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Abstract In this paper, we introduce and analyze an accelerated preconditioning
modification of the Hermitian and skew-Hermitian splitting (APMHSS) iteration
method for solving a broad class of complex symmetric linear systems. This
accelerated PMHSS algorithm involves two iteration parameters α, β and two
preconditioned matrices whose special choices can recover the known PMHSS (pre-
conditioned modification of the Hermitian and skew-Hermitian splitting) iteration
method which includes the MHSS method, as well as yield new ones. The conver-
gence theory of this class of APMHSS iteration methods is established under suitable
conditions. Each iteration of this method requires the solution of two linear systems
with real symmetric positive definite coefficient matrices. Theoretical analyses show
that the upper bound σ1(α, β) of the asymptotic convergence rate of the APMHSS
method is smaller than that of the PMHSS iteration method. This implies that the
APMHSS method may converge faster than the PMHSS method. Numerical experi-
ments on a few model problems are presented to illustrate the theoretical results and
examine the numerical effectiveness of the new method.
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1 Introduction

Let n be a positive integer. We consider the iterative solution of systems of linear
equations of the form

Ax = b, A ∈ Cn×n and x, b ∈ Cn, (1.1)

where A ∈ Cn×n is a complex symmetric matrix of the form

A = W + iT , (1.2)

and W,T ∈ Rn×n are real, symmetric, and positive semidefinite matrices with at
least one of them, e.g., W , being positive definite. Here and in the sequel, we use
i = √−1 to denote the imaginary unit.

Complex symmetric linear systems of this kind arise in many important problems
in scientific computing and engineering applications. For example, FFT-based solu-
tion of certain time-dependent PDEs [17], diffuse optical tomography [1], molecular
scattering [32], lattice quantum chromody-namics [26], numerical solutions of the
complex Helmholtz equation and numerical computations in eddy current problems.
For more examples, we refer to [2, 5, 13, 14, 19, 20, 22] and the references therein.

As a matter of fact, the complex symmetric linear system (1.1) is formally identical
to the following block two-by-two systems of linear equations:

Cx =
⎛
⎜⎝

W −T

T W

⎞
⎟⎠

⎛
⎜⎝

y

z

⎞
⎟⎠ =

⎛
⎜⎝

p

q

⎞
⎟⎠ = g. (1.3)

In fact, let x = y + iz and b = p + iq, then from (1.1) and (1.2), we can get
(W + iT )(y + iz) = p + iq, which implies that we can obtain the (1.3). This is
the same as in [7], the authors there also transformed the system (1.1) into a real
and block two-by-two linear system. Conversely, from the linear (1.3), we can get
the complex symmetric linear system (1.1). Moreover, the block two-by-two systems
of linear (1.3) can be formally regarded as a special case of the generalized saddle
point problem [4, 15, 16]. It frequently arises from finite element discretizations of
elliptic partial differential equation (PDE)-constrained optimization problems such as
distributed control problems [3, 29, 30, 33, 34] and so on. All in all, the complex sym-
metric linear system (1.1) is a very important problem in practical application. Hence,
there is a strong need for the fast solution of complex symmetric linear systems.

For solving the complex symmetric linear system (1.1) efficiently, van derVorst
and Mellissen [37] proposed the conjugate orthogonal conjugate gradient (COCG)
method, which is regarded as an extension of the Conjugate Gradient (CG) method
[28]. Relatively complicated but robust algorithms such as QMR [25], CSYM [18],
and Bi-CGCR [21] are also useful. QMR is derived from the complex symmetric
Lanczos algorithm, CSYM is obtained from the idea of QMR and tridiagonaliza-
tion of A by Householder reflections, and Bi-CGCR is derived from a particular
case in Bi-CG [24] for solving non-Hermitian linear systems. In [36] Sogabe and
Zhang extended the conjugate residual (CR) method described in [27, 35] to complex
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symmetric linear systems based on an observation of deriving CG, CR, and COCG.
Moreover, based on the Hermitian and skew-Hermitian splitting (HSS)

