
Numer Algor (2016) 73:517–534
DOI 10.1007/s11075-016-0106-y

ORIGINAL PAPER

A discontinuous Galerkin method for time fractional
diffusion equations with variable coefficients

K. Mustapha1 ·B. Abdallah2 ·K. M. Furati1 ·
M. Nour1

Received: 17 September 2015 / Accepted: 1 February 2016 / Published online: 13 February 2016
© Springer Science+Business Media New York 2016

Abstract We propose a piecewise-linear, time-stepping discontinuous Galerkin
method to solve numerically a time fractional diffusion equation involving Caputo
derivative of order μ ∈ (0, 1) with variable coefficients. For the spatial discretiza-
tion, we apply the standard continuous Galerkin method of total degree ≤ 1 on each
spatial mesh elements. Well-posedness of the fully discrete scheme and error analysis
will be shown. For a time interval (0, T ) and a spatial domain �, our analysis suggest
that the error in L2

(
(0, T ), L2(�)

)
-norm is O(k2−

μ
2 + h2) (that is, short by order μ

2
from being optimal in time) where k denotes the maximum time step, and h is the
maximum diameter of the elements of the (quasi-uniform) spatial mesh. However,
our numerical experiments indicate optimal O(k2 + h2) error bound in the stronger
L∞(

(0, T ), L2(�)
)
-norm. Variable time steps are used to compensate the singularity

of the continuous solution near t = 0.
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1 Introduction

In this paper, we investigate a numerical solution that allows a time discontinuity
for solving time fractional diffusion equations with variable diffusivity. Let � be a
bounded convex polygonal domain in R

d (d = 1, 2, 3), with a boundary ∂�, and
T > 0 be a fixed time. Then the fractional model problem is given by:

cDμu(x, t) − ∇ · (A(x, t)∇u(x, t)) = f (x, t) on � × (0, T ],
u(x, 0) = u0(x) on �,

u(x, t) = 0 on ∂� × (0, T ], (1)

where we assume that A ∈ C1([0, T ], L∞(�)) and satisfies

0 < amin < A(x, t) < amax < ∞ on � × [0, T ]. (2)

Here, cDμ is the Caputo’s fractional derivative defined by

cDμ
v(t) = I 1−μv′(t) :=

∫ t

0
ω1−μ(t − s) v′(s) ds with ω1−μ(t) := t−μ

�(1 − μ)
,

where throughout the paper, 0 < μ < 1. Noting that, I 1−μ is the Riemman Liouville
fractional integral operator, and v′ denotes the time partial derivative of v.

Over the past few decades, researchers have observed numerous biological, phys-
ical and financial systems in which some key underlying random motion conform to
a model where the diffusion is anomalously slow (subdiffusion) and not to the clas-
sical model of diffusion. For instance, the fractional diffusion model problem (1) is
known to capture well the dynamics of subdiffusion processes, in which the mean
square variance grows at a rate slower than that in a Gaussian process. Two distinct
approaches can be used for modelling fractional sub-diffusion. One is based on frac-
tional Brownian motion and Langevin equations, this leads to a diffusion equation
with a varying diffusion coefficient exhibiting a fractional power law scaling in time
[22]. However, the other one is based on continuous time random walks and master
equations with power law waiting time densities which leads to a diffusion equation
with fractional order temporal derivatives operating on the spatial Laplacian [12].

Having variable diffusivity in the model problem (1) is indeed very interesting and
also practically important. However, due to the additional difficulty in this case, there
are only few papers in the existing literature which considered the numerical solu-
tion of (1) and only for one-dimensional spatial domain �. Alikhanov [1] proposed a
finite difference scheme and O(hq + k2) convergence (with q ∈ {2, 4}) was proved,
where k is the temporal grid size and h is the spatial grid size. For time independent
diffusivity, Zhao and Xu [26] constructed a compactO(h4+k2−μ) difference scheme
and a box-type scheme of order O(h2 + k2−μ). Stabilities of both schemes were
proved. In relation, for time fractional convection-diffusion problems, Cui [4] stud-
ied a compact exponential scheme. An O(h4 + k2−μ) convergence rate was showen
assuming that the coefficients of the model problem are constants. Saadatmandi et
al. [21] investigated the Sinc-Legendre collocation method, and the accuracy of the
numerical method was tested numerically without providing any stability or conver-
gence results. In all these papers, the imposed regularity assumptions on the solution
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u of (1) are not practically valid. Furthermore, in the numerical tests, only smooth
solutions were considered which is unlikely the case in the presence of the Caputo
derivatives.

The innovation of this paper is to investigate a piecewise linear time-stepping
discontinuous Galerkin (DG) method, combined with the standard finite elements
(FEs) in space of total degree ≤ 1 on each mesh elements, for solving numerically
time fractional models with variable diffusion coefficients of the form (1). The DG
methods have found numerous applications, including for the time discretization of
fractional diffusion and fractional wave equations, [14, 15]. Their advantages include
excellent stability properties and suitability for adaptive refinement based on a pos-
teriori error estimate to handle problems with low regularity. We use quasi-uniform
spatial meshes, however, variable time-steps will be employed to compensate the sin-
gular behaviour of the continuous solution near t = 0. The convergence analysis will
be carried under suitable assumptions on u. The stability of the numerical scheme
remains valid for high-order DG-FE methods. Moreover, our convergence analysis
can be easily extended for high-order DG-FE methods, where some ideas from [16]
will be used. More precisely, we need to modify the DG error analysis, while the FE
error analysis is applicable for high-order approximations in space under some com-
patibility assumptions on the boundary of �. In conclusion, the proposed numerical
scheme is dynamic in terms of the meshes, the degree of the approximate solutions,
the regularity of the exact solutions, and also allows bounded spatial domains in
R

d for d = 1, 2, 3. These are considerable advantages over the existing numerical
methods mentioned in the above paragraph.

