputation interval. In practice, degradation in the PCG iteration
count would be used for triggering recomputation of the factorization.
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Fig. 8 PCG iteration counts when each factorization is computed every � systems and reused for � con-
secutive systems, for � = 3, 5, 7. Right side graphs zoom in on the left side graphs. A single sweep was
used in the SIG and PFIG cases. “IC” denotes the case where the exact IC factorization is used for every
system
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Exact and iterative IC factorizations were computed every � systems, and were
used to precondition � consecutive systems. The iterative IC factorizations were com-
puted using a single sweep applied to either the standard or previous factorization
initial guesses (SIG or PFIG). In the case of PFIG, larger � means that the factoriza-
tion used as initial guess for the current factorization is more “stale” or numerically
farther. It could be expected that for larger �, the PFIG updating strategy may be
worse than the SIG strategy without updating.

Figure 8 shows the PCG iteration counts due to these preconditioners, for � =
3, 5, 7. The right side graphs zoom in on the left side graphs. A typical sawtooth
pattern can be observed, as the PCG iteration count degrades as a factorization is
reused, and then improves again when it is recomputed.

From the graphs on the left side of Fig. 8, fewer total number of PCG iterations are
needed when factorizations are updated using PFIG, compared to when factorizations
are computed from scratch using SIG. When the recomputation interval is larger, e.g.,
� = 7, the overall cost decreases (due to requiring fewer total number of sweeps) but
the benefit of PFIG also decreases compared to SIG. However, even for � = 7, the
PFIG strategy is better than the SIG strategy.

It can also be observed that PFIG is better when the difference between shifts
is small (high shift indices), since previous factorizations are better guesses when
the difference is small, but SIG is slightly better when the difference between shifts
is large (low shift indices; see zoomed graphs on right side). The cutoff between
SIG being better and PFIG being better is about 15 for � = 3, about 20 for
� = 5, and about 28 for � = 7. The cutoff increases for larger � which could be
expected.

A subtle but interesting feature that can also be noticed is that the degrada-
tion in PCG iteration counts when the iterative IC preconditioners are reused is
slightly worse than when exact IC preconditioners are reused. This is a very small
effect, but can be observed, for example, in the � = 7 case between indices 8
and 14.

4.5 Approximate sparse triangular solves with block right-hand sides

Although not the main focus of this paper, in this section we address the prob-
lem of applying the preconditioner in parallel, i.e., the problem of parallel sparse
triangular solves. The MOR application requires solving systems with a block
of 7 right-hand sides. Significant research has focused on level scheduling and
other parallelization approaches for single right-hand sides [2, 34, 40, 44] that
could easily be extended to block problems. On GPUs, it is natural to use
NVIDIA’s cuSPARSE function for level-scheduled triangular solves for a block of
vectors.

However, following [5], we replace exact sparse triangular solves used as the pre-
conditioning operation, by approximate triangular solves using a small number of
Jacobi iterations. For our purpose, we extended the Jacobi method to a block ver-
sion that is able to iterate multiple vectors simultaneously. In Table 4, we sum the
number of PCG iterations needed to solve the sequence of linear systems for each dis-
cretization. We compare the use of approximate triangular solves with the cuSPARSE
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block triangular solves mentioned above. The factorizations were constructed using
1 update sweep of the iterative IC algorithm started with the previous factorization
initial guess, where the updates are performed for every shift.

Using only a few Jacobi iterations results in a less accurate preconditioner, and
generally requires a larger number of PCG iterations. However, the total time for
the iterations is generally improved. The tradeoff between the speed and accuracy of
these solves is problem-dependent in general. The iterative triangular solves, how-
ever, accelerate the solution process for all considered cases. The optimal choice of
Jacobi iterations results in up to 7× speedup. Speedup would be less in a method like
GMRES compared to PCG since the former has more work per iteration outside the
preconditioner.

5 Conclusions

This paper demonstrated the use of an iterative algorithm for computing incomplete
factorizations as part of solving a sequence of linear systems from model order reduc-
tion. The iterative algorithm can exploit an initial guess for the factorization. We
tested the use of a previous factorization as the initial guess. While this initial guess is
generally effective, it is not always better than using a standard initial guess when the
factors to be updated correspond to a matrix that is numerically far from the current
matrix to be factored.

For the MOR benchmark problem, we have only addressed solving one set of lin-
ear systems. This reflects, e.g., the case of the LRADI iteration (Section 2) with a
pre-computed set of shifts. In the LRADI with an adaptive shift procedure, or the
IRKA approach (Section 2), a much smaller batch of shifts is available at once, but the
values of the shifts change as they are optimized. In the case of IRKA that means that
systems for different shifts can be solved simultaneously, while additional systems
for other shifts only become available after solves are performed. For the LRADI the
systems for one batch still need to be solved sequentially, but still preconditioners
could be computed or updated as soon as the batch becomes available. In this big-
ger picture, different possibilities for parallelism exist, depending on the available
parallel resources.

A general protocol for solving sequences of linear systems involves reuse of the
preconditioner and occasional updates or recomputation, the schedule for which will
depend on how quickly the matrices change from one to the next. Reuse of the pre-
conditioner may also be combined with other techniques, such as recycling of Krylov
subspaces. This paper shows that an iterative algorithm for computing incomplete
factorizations can be an important part of solving sequences of linear systems on
highly parallel computers.
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