A = H + S

of the matrix A ∈ Cn×n, with

H = 1

2
(A + A∗) and S = 1

2
(A − A∗)

being the Hermitian and skew-Hermitian parts and A∗ being the conjugate trans-
pose of the matrix A ∈ Cn×n, we can apply the HSS iteration method [10] or its
preconditioned variant PHSS (i.e., the preconditioned HSS, see [12]) which were
proposed by Bai et al. or the generalized PHSS methods [40] to compute an approx-
imate solution of the linear system (1.1). In addition, the convergence properties of
the PHSS method can be found in [9]. In [11], Bai et al. further generalized the tech-
nique for constructing HSS iteration method for solving large sparse non-Hermitian
positive definite system of linear equations to the normal/skew-Hermitian (NS) split-
ting obtaining a class of normal/skew-Hermitian splitting (NSS) iteration methods.
Theoretical analyses shown that the NSS iteration method converges uncondition-
ally to the exact solution of the system of linear (1.1). Moreover, [31, 39] proposed
the generalized HSS method and generalized preconditioned HSS method for solv-
ing singular linear systems and non-Hermitian positive definite linear systems,
respectively.

A potential difficulty with the HSS iteration approach is the need to solve the
shifted skew-Hermitian sub-system of linear equations at each iteration step. In some
cases its solution is as difficult as that of the original problem, although there are
situations where the matrix T is structured in such a way as to make linear sys-
tems involving αI + iT easy to solve. In general, however, this will not be the case.
Hence, Bai et al. presented a modification of the HSS iteration scheme in [5] and
some of its basic properties are studied. Moreover, in [6], the authors proposed a pre-
conditioned variant of the modified HSS (PMHSS) iteration method for solving the
complex symmetric systems of linear equations. That PMHSS iteration method has
faster convergence than the MHSS method which was illustrated by the numerical
implementations in the paper [6].

To further generalize the PMHSS iteration method and accelerate its convergence
rate, in this paper we propose a accelerated PMHSS (APMHSS) iteration method
for solving the complex symmetric linear system (1.1). We establish the convergence
theory for the APMHSS iteration method under the condition that both W and T

are symmetric positive semidefinite and, at least, one of them is positive definite.
A considerable advantage of the APMHSS iteration method consists in the fact that
solution of two linear sub-systems with coefficient matrices both being real and sym-
metric positive definite, need to be solved at each step. This is just like the MHSS
and PMHSS iteration methods.

The organization of the paper is as follows. In Section 2, we establish the
APMHSS iteration method for the complex symmetric linear system (1.1). In Section
3, the analysis of the convergence property of this new method is given. Moreover,
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numerical results are given in Section 4 to show the correctness of our theoretical
analysis and the effectiveness of this APMHSS iteration method. Finally, in Section
5 we put forth some conclusions and remarks to end the paper.

The following notations will be used throughout this paper. We denote the identity
matrix and the 0-matrix by I and O, respectively. For a vector v, we denote the l2
norm of v by ‖v‖2. And for a matrix B, we denote the conjugate transpose and the
inverse of B by B∗ and B−1, respectively. Moreover, sp(B) denotes the spectrum of
the matrix B, and the spectral radius of B is denoted by ρ(B).

2 The APMHSS method

Based on the preconditioned MHSS (PMHSS) iteration method for complex sym-
metric linear system (1.1), in this section we derive a accelerated PMHSS iteration
method which has two parameters α and β. To this end, we first introduce the
PMHSS iteration method proposed in Bai et al. [6] which is much more effi-
cient than the MHSS iteration method for solving the complex symmetric linear
system (1.1). This PMHSS iteration method is algorithmically described in the
following.