The present work is motivated by an earlier paper [14]. There in, the first author
and McLean considered a piecewise-linear DG method for a fractional diffusion
problem with a constant diffusivity:

u′(x, t) − RD
1−μ∇2u(x, t) = f (x, t) for (x, t) ∈ � × (0, T ], (3)

where RD1−μu := ∂
∂t

(Iμu) (Riemann–Liouville fractional derivative). Recently,
high order hp-DG methods with exponential rates of convergence for fractional dif-
fusion (3) and also for fractional wave equations were studied in [16, 19]. Noting
that, when A is constant and f ≡ 0 in (1), one may look at (3) as an alternative
representation of (1).

Numerical solutions for model problems of the form (1) with constant diffusion
parameterA have attracted considerable interest in recent years. For one-dimensional
spatial domains, Zhang et al. [24] studied a class of finite difference (FD) methods.
Stability properties were provided. Another FD scheme in time (with L1 approxi-
mation for the Caputo fractional derivative) combined with the spatial fourth order
compact difference approach was studied by Ren et al. [20]. Convergence rates of
order k1+μ+h4 were proved. Murillo and Yuste [13] presented an implicit FDmethod
over non-uniform time steps. An adaptive procedure was described to choose the size
of the time meshes. Lin and Xu [8] combined a FD scheme in time and a spectral
method in space, and O(k1+μ + r−m) accuracy was proved, where r is the spatial
polynomial degree, and m is related to the regularity of the exact solution u. Later, Li
and Xu [7] developed and analyzed a time-space spectral method. Zhao and Sun [25]
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combined an order reduction approach and L1 discretization of the fractional deriva-
tive. A box-type scheme was constructed and O(k1+μ + h2) convergence had been
proved. Finite central differences in time combined with the FE method in space was
studied by Li and Xu [6]. For a smooth u, O(k2 + h�+1) convergence was achieved
where � is the degree of the FE solutions in space. For a high-order local DG method
for space discretization, we refer to the work by Xu and Zheng [23].

For two- or three-dimensional spatial domains with A = 1 in (1), Brunner et al.
[2] used an algorithm that couples an adaptive time stepping and adaptive spatial
basis selection approach for the numerical solution of (1). A semi-discrete piecewise
linear Galerkin FE and lumped mass Galerkin methods were studied by Jin et al.
[5]. An optimal error with respect to the regularity error estimates was established
for f ≡ 0 and non-smooth initial data u0. For three-dimensional spatial domains,
a fractional alternating direction implicit scheme was proposed and analyzed by
Chen et al. [3]. Mustapha et al. [17] proposed low-high order time stepping discon-
tinuous Petrov-Galerkin methods combined with FEs in space. Using variable time
meshes, O(km+(1−μ)/2 + hr+1) convergence rates were shown, where m and r are
the degrees of approximate solutions in the time and spatial variables, respectively.
Optimal convergence rates in both variables were demonstrated numerically. In [18],
a hybridizable DG method in space was extensively studied by Mustapha et al..

The outline of the paper is as follows. Section 2 introduces a fully discrete
DG-FE scheme. In Section 3, we prove the stability of the discrete solution and
provide a remark about the existence and uniqueness of the numerical solution.
Section 4 is devoted to introduce time and space projection operators that will be
used later to show the convergence of the numerical scheme. The error analysis is
given in Section 5. Using suitable refined time-steps (towards t = 0) and quasi-
uniform spatial meshes, in the L2((0, T ), L2(�))-norm, O(k2−

μ
2 + h2) convergence

is achieved. Section 6 is dedicated to present a sample of numerical test which illus-
trate that our error bounds are pessimistic. For a strongly graded time mesh, in
the stronger L∞((0, T ), L2(�)) (L∞(L2))-norm, we observe optimal O(k2 + h2)

convergence rates. We also tested the performance of our scheme using FE solu-
tions of total degree ≤ 2 (quadratic) and O(h3) convergence was observed for
k2 ≤ h3.

2 The numerical method

To describe our fully discrete DG-FE method, we introduce a time partition of the
interval [0, T ] given by the points: 0 = t0 < t1 < · · · < tN = T . We set
In = (tn−1, tn) and kn = tn − tn−1 for 1 ≤ n ≤ N with k := max1≤n≤N kn.
Let Sh ⊆ H 1

0 (�) denotes the space of continuous, piecewise polynomials of total
degree ≤ 1 with respect to a quasi-uniform partition of � into conforming triangular
finite elements, with maximum diameter h. Next, we introduce our time-space finite
dimensional DG-FE space:

W = {w ∈ L2((0, T ), Sh) : w|In ∈ P1(Sh) for 1 ≤ n ≤ N}
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where P1(Sh) denotes the space of linear polynomials in the time variable t , with
coefficients in Sh. We denote the left-hand limit, right-hand limit and jump at tn by

wn := w(tn) = w(t−n ), wn+ := w(t+n ), [w]n := wn+ − wn,

respectively. The weak form of the fractional diffusion equation in (1) is
∫

In

[〈cDμ
u, v〉 + a

(
t, u, v

)]
dt =

∫

In

〈f, v〉 dt, ∀ v ∈ L2(In, H
1(�)

)
. (4)

Throughout the paper, 〈·, ·〉 denotes the L2-inner product and ‖·‖ is the associated
norm, and ‖ · ‖m (m ≥ 1) denotes the norm on the Sobolev space Hm(�).

For each fixed t ∈ (0, T ], a(t, ·, ·) : H 1
0 (�) × H 1

0 (�) → R is the bilinear form

a(t, v, w) = 〈A(·, t)∇v, ∇w〉 =
∫

�

A(x, t)∇v(x) · ∇w(x) dx

associated with the operator ∇ · (A(·, t)∇) which is symmetric and positive definite
(by (2)), that is, there exist positive constants c0 and c1 such that

c0‖v(t)‖21 ≤ |v(t)|21 := a(t, v, v) ≤ c1‖v(t)‖21 ∀ v(t) ∈ H 1
0 (�) . (5)

The DG-FE approximation U ∈ W is defined as follows: Given U(t) for 0 ≤ t ≤
tn−1, the solution U ∈ P1(Sh) on In is determined by requesting that for 1 ≤ n ≤ N ,

∫

In

[〈cDμ
dgU+

n−1∑

j=0

ω1−μ(t−tj ) [U ]j , X〉+a
(
t, U,X

)]
dt =

∫

In

〈f,X〉 dt, ∀ X ∈ P1(Sh),

with U0+ = U0 ∈ Sh is a suitable approximation of the initial data u0, where

cDμ
dgU(t) :=

n∑

j=1

∫ min{tj ,t}

tj−1

ω1−μ(t − s) U ′(s) ds for t ∈ In .

Since

RDμU(t) := ∂

∂t

∫ t

0
ω1−μ(t − s)U(s) ds

= cDμ
dgU(t) + ω1−μ(t)U0 +

n−1∑

j=1

ω1−μ(t − tj ) [U ]j for t ∈ In, (6)

our scheme can be rewritten in a compact form as follows: for 1 ≤ n ≤ N ,
∫

In

[〈RDμU, X
〉+a

(
t, U,X

)]
dt =

∫

In

〈f +ω1−μ(t)U0, X〉 dt ∀ X ∈ P1(Sh). (7)

Noting that, since the DG-FE scheme (7) amounts to a square linear system, the
existence of the numerical solution U follows from its uniqueness. The uniqueness
follows immediately from the above stability property in Theorem 1.
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3 Stability of the numerical solution

To show the stability of the DG-FE scheme (7), we claim first the identity: v(t) =
Iμ(RDμv)(t) for any v ∈ W .

Lemma 1 If v ∈ W , then

v(t) = Iμ(RDμv)(t) for t ∈ In with 1 ≤ n ≤ N.

Proof Since v has possible discontinuities at the time nodes t0, t1, · · · , tj−1, from
(6),

RDμv(s) = ω1−μ(s)v0+ +
j−1∑

i=1

ω1−μ(s − ti ) [v]i + cDμ
dgv(s) for s ∈ Ij . (8)

Applying the operator Iμ to both sides and using Iμ(cDμ
dgv)(t) = ∫ t

0v′(s) ds, we
observe

Iμ(RDμv)(t) = v0+ +
n−1∑

j=2

∫

Ij

ωμ(t − s)

j−1∑

i=1

ω1−μ(s − ti ) [v]i ds

+
∫ t

tn−1

ωμ(t − s)

n−1∑

i=1

ω1−μ(s − ti ) [v]i ds +
∫ t

0
v′(s)ds for t ∈ In .

Now, changing the order of summations and rearranging the terms yield

Iμ(RDμv)(t) = v0+ +
n−2∑

i=1

n−1∑

j=i+1

∫

Ij

ωμ(t − s)ω1−μ(s − ti ) [v]i ds

+
n−1∑

i=1

∫ t

tn−1

ωμ(t − s)ω1−μ(s − ti ) [v]i ds +
n∑

j=1

∫ min{t,tj }

tj−1

v′(s)ds

= v0+ +
n−2∑

i=1

∫ t

ti

ωμ(t − s)ω1−μ(s − ti ) [v]i ds

+
∫ t

tn−1

ωμ(t − s)ω1−μ(s − tn−1) [v]n−1 ds +
n∑

j=1

∫ min{t,tj }

tj−1

v′(s)ds .

Integrating and simplifying, then we have

Iμ(RDμv)(t) = v0+ +
n−1∑

i=1

[v]i +
n−1∑

j=1

(vj − v
j−1
+ ) + v(t) − vn−1+ = v(t) for t ∈ In .
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We let C0(Jn, L
2(�)) (Jn := ∪n

j=1Ij ) denote the space of functions v : Jn →
L2(�) such that the restriction v|Ij

extends to a continuous function on the closed
interval I j for 1 ≤ j ≤ n. For later use, we let

‖v‖Ij
:= sup

t∈Ij

‖v(t)‖, ‖v‖Jn := n
max
j=1

‖v‖Ij
and ‖v‖J := N

max
j=1

‖v‖Ij
.

Next, we state some properties of the Riemman Liouville factional operators that
will be used in our stability and convergence analysis of the numerical scheme.

Lemma 2 For 0 < μ < 1, we have

(i) The operator RDμ satisfies: for v ∈ W ,

∫ T

0
〈RDμv, v〉 dt ≥ 2

3
cos

(μπ

2

)
T −μ

∫ T

0
‖v(t)‖2 dt .