Method 2.1 (The PMHSS iteration method) Let x ∈ Cn be an arbitrary initial
guess and α be a given positive constant. For k = 0, 1, 2, · · · , until the sequence of
iterates {x(k)}∞0 converges, compute the next iterate x(k+1) according to the following
procedure:

⎧⎪⎨
⎪⎩

(αV + W)x(k+ 1
2 ) = (αV − iT )x(k) + b,

(αV + T )x(k+1) = (αV + iW)x(k+ 1
2 ) − ib,

where V ∈ Cn×n is a prescribed symmetric positive definite matrix.
AsW,V ∈ Cn×n are symmetric positive definite, T ∈ Cn×n is symmetric positive

semidefinite, and α is positive, we see that both matrices αV + W and αV + T are
symmetric positive definite. Hence, the two linear sub-systems involved in each step
of the PMHSS iteration can also be solved effectively using mostly real arithmetic
either exactly by a Cholesky factorization or inexactly by some conjugate gradient or
multigrid scheme.

Now we can establish the following APMHSS iteration method for solving the
complex symmetric linear system (1.1) in an analogous fashion to the PMHSS iter-
ation scheme. More precisely, we have the following algorithmic description of the
APMHSS iteration method.

Method 2.2 (The APMHSS iteration method) Let P ∈ Rn×n be a symmetric
positive definite matrix, with PW = WP and PT = T P . Given an initial vector
x(0) ∈ Cn, and two relaxation factors α > 0, β > 0. For k = 0, 1, 2, · · · , until the
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sequence of iterates {x(k)}∞0 converges, compute the next iterate x(k+1) according to
the following procedure:

⎧⎪⎨
⎪⎩

(αP + W)x(k+ 1
2 ) = (αP − iT )x(k) + b,

(βP + T )x(k+1) = (βP + iW)x(k+ 1
2 ) − ib.

(2.1)

When P ∈ Rn×n is a symmetric positive definite matrix and α = β > 0, the
APMHSS iteration method reduces to the PMHSS iteration method. Moreover, when
P = I ∈ Rn×n and α = β > 0, then the APMHSS iteration method reduces
to the MHSS method. We can suitably choose P and α, β such that the induced
APMHSS iteration method possesses faster convergence rate and higher computing
efficiency. In addition, the symmetric positive definite matrix P and the positive
constants α, β should be judiciously selected so that the sub-systems of linear (2.1)
with the coefficient matrices αP + W and βP + T can be solved economically and
rapidly. This two-parameter generalizations of the PHSS [12] iteration method has
been also studied in [8] (a class of AHSS iteration methods for solving the large
sparse saddle-point problem studied by Bai and Golub).

After straightforward derivations we can reformulate the APMHSS iteration
scheme into the standard form

x(k+1) = H(α, β)x(k) + M−1(α, β)b, (2.2)

where

H(α, β) = (βP + T )−1(βP + iW)(αP + W)−1(αP − iT )

and

M−1(α, β) = (βP + T )−1(βP − iαP )(αP + W)−1.

Obviously, we can obtain that H(α, β) is the iteration matrix of the APMHSS
iteration (2.1) or (2.2). Therefore, the APMHSS method (2.1) is convergent if and
only if the spectral radius of the iteration matrix H(α, β) of the stationary iterative
(2.2) is less than one, i.e., ρ(H(α, β)) < 1. See [27, 38, 41]. In addition, if let

N(α, β) = M(α, β) − A = (β + iα)

α2 + β2
(βP + iW)P −1(αP − iT ),

then

A = M(α, β) − N(α, β) (2.3)

defines a splitting of the coefficient matrix (1.2) of the complex symmetric linear sys-
tem (1.1), and the APMHSS iteration method (2.2) can also be induced by the matrix
splitting (2.3). Easily, we see that H(α, β) = M−1(α, β)N(α, β) is the iteration
matrix of the APMHSS iteration method (2.2).

Moreover, when P = W ∈ Rn×n, i.e., P = W , we have

x(k+1) = H1(α, β)x(k) + M−1
1 (α, β)b, (2.4)
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with

H1(α, β) = (βW + T )−1(βW + iW)(αW + W)−1(αW − iT )

= β + i

α + 1
(βW + T )−1(αW − iT )

and

M1(α, β) = ((βW + T )−1(βW − iαW)(αW + W)−1)−1

= (α + 1)(β + iα)

α2 + β2
(βW + T ).