(ii) The integral operator Iμ satisfies: for v, w ∈ C0(JN, L2(�))

∣∣∣
∫ T

0
〈Iμv, w〉 dt

∣∣∣
2 ≤ sec2

(μπ

2

) ∫ T

0
〈Iμv, v〉 dt

∫ T

0
〈Iμw, w〉 dt .

Proof The property (i) was proven in [11, Theorem A.1]. For the proof of the
property (ii), see [19, Lemma 3.1].

The next theorem shows the stability of the DG-FE scheme (7).

Theorem 1 Assume that U0 ∈ L2(�) and f ∈ L2((0, T ), L2(�)). Then,
∫ T

0
‖U‖21 dt ≤ CT 1−μ‖U0‖2 + C

∫ T

0
‖f ‖2 dt .

Proof Choosing X = U in the DG-FE scheme (7), and then summing over n, we
obtain

∫ T

0

[〈RDμU, U
〉 + a(t, U,U)

]
dt =

∫ T

0
〈f + ω1−μ(t)U0, U 〉 dt.

Since a(·, U, U) ≥ c0‖U‖21 by (5) and 〈f,U 〉 ≤ 1
2c0

‖f ‖2 + c0
2 ‖U‖2, we have

∫ T

0

[〈RDμU, U
〉 + c0

2
‖U‖21

]
dt ≤

∫ T

0

(
〈ω1−μ(t)U0, U 〉 + 1

2c0
‖f ‖2

)
dt .
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Using the identity U(t) = Iμ(RDμU)(t) from Lemma 1, Lemma 2 (ii), the

inequality ab ≤ a2

4 + b2, and the identity Iμω1−μ(t) = 1, yield

∫ T

0
〈ω1−μ(t)U0, U 〉 dt =

∫ T

0
〈ω1−μ(t)U0, Iμ(RDμU)〉 dt

≤ 1

4

∫ T

0

〈RDμU, U
〉
dt + sec2(μπ/2)

∫ T

0
ω1−μ(t)(Iμω1−μ)(t) dt‖U0‖2

≤ 1

4

∫ T

0

〈RDμU, U
〉
dt + C T 1−μ‖U0‖2 . (9)

To complete the proof, we combine the above two equations and use the positivity
property of the operator RDμ given by Lemma 2 (i).

4 Space and time projections

In this section, we introduce space and time projections, and then derive some bounds
and errors properties that will be used later in our convergence analysis.

Projection in space For each t ∈ [0, T ], the elliptic projection operator Rh :
H 1

0 (�) → Sh is defined by

a(t, Rhv − v, χ) = 0 ∀ χ ∈ Sh . (10)

Assume that the diffusivity coefficient function A ∈ C1([0, T ], L∞(�)), then the
projection error ξ := Rhu − u has the approximation property [9, (3.2)]: for each
t ∈ [0, T ],

‖ξ(t)‖ + h‖∇ξ(t)‖ ≤ C h2‖u(t)‖2 for u(t) ∈ H 2(�) ∩ H 1
0 (�) . (11)

Moreover, by [9, (3.3)], we have

‖ξ ′(t)‖ ≤ C h2(‖u(t)‖2 + ‖u′(t)‖2) for u(t), u′(t) ∈ H 2(�) ∩ H 1
0 (�) . (12)

Projection in time The local L2-projection operator Πk : L2(In, L
2(�)) →

C(In,P1(L
2(�)) defined by:

∫

In

〈Πkv − v, w〉 dt = 0 ∀ w ∈ P1(L
2(�)) for 1 ≤ n ≤ N,

where P1(L
2(�)) is the space of linear polynomials in the time variable t , with

coefficients in L2(�) . Explicitly,

Πkv(t) = 12

k3n
(t − t

n− 1
2
)

∫

In

(s − t
n− 1

2
) v(s) ds + 1

kn

∫

In

v(s) ds for t ∈ In , (13)
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where t
n− 1

2
:= (tn−1 + tn)/2. Hence, for v′ ∈ L1(In, L

2(�)),

(Πkv)′(t) = 12

k3n

∫

In

(s − t
n− 1

2
) v(s) ds = 6

k3n

∫

In

(tn − t)(s − tn−1) v′(s) ds .

Thus, for t ∈ In with 1 ≤ n ≤ N , we have

‖Πkv(t)‖ ≤ 4

kn

∫

In

‖v(s)‖ ds and ‖(Πkv)′(t)‖ ≤ 3

2kn

∫

In

‖v′(s)‖ ds . (14)

Setting ηv = Πkv − v, we have the well-known projection error bound: for t ∈ In

‖ηv(t)‖ + kn ‖η′
v(t)‖ ≤ C k�−1

n

∫

In

‖v(�)(s)‖ ds for � = 1, 2, with v(�) := ∂�v

∂t�
.

(15)
Next, we show an error bound property of Πk that involves the operator RDμ.

Lemma 3 Let v(�)
∣∣
In

∈ L1(In, L
2(�)) for 1 ≤ n ≤ N and for � ∈ {1, 2}. We have

∫

In

〈RDμηv, ηv

〉
dt ≤ C k1−μ

n

n
max
j=1

k2�−2
j

( ∫

Ij

‖v(�)‖ dt
)2

for 1 ≤ n ≤ N.

Proof We integrate by parts and notice that
∫

In

〈RDμηv, ηv

〉
dt = 〈I 1−μηv(t), ηv(t)〉

∣∣∣∣

t−n

t+
n−1

−
∫

In

〈I 1−μηv, η
′
v〉 dt

= 〈In(tn), ηv(tn)〉 −
∫

In

〈In(t), η
′
v(t)〉 dt, (16)

where for t ∈ In,

In(t) := I 1−μηv(t) − I 1−μηv(tn−1)

=
∫ tn−1

0
[ω1−μ(t−s)−ω1−μ(tn−1−s)]ηv(s) ds +

∫ t

tn−1

ω1−μ(t−s)ηv(s) ds .

Simplifying then integrating, we observe

‖In(t)‖ ≤
( ∫ tn−1

0
[ω1−μ(tn−1−s) − ω1−μ(t−s)] ds +

∫ t

tn−1

ω1−μ(t−s) ds
)
‖ηv‖Jn

≤ 2ω2−μ(kn) ‖ηv‖Jn for t ∈ In .

Therefore, an application of the Cauchy-Schwarz inequality gives
∫

In

|〈RDμηv, ηv

〉| dt ≤ 2ω2−μ(kn) ‖ηv‖Jn

(
‖ηv(tn)‖ +

∫

In

‖η′
v‖ dt

)
,

and hence, using the error projection in (15), we obtain the desired bound.

The next estimate will be used to show the convergence of our scheme
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Lemma 4 We have
∣∣∣
∫ T

0

〈RDμξ, ηξ

〉
dt

∣∣∣ +
∣∣∣
∫ T

0

〈RDμΠkξ, ξ
〉
dt

∣∣∣ ≤ C T 1−μ
(
‖ξ(0)‖ +

∫ T

0
‖ξ ′‖ dt

)2
.

Proof Since RDμξ(t) = ω1−μ(t)ξ(0)+I 1−μξ ′(t) and since ‖ηξ (t)‖ ≤ C
∫
In

‖ξ ′‖ dt

for tn (by the time projection estimate in (15)), we have
∫

In

|〈RDμξ, ηξ

〉| dt ≤ C

∫

In

[ω1−μ(t)‖ξ(0)‖ + I 1−μ(‖ξ ′‖)] dt

∫

In

‖ξ ′‖ ds.

Summing over n and then integrating,
∫ T

0
|〈RDμξ, ηξ

〉| dt ≤ C
(
ω2−μ(T )‖ξ(0)‖ +

∫ T

0
ω2−μ(T − s)‖ξ ′(s)‖ ds

)∫ T

0
‖ξ ′‖ dt

≤ C T 1−μ
(
‖ξ(0)‖ +

∫ T

0
‖ξ ′(s)‖ ds

)∫ T

0
‖ξ ′‖ dt .

On the other hand, noting that
∫ T

0

〈RDμΠkξ, ξ
〉
dt = 〈I 1−μΠkξ(T ), ξ(T )〉 −

∫ T

0
〈I 1−μΠkξ, ξ ′〉 dt,

and hence, by the Cauchy-Schwarz inequality and the first inequality in (14),

∣∣∣
∫ T

0

〈RDμΠkξ, ξ
〉
dt

∣∣∣ ≤ ‖Πkξ‖J

∫ T

0

[
ω1−μ(T − t)‖ξ(T )‖ +

∫ t

0
ω1−μ(t − s) ds‖ξ ′(t)‖

]
dt

≤ 4‖ξ‖J

(
‖ξ(T )‖ω2−μ(T ) +

∫ T

0
ω2−μ(t)‖ξ ′(t)‖ dt

)

≤ C T 1−μ
(
‖ξ(0)‖ +

∫ T

0
‖ξ ′(t)‖ dt

)2
,

where in the last inequality we used ‖ξ(s)‖ ≤ ‖ξ(0)‖+∫ T

0 ‖ξ ′‖ dt for any s ∈ [0, T ].
Finally, the desired result follows from the above two inequalities .

5 Error estimates

This section is devoted to investigate the convergence of the DG-FE scheme, (7). We
decompose the error as follows:

U − u = ζ + Πkξ + ηu with ζ = U − ΠkRhu . (17)

Recall that ξ = Rhu − u and ηu = Πku − u. The main task now is to estimate ζ .

Theorem 2 Choose U0 = Rhu0. For 1 ≤ n ≤ N, we have
∫ T

0
‖ζ(t)‖21 dt ≤ C(h4C1(k, u) + C2(k, u)) + Ch2k2

∫ T

0
‖u(t)‖22 dt,
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where for � ∈ {1, 2},

C1(k, u) = N
max
n=1

(
k
− μ

2
n

∫

In

‖u′‖2 dt
)2 +

(
‖u0‖2 +

∫ T

0
‖u′‖2 dt

)2
,

C2(k, u) = N
max
n=1

k2�−2−μ
n

(
k−μ
n

( ∫

In

‖u(�)‖ dt
)2 +

( ∫

In

‖∇u(�)‖ dt
)2)

. (18)

Proof We start our proof by taking the inner product of (1) with ζ , using the identity
cDμu(t) = RDμu(t) − ω1−μ(t)u0, and then integrating over the time subinterval In,

∫

In

[〈RDμu, ζ
〉 + a

(
t, u, ζ

)]
dt =

∫

In

〈f + ω1−μ(t)u0, ζ 〉 dt .

The above equation, the DG-FE scheme (7) and the decomposition in (17) imply
∫ T

0

(〈RDμζ, ζ
〉 + |ζ |21

)
dt =

∫ T

0
〈ω1−μ(t) ξ(0), ζ 〉 dt

−
∫ T

0

[〈RDμ(Πkξ + ηu), ζ
〉 + a(t,Πkξ + ηu, ζ )

]
dt .