Then the PMHSS iteration scheme (2.4) is now induced by the matrix splitting A =
M1(α, β) − N1(α, β) with

N1(α, β) = M1(α, β) − A = (β + iα)(β + i)

α2 + β2
(αW − iT ),

where α = β.

3 Analysis for the APMHSS method

In this section, we discuss the convergence property of the APMHSS iteration
method. Sufficient conditions for the convergence of the APMHSS method are also
provided in the following theorems that we will present.

Theorem 3.1 Let A = W + iT ∈ Cn×n, with W ∈ Rn×n and T ∈ Rn×n symmetric
positive definite and symmetric positive semidefinite, respectively, and let α, β be
two given positive constants. If 0 < β ≤ α, α2 − β2 ≤ 2βμmin and P ∈ Rn×n is
a symmetric positive definite matrix which satisfies PW = WP,PT = T P . Then
the spectral radius ρ(H(α, β)) of the APMHSS iteration matrix H(α, β) satisfies
ρ(H(α, β)) ≤ σ1(α, β), where μmin is the smallest eigenvalue of the matrix P −1T

and

σ1(α, β) = max
λj ∈sp(P −1W)

√
β2 + λ2j

α + λj

.

Therefore, it holds that

ρ(H(α, β)) ≤ σ1(α, β) < 1, ∀ α ≥ β > 0.

That is, the APMHSS iteration (2.2) converges to the unique solution x of the complex
symmetric linear system (1.1) for any initial guess x(0).

Proof By the similarity invariance of the matrix spectrum, we have

ρ(H(α, β)) = ρ((βP + iW)(αP + W)−1(αP − iT )(βP + T )−1)

= ρ((βI + iP −1W)(αI + P −1W)−1(αI − iP −1T )(βI + P −1T )−1)

≤ ‖(βI + iP −1W)(αI + P −1W)−1(αI − iP −1T )(βI + P −1T )−1‖2
≤ ‖(βI + iP −1W)(αI + P −1W)−1‖2‖(αI − iP −1T )(βI + P −1T )−1‖2.
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Because W,T, P ∈ Rn×n are symmetric matrices, and PW = WP,PT = T P ,
we can see that P −1W, P −1T are also symmetric matrices. Then analogously to
Theorem 2.1 in [5], we can obtain

ρ(H(α, β)) ≤ max
λj ∈sp(P −1W)

∣∣∣∣
β + iλj

α + λj

∣∣∣∣ · max
μj ∈sp(P −1T )

∣∣∣∣
α + iμj

β + μj

∣∣∣∣

= max
λj ∈sp(P −1W)

√
β2 + λ2j

α + λj

· max
μj ∈sp(P −1T )

√
α2 + μ2

j

β + μj

.

Note that μj ≥ 0 (1 ≤ j ≤ n) and α2 − β2 ≤ 2βμmin, we can obtain

α2 + μ2
j ≤ β2 + 2βμmin + μ2

j

≤ β2 + 2βμj + μ2
j

= (β + μj )
2.

It then follows that √
α2 + μ2

j

β + μj

≤ 1, (1 ≤ j ≤ n),

which implies

ρ(H(α, β)) ≤ max
λj ∈sp(P −1W)

√
β2 + λ2j

α + λj

= σ1(α, β).

Moreover, from the condition that 0 < β ≤ α, we can obtain ρ(H(α, β)) ≤
σ1(α, β) < 1, therefore the APMHSS iteration converges to the unique solution x of
the complex symmetric linear system (2.1).

The proof is completed.

Corollary 3.1 If the conditions of the Theorem 3.1 is satisfied, then the upper bound
σ1(α, β) of the asymptotic convergence rate of the APMHSS method is smaller than
that of the PMHSS iteration method.

Proof Let β = α, then the APMHSS iteration method (2.2) reduces to the PMHSS
method studied in [6]. By making use of the above Theorem 3.1 that we have
obtained, we can see that the upper bound of the asymptotic convergence rate of the
PMHSS method is

σ(α) = max
λj ∈sp(P −1W)

√
α2 + λ2j

α + λj

.

Then from the condition that 0 < β ≤ α, we have

σ1(α, β) = max
λj ∈sp(P −1W)

√
β2 + λ2j

α + λj

≤ max
λj ∈sp(P −1W)

√
α2 + λ2j

α + λj

= σ(α).

The proof is completed.



508 Numer Algor (2016) 73:501–516

It’s worth noting that when 0 < β < α, then σ1(α, β) < σ(α), which implies that
the APMHSS method may converge faster than the PMHSS iteration method. And
this result will be illustrated by the numerical experiments in Section 4.

Corollary 3.2 If the conditions of the Theorem 3.1 is satisfied and P = W , then

σ1(α, β) =
√

β2+1
α+1 < 1.

Proof From the proof of Theorem 3.1, we can get the result directly.

Theorem 3.2 Let A = W + iT ∈ Cn×n, with W ∈ Rn×n and T ∈ Rn×n symmetric
positive definite and symmetric positive semidefinite, respectively, and let α, β be
two given positive constants. If 0 < α < β, β2 − α2 ≤ 2αλmin and P ∈ Rn×n is
a symmetric positive definite matrix which satisfies PW = WP,PT = T P . Then
the spectral radius ρ(H(α, β)) of the APMHSS iteration matrix H(α, β) satisfies
ρ(H(α, β)) ≤ σ2(α, β), where λmin is the smallest eigenvalue of the matrix P −1W

and

σ2(α, β) = max
μj ∈sp(P −1T )

√
α2 + μ2

j

β + μj

.

Therefore, it holds that

ρ(H(α, β)) ≤ σ2(α, β) < 1, ∀β ≥ α > 0.

That is, the APMHSS iteration (2.2) converges to the unique solution x of the complex
symmetric linear system (1.1) for any initial guess x(0).

Proof Similar to the proof of Theorem 3.1, we can obtain

ρ(H(α, β)) ≤ max
λj ∈sp(P −1W)

√
β2 + λ2j

α + λj

· max
μj ∈sp(P −1T )

√
α2 + μ2

j

β + μj

.

Then from λj > 0 (1 ≤ j ≤ n) and β2 − α2 ≤ 2αλmin, we can obtain

β2 + λ2j ≤ (α + λj )
2.

This implies

ρ(H(α, β)) ≤ max
μj ∈sp(P −1T

√
α2 + μ2

j

β + μj

= σ2(α, β).

Moreover, from the condition that 0 < α ≤ β, we can obtain ρ(H(α, β)) ≤
σ2(α, β) < 1, therefore the APMHSS iteration converges to the unique solution x of
the complex symmetric linear system (2.1).

The proof is completed.
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4 Numerical experiments

In this section, we perform some numerical examples to illustrate the theoretical
results and show the effectiveness of the APMHSS iteration method for solving the
complex symmetric linear system (2.1) in terms of both iteration count (denoted as
IT) and computing time (in seconds, denoted as CPU), and the norm of the residual
(denoted as ”RES”) defined by

RES = ‖b − Ax(k)‖2.
In actual computations, the iteration schemes are started from the zero vector

and terminated if the current iterations satisfy ERR≤ 10−6 or the number of the
prescribed iteration steps k = 500 are exceeded, where

ERR = ‖b − Ax(k)‖2
‖b‖2 .

All experiments are performed in MATLAB (version 7.4.0.336 (R2010b)) with
machine precision 10−16, and all experiments are implemented on a personal com-
puter with 2.20 GHz central processing unit (Intel(R) Core(TM) i3-2310M), 2.00G
memory and Win7 operating system.