(19)

Now, using the identity ζ = Iμ(RD
μ
ζ ) by Lemma 1, and the continuity property

in Lemma 2 (ii), we notice that

∣∣∣
∫ T

0

〈RDμηu, ζ
〉
dt

∣∣∣ ≤ C

∫ T

0

〈RDμηu, ηu

〉
dt + 1

4

∫ T

0

〈RDμζ, ζ
〉
dt,

∣∣∣
∫ T

0

〈RDμΠkξ, ζ
〉
dt

∣∣∣ ≤ C

∫ T

0

〈RDμΠkξ,Πkξ
〉
dt + 1

4

∫ T

0

〈RDμζ, ζ
〉
dt .

In addition, following the steps in (9), we observe
∫ T

0
〈ω1−μ(t) ξ(0), ζ 〉 dt ≤ 1

4

∫ T

0

〈RDμζ, ζ
〉
dt + C T 1−μ‖ξ(0)‖2

Inserting the above three inequalities in (19), then simplifying, and using the
positivity property of RDμ, Lemma 2 (i), yield

∫ T

0
|ζ |21dt ≤ C T 1−μ‖ξ(0)‖2 + C

∫ T

0

(〈RDμηu, ηu

〉 + 〈RDμΠkξ,Πkξ
〉)

dt

+
N∑

n=1

∣∣∣
∫

In

a(t,Πkξ + ηu, ζ )dt

∣∣∣ . (20)

From the definitions of the time projection Πk and the space projection Rh,
∫

In

〈A(tn)∇(Πkξ+ηu),∇ζ 〉 dt =
∫

In

〈A(tn)∇ξ,∇ζ 〉 dt =
∫

In

〈[A(tn)−A(t)]∇ξ,∇ζ 〉 dt
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and so,

∣∣∣
∫

In

a(t, Πkξ + ηu, ζ )dt

∣∣∣

=
∣∣∣
∫

In

〈A(tn)∇(Πkξ + ηu) + [A(t) − A(tn)]∇(Πkξ + ηu), ∇ζ 〉 dt

∣∣∣

=
∣∣∣
∫

In

〈[A(t) − A(tn)]∇(ηξ + ηu),∇ζ 〉 dt

∣∣∣

≤ Ckn

∫

In

‖∇(ηξ + ηu)‖ ‖∇ζ‖ dt .

Thus, by the inequality ‖∇ηξ (t)‖ ≤ ‖∇ξ(t)‖+4k−1
n

∫
In

‖∇ξ(s)‖ ds (follows from
the triangle inequality and the first property of k in (14)) for t ∈ In, and property
(5),

∣∣∣
∫

In

a(t,Πkξ + ηu, ζ )dt

∣∣∣ ≤ C k2n

∫

In

(‖∇ξ‖2 + ‖∇ηu‖2) dt + 1

2

∫

In

|ζ |21 dt .

Inserting this in (20) and using (11) for t = 0, we get
∫ T

0
|ζ |21dt ≤ C h4‖u0‖22

+C

N∑

n=1

∫

In

(〈RDμηu, ηu

〉+〈RDμΠkξ,Πkξ
〉+k2n(‖∇ξ‖2+‖∇ηu‖2)

)
dt .

But, for t ∈ In and for � ∈ {1, 2},
∫

In

〈RDμηu, ηu

〉
dt ≤ Ckn

n
max
j=1

k
2�−2−μ
j

( ∫

Ij

‖u(�)‖ dt
)2

by Lemma 3,

‖∇ξ(t)‖ ≤ C h‖u(t)‖2 by the elliptic projection error (11),

‖∇ηu(t)‖ ≤ C k�−1
n

∫

In

‖∇u(�)‖ ds by the time projection error (15),

where in the first inequality we also used the non-increasing time step assumption.
So,

∫ T

0
|ζ |21dt ≤ C h4‖u0‖22 + C

∫ T

0

〈RDμΠkξ,Πkξ
〉
dt + C h2k2

∫ T

0
‖u‖22dt

+ C
N

max
n=1

k2�−2−μ
n

(( ∫

In

‖u(�)‖ dt
)2 + kμ

n

( ∫

In

‖∇u(�)‖ dt
)2)

. (21)

It remains to estimate
∫ T

0

〈RDμΠkξ,Πkξ
〉
dt . From the decomposition:

∫

In

〈RDμΠkξ,Πkξ
〉
dt =

∫

In

[〈RDμηξ , ηξ

〉 + 〈RDμξ, ηξ

〉 + 〈RDμΠkξ, ξ
〉]

dt .

(22)
By Lemma 3 with � = 1,

∫

In

〈RDμηξ , ηξ

〉
dt ≤ C k1−μ

n

n
max
j=1

( ∫

Ij

‖ξ ′‖ dt
)2 ≤ C kn

n
max
j=1

(
k
− μ

2
j

∫

Ij

‖ξ ′‖ dt
)2

.
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Inserting the above bound in (22), then summing over n and using the achieved
bound in Lemma 4, we obtain

∫ T

0
|〈RDμΠkξ,Πkξ

〉| dt ≤ C
N

max
n=1

(
k
− μ

2
n

∫

In

‖ξ ′‖ dt
)2 +C

(
‖ξ(0)‖+

∫ T

0
‖ξ ′‖ dt

)2
.