• 4.1 Example descriptions

Example 4.1 (See [2, 5, 6]) The system of linear (1.1) is of the form

[(K + 3 − √
3

τ
I ) + i(K + 3 + √

3

τ
I )]x = b, (4.1)

Table 1 IT, CPU and RES for MHSS, PMHSS and APMHSS methods for Example 4.1

Method m × m 16×16 32×32 64×64 128×128 256×256

MHSS αopt 1.069 0.673 0.440 0.410 0.312

IT 40 59 73 99 134

CPU 0.012 0.069 0.581 4.423 35.112

RES 4.27e-008 2.41e-008 3.42e-008 3.52e-007 2.33e-007

PMHSS αopt 1.091 1.356 1.350 1.120 1.451

IT 21 21 21 21 21

CPU 0.009 0.004 0.245 1.099 6.188

RES 4.33e-008 2.02e-008 3.04e-008 3.20e-007 6.86e-007

APMHSS αopt 1.069 1.310 1.350 1.000 1.455

βopt 0.71 0.980 1.210 0.950 1.235

IT 19 16 17 15 15

CPU 0.003 0.002 0.082 0.964 4.655

RES 4.35e-008 3.02e-008 1.94e-008 4.80e-007 3.45e-007
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where τ is the time step-size and K is the five-point centered difference matrix
approximating the negative Laplacian operator L = −� with homogeneous Dirich-
let boundary conditions, on a uniform mesh in the unit square [0, 1]×[0, 1] with
the mesh-size h = 1

m+1 . The matrix K ∈ Rn×n possesses the tensor-product form

K = I ⊗ Vm + Vm ⊗ I , with Vm = h−2tridiag(−1, 2, −1) ∈ Rm×m. Hence, K is an
n × n block-tridiagonal matrix, with n = m2. We take

W = K + 3 − √
3

τ
I, and T = K + 3 + √

3

τ
I,

and the right-hand side vector b with its jth entry [b]j being given by

[b]j = (1 − i)j

τ (j + 1)2
, j = 1, 2, · · · , n.

In our tests, we take τ = h. Furthermore, we normalize coefficient matrix and right-
hand side by multiplying both by h2. For more details, we refer to [2].

Example 4.2 (See [5, 6, 14]) The system of linear (1.1) is of the form

[(−ω2M + K) + i(ωCV + CH )]x = b, (4.2)

where M and K are the inertia and the stiffness matrices, CV and CH are the viscous
and the hysteretic damping matrices, respectively, and ω is the driving circular fre-
quency. We take CH = μK with μ a damping coefficient, M = I , CV = 10I , and K

the five-point centered difference matrix approximating the negative Laplacian oper-
ator with homogeneous Dirichlet boundary conditions, on a uniform mesh in the unit
square [0, 1]×[0, 1] with the mesh-size h = 1