Finally, to complete the proof, we combine (21) with the above bound, and use the
Ritz projection error estimate in (11).

In the next theorem we show our main convergence results of the DG-FE solution.
We assume that the exact solution u of problem (1) satisfies the finite regularity
assumptions:

‖u′(t)‖2 + t‖u′′(t)‖1 ≤ M tσ−1 for t > 0, (23)

for some positive constants M and σ . To satisfy this inequality, some regularity and
compatibility assumptions on the given data u0, the source term f , and the variable
diffusivity A are required. For instance, if f ≡ 0 and A ≡ 1, we assume that u0 ∈
H 2+ε(�) ∩ H 1

0 (�) for some 0 < ε < 1/2. In this case, σ = ε and M depends on
‖u0‖2+ε , see [10, Theorem 4.2] for more details.

Due to the singular behaviour u near t = 0, we employ a family of non-uniform
meshes, where the time-steps are graded towards t = 0; see [14]. More precisely, for
a fixed parameter γ ≥ 1, we assume that

tn = (n/N)γ T for 0 ≤ n ≤ N. (24)

One can easily see that the sequence of time-step sizes {kj }Nj=1 is nondecreasing,
that is, ki ≤ kj for 1 ≤ i ≤ j ≤ N . One can also show the following mesh property:

kj ≤ γ kt
1−1/γ
j . (25)

Theorem 3 Let u ∈ L2((0, T ), H 2(�) be the solution of (1) satisfying the regularity
property (23) with σ > μ/2. Let U be the DG-FE solution defined by (7). Then, we
have

∫ T

0
‖U − u‖2 dt ≤ C (h4 + kγ (2σ−μ)) for 1 ≤ γ ≤ 4 − μ

2σ − μ

where C is a constant that depends on T , μ, γ , σ , and onM.

Proof From the decomposition of the error in (17), the triangle inequality, the
bound in Theorem 2, the inequality

∫ T

0 ‖Πkξ‖2dt ≤ ∫ T

0 ‖ξ‖2dt by (14), the elliptic
projection error (11), the error from the time projection (15), we have

∫ T

0
‖U − u‖2 dt ≤ C

(
h4C1(k, u) + C2(k, u) + h2(h2 + k2)

∫ T

0
‖u‖22dt

)
.
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By the definitions of C1(k, u) and C2(k, u) in (18), the regularity assumption (23),
and the inequality h2k2 ≤ 1

2 (h
4 + k4), we observe

∫ T

0
‖U − u‖2 dt ≤ Ch4

N
max
n=1

(
k
− μ

2
n

∫

In

tσ−1 dt
)2 + Ch4

(
1 +

∫ T

0
tσ−1 dt

)2

+ C k
−μ
1

(∫

I1

tσ−1 dt

)2

+C
N

max
n=2

k2−μ
n

(∫

In

tσ−2 dt

)2

+C h2k2

≤ C(h4
N

max
n=1

k2σ−μ
n + h4 + k

2σ−μ
1 + N

max
n=2

k4−μ
n t2σ−4

n + k4)

≤ C (h4 + kmin{γ (2σ−μ),4−μ})

where in the last inequality, by the mesh property (25), we used

k4−μ
n tn

2(σ−2) ≤ C k4−μt
2(σ−2)+4−μ−(4−μ)/γ
n ≤ C kmin{γ (2σ−μ),4−μ}.

The proof is completed now.

6 Numerical results

In this section, we present a sample of numerical tests to validate our theoretical
convergence results.

Table 1 Errors and time convergence rates for various choices of γ

μ = 0.3

N γ = 1 γ = 2 γ = 3

10 5.899e-03 1.125e-03 9.933e-04

20 3.598e-03 0.7134 4.116e-04 1.451 2.552e-04 1.960

40 2.183e-03 0.7211 1.501e-04 1.456 6.453e-05 1.984

80 1.321e-03 0.7247 5.470e-05 1.456 1.614e-05 1.999

160 7.980e-04 0.7269 1.999e-05 1.452 4.008e-06 2.009

320 4.817e-04 0.7284 7.348e-06 1.444 9.916e-07 2.015

μ = 0.5

N γ = 1 γ = 2 γ = 3 γ = 4

10 1.149e-02 3.262e-03 1.560e-03 1.882e-03

20 7.641e-03 0.589 1.619e-03 1.011 5.972e-04 1.385 4.869e-04 1.951

40 5.151e-03 0.569 8.037e-04 1.010 2.192e-04 1.446 1.209e-04 2.009

80 3.641e-03 0.500 3.997e-04 1.008 7.867e-05 1.478 2.933e-05 2.044

160 2.570e-03 0.503 1.992e-04 1.005 2.797e-05 1.492 7.011e-06 2.064

320 1.812e-03 0.504 9.940e-05 1.003 9.908e-06 1.497 1.774e-06 1.982
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Table 2 Errors and time convergence rates for various choices of γ

μ = 2/3

N γ = 1 γ = 2 γ = 4 γ = 6

10 1.677e-02 7.579e-03 3.416e-03 3.261e-03

20 1.327e-02 0.338 4.677e-03 0.696 1.393e-03 1.294 9.087e-04 1.843

40 1.044e-02 0.346 3.036e-03 0.623 5.553e-04 1.327 2.471e-04 1.879

80 8.191e-03 0.350 1.940e-03 0.646 2.205e-04 1.332 6.435e-05 1.941

160 6.427e-03 0.350 1.229e-03 0.658 8.753e-05 1.333 1.643e-05 1.970

μ = 0.7

N γ = 1 γ = 3 γ = 5 γ = 7

10 1.792e-02 5.149e-03 3.625e-03 3.991e-03

20 1.446e-02 0.309 2.905e-03 0.826 1.318e-03 1.459 1.121e-03 1.832

40 1.160e-02 0.318 1.577e-03 0.881 4.673e-04 1.496 3.052e-04 1.877

80 9.290e-03 0.321 8.479e-04 0.895 1.652e-04 1.499 7.981e-05 1.935

160 7.447e-03 0.319 4.547e-04 0.899 5.843e-05 1.500

Example 1 We consider a model problem in one space dimension, of the form (1)
with� = (0, 1), [0, T ] = [0, 1], andA(x, t) = 1+t3/2. We choose u0(x) = sin(πx)

for the initial data and choose the source term f so that

u(x, t) = (1 + t1−μ) sin(πx) . (26)

One easily verifies that the regularity condition (23) holds for σ = 1 − μ.

The numerical tests below reveal faster rates of convergence than those suggested
by Theorem 3, and that our regularity assumptions are more restrictive than is needed
in practice. More precisely, Theorem 3 shows suboptimal (in time) convergence of
order O(k2−

μ
2 + h2) for sufficiently graded time meshes in the time-space L2-norm.

However, we demonstrate numerically optimal (in both time and space) rates of
convergence in the stronger L∞(L2)-norm. Let ‖v‖Gm := maxt∈Gm ‖v(t)‖ where

Gm = { tj−1 + �kj /m : j = 1, 2, . . . , N and � = 0, 1, . . . , m },

Table 3 Errors and convergence rates in space with μ = 0.3, 0.5 and 0.7

M μ = 0.3 μ = 0.5 μ = 0.7

10 1.2156e-02 1.2780e-02 1.2563e-02

20 3.1130e-03 1.9653 3.2743e-03 1.9646 3.1768e-03 1.9836

40 7.8803e-04 1.9820 8.2897e-04 1.9818 7.9873e-04 1.9918

80 1.9826e-04 1.9909 2.0864e-04 1.9903 2.0029e-04 1.9956

160 4.9724e-05 1.9954 5.2355e-05 1.9946 5.1065e-05 1.9717
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Table 4 Errors and convergence rates from the spatial quadratic FE approximations

M μ = 0.3 μ = 0.5

10 2.6421e-04 2.5119e-04

20 3.3554e-05 2.9771 3.1483e-05 2.9962

40 4.2194e-06 2.9913 3.9262e-06 3.0033

70 7.8874e-07 2.9967 7.5959e-07 2.9353

100 2.7028e-07 3.0026 2.6715e-07 2.9298

with k1, k2, · · · , kN being the step sizes on the finest time meshes in each table.
So that, for sufficiently large values of m, ‖Uh − u‖Gm approximates the uniform
error ‖Uh − u‖L∞(L2). In all tables, we choose m = 10.

For the numerical illustration of the convergence rates in time, we choose M (the
number of uniform spatial subintervals) to be sufficiently large such that the spatial
error is negligible compared to the error from the time discretization. We employ a
time mesh of the form (24). Tables 1 and 2 show the error (in the stronger L∞(L2)

-norm) and the rates of convergence when μ = 0.3, 0.5, 2/3 and 0.7 respectively, for
various choices of N and γ . We observe optimal rates of order O(kγσ ) for various
choices of 1 ≤ γ ≤ 2

σ
which is faster than the rate O(k

γ
2 (2σ−μ)) for 1 ≤ γ ≤ 4−μ

2σ−μ
predicted by our theory in Theorem 3. Noting that, in Table 2, σ ≤ μ/2 and thus the
assumption σ > μ/2 in this theorem is not sharp.

Next, we test the performance of the spatial piecewise linear FEs discretizaton of
the scheme (7). A uniform spatial mesh that consists of M subintervals where each
is of width h will be used. We refine the time mesh such that the spatial error is
dominating. By Theorem 3, a convergence of order O(h2) is expected. We illustrate
these results in Table 3. Moreover, the numerical results in Table 4 demonstrate an
O(h3) convergence rate for the piecewise quadratic FEs, which is expected based on
our theoretical results.

Example 2 In this example, we test the performance of the spatial FEs discretizaton
of the scheme (7) on a two-dimensional fractional diffusion problem of the form (1).

Table 5 Errors and convergence rates in space with μ = 0.3 and 0.5 for Example 2

M μ = 0.3 μ = 0.5

20 2.3247e-03 2.3232e-03

40 5.7409e-04 2.0177 5.7340e-04 2.0185

70 1.8770e-04 1.9977 1.8774e-04 1.9951

100 9.1336e-05 2.0196 9.1384e-05 2.0186

140 4.6424e-05 2.0112 4.6476e-05 2.0094
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We choose � = (0, 1) × (0, 1), [0, T ] = [0, 1], and A(x, t) = 1 + t3/2. The initial
data u0 and the source term f will be chosen such that

u(x, t) = (1 + t1−μ) sin(πx) sin(πy), for t ∈ [0, T ] and (x, y) ∈ � . (27)

As in Example 1, the regularity condition (23) holds for σ = 1−μ. We refine the
time steps so that the FE errors are dominant. Hence, by Theorem 3, an error of order
O(h2) is expected. To illustrate this, we let Th be a family of uniform rectangular
mesh of the domain � with diameter h = √

2/M . The numerical results in Table 5
reveal optimal O(h2) rates of convergence.
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