m+1 . The matrix K ∈ Rn×n possesses

the tensor-product form K = I ⊗Bm +Bm ⊗ I , with Bm = h−2tridiag(−1, 2, −1) ∈

Table 2 IT, CPU and RES for MHSS, PMHSS and APMHSS methods for Example 4.2

Method m × m 16×16 32×32 64×64 128×128 256×256

MHSS αopt 0.518 0.269 0.052 0.021 0.002

IT 53 86 90 99 139

CPU 0.012 0.050 0.434 3.903 35.436

RES 3.53e-008 1.49e-008 6.48e-008 3.59e-007 4.35e-007

PMHSS αopt 0.681 0.988 1.20 1.120 0.972

IT 34 37 38 38 38

CPU 0.015 0.052 0.449 1.756 10.455

RES 3.79e-008 1.14e-008 4.54e-008 1.20e-007 2.82e-007

APMHSS αopt 0.578 0.985 1.100 1.110 0.860

βopt 0.655 1.230 1.500 1.255 1.125

IT 29 30 28 20 25

CPU 0.005 0.025 0.165 0.992 8.565

RES 3.49e-008 1.02e-008 3.90e-008 2.25e-007 3.75e-007
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Fig. 1 The spectral radius ρ(H(α)) of the iteration matrices; left: Example 4.1, right: Example 4.2
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Fig. 2 The upper bound σ(H(α)) of the spectral radius for the iteration matrices; left: Example 4.1, right:
Example 4.2
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Fig. 3 The eigenvalue distributions of the iteration matrices when α = αopt and β = βopt ; left: Example
4.1, right: Example 4.2
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Rm×m. Hence, K is an n × n block-tridiagonal matrix, with n = m2. In addition, we
set ω = π,μ = 0.02, and the right-hand side vector b to be b = (1 + i)A1, with
1 being the vector of all entries equal to 1. As before, we normalize the system by
multiplying both sides through by h2. In fact, this complex symmetric system of lin-
ear equations arises in direct frequency domain analysis of an n-degree-of-freedom
(n-DOF) linear system. For more details, we refer to [2, 23].

• 4.2 Experimental results

The APMHSS iteration method is compared with the MHSS and PMHSS meth-
ods. For the tests reported in this section we used the optimal values of the parameter
α, β (denoted by αopt , βopt , respectively) for the APMHSS, PMHSS and MHSS
iteration methods. The experimentally found optimal parameters αopt , βopt are the
ones resulting in the least numbers of iterations for the three methods for each
of the numerical examples and for each choice of the spatial mesh-sizes. For the
APMHSS method, the matrix P was taken as W and I in Example 1 and Example 2,
respectively. The matrix V in the PMHSS method is taken as W .

With respect to different sizes of the coefficient matrix, we list IT, CPU and RES
about the APMHSS, PMHSS and MHSS methods in Tables 1 and 2. And the results
in Tables 1 and 2 are the IT, CPU and RES for the for Example 1 and Example
2, respectively. By comparing the results in Table 1, we observe that the APMHSS
iteration method outperforms the PMHSS and MHSS methods, as it requires much
less time and iteration steps to achieve the stopping criterion. These results can also
be seen in Table 2.

In Fig. 1, We show the spectral radius ρ(H(α, β)) (or ρ(H(α))) of the iteration
matrices H(α, β) (or H(α)) for APMHSS, PMHSS and MHSS methods of Example
1 and Example 2. Obviously, we can see from the figures that the spectral radius of
the APMHSS method ρ(H(α, β)) is always less than that of the PMHSS and MHSS
methods. These results show that the APMHSS iteration always converges faster than
the PMHSS and MHSS methods. It is worth noting that we let β = α ± c in the
experiment, where c is a positive constant, so the spectral radius ρ(H(α, β)) reduces
to ρ(H(α)).

In Fig. 2, we depict the upper bound σ(α, β) (or σ(α)) of the spectral radius for
the three different iteration methods. We can see that the the upper bound σ(α, β) of
the spectral radius of the APMHSS method is less than that the upper bound σ(α)

of the PMHSS and MHSS methods. It is also worth noting that analogously to the
spectral radius ρ(H(α, β)), we let β = α ± c in the experiment, where c is a positive
constant, so σ(H(α, β)) reduces to σ(H(α)) in the experiment. In Fig. 3, we depict
the eigenvalue distributions of the iteration matrices for the APMHSS, PMHSS and
MHSS iteration methods.

5 Conclusions

In this paper, we have studied an accelerated PMHSS iteration method for a class of
complex symmetric linear systems. The APMHSS iteration method not only presents
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a more general framework, but also yields much better theoretical and numeri-
cal properties than the PMHSS iteration method. Moreover, the analysis for the
APMHSS iteration method is proposed, which includes the convergence theory of
this new method. Numerical experiments show that the APMHSS method outper-
forms the MHSS method and PMHSS methods. This illustrates that the APMHSS
iteration method is a very efficient method for solving complex symmetric linear
system (1.1) which arises in many important problems in scientific computing and
engineering applications. However, the theoretical analysis for the optimal value or
quasi-optimal value of the two parameters α and β should be studied in the further.
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