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Abstract The space-time fractional diffusion-wave equation (FDWE) is a general-
ization of classical diffusion and wave equations which is used in modeling practical
phenomena of diffusion and wave in fluid flow, oil strata and others. This paper
reports an accurate spectral tau method for solving the two-sided space and time
Caputo FDWE with various types of nonhomogeneous boundary conditions. The pro-
posed method is based on shifted Legendre tau (SLT) procedure in conjunction with
the shifted Legendre operational matrices of Riemann-Liouville fractional integral,
left-sided and right-sided fractional derivatives. We focus primarily on implementing
this algorithm in both temporal and spatial discretizations. In addition, convergence
analysis is provided theoretically for the Dirichlet boundary conditions, along with
graphical analysis for several special cases using other conditions. These suggest that
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the Legendre Tau method converges exponentially provided that the data in the given
FDWE are smooth. Finally, several numerical examples are given to demonstrate the
high accuracy of the proposed method.

Keywords Fractional diffusion-wave equation · Tau method · Shifted legendre
polynomials · Operational matrix · Convergence analysis · Riesz fractional derivative

1 Introduction

In recent years there has been a high level of interest in the field of fractional dif-
ferential equations due to their important applications in science and engineering,
such as modeling of anomalous diffusive and super-diffusive systems, description of
fractional random walk and unification of diffusion and wave propagation phenom-
ena [13, 27, 33, 35, 37–39]. In particular, the space-time fractional diffusion-wave
equation (FDWE) is significant to applications of fractional differential equations.
Gorenflo [20] and Mainardi [31] generalized the classical diffusion and wave equa-
tions by replacing the first-order or second-order time derivative term by a fractional
derivative of order α with 0 < α ≤ 2. They showed that as α increases from 0 to 2,
the physical process changes from slow diffusion (0 < α < 1) to a classical diffu-
sion equation (α = 1) to a diffusion-wave hybrid (1 < α < 2) to a classical wave
equation (α = 2) processes.

In the last few years, many published papers (e.g., [9, 10, 14, 46, 53, 57]) have
been devoted to numerical methods for solving the space and time fractional diffu-
sion equation. Three kinds of finite difference schemes, (i) the explicit Euler scheme,
(ii) the implicit Euler scheme, and (iii) the fractional Cranck-Nicholson scheme
based on a shifted Grunwald formula were proposed in [32–34, 50, 51]. Liu et al.
[28] implemented an efficient implicit numerical scheme for the fractional-order
advection-dispersion models in which the authors studied five fractional models.
Two finite difference approaches valid on spatially bounded domains were proposed
and developed in [24, 58] for solving the fractional sub-diffusion equations subject
to Neumann boundary conditions. The spectral method was implemented in both
temporal and spatial discretizations for the diffusion problem in [26]. Saadatmandi
et al. [44] proposed and developed an efficient numerical algorithm based on the
Sinc-Legendre collocation method for the time-fractional convection-diffusion equa-
tion with variable coefficients on a finite domain. Recently, a Chebyshev spectral-tau
method has been developed by Doha et al. [16] for fractional diffusion equations.
The space-fractional advection diffusion equations was considered by Bhrawy and
Baleanu in [6] using spectral Legendre collocation approximation for the spatial
discretization.

Compared with the considerable numerical methods for the fractional diffusion
equation, relatively little work [17, 45, 48, 52] has been done on numerical meth-
ods for the FDWEs. The fully discrete difference approximation has been proposed
by Sun and Wu [47] for the numerical solution of FDWEs and sub-diffusion equa-
tion. Li et al. [25] proposed a finite difference scheme for time discretization and
finite element scheme for space discretization for solving the time-space fractional
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sub-diffusion and super-diffusion problems. More recently, Zeng [56] proposed a
second-order stable finite difference technique for solving the time FDWEs.

Most existing numerical schemes are implemented for fractional Dirichlet prob-
lems. However, fewer numerical schemes are proposed for solving problems with
Neumann or Robin boundary conditions. Ren and Sun [40] investigated the fourth-
order compact approach with high spatial accuracy for the FDWEs with Neumann
Boundary Conditions. Huang et al. [21] introduced two finite difference schemes
for the FDWEs. Langlands and Henry [24] considered an implicit numerical scheme
for a fractional diffusion equation with Neumann boundary conditions, in which the
backward Euler approximation is used to discretize the first order time derivative
and the L1 approximation for the Riemann-Liouville fractional derivative. Recently,
Zhao and Sun [58] proposed a box-type scheme for solving a class of fractional
sub-diffusion equation with Neumann boundary conditions. In the area of numerical
methods of FDWEs, little work has been done using spectral methods compared to
finite difference and finite element methods. Moreover, no spectral method has been
investigated for solving two-sided space-time FDWEs. This partially motivates our
interest in applying such methods.

The main goal of this paper is to present an efficient numerical algorithm for the
solution of the two-sided space and time FDWEs with various kinds of nonhomoge-
neous boundary conditions. The shifted Legendre tau method, in combination with
the operational matrices of left- and right-sided Caputo fractional derivatives and the
operational matrix of Riemann-Liouville fractional integral of the shifted Legendre
polynomials, is investigated for treating the temporal and spatial discretizations of
the initial-boundary value problem of the two-sided space-time FDWE. Moreover,
the convergence of the proposed method is analyzed, theoretically for the Dirichlet
boundary conditions and graphically through examples for other types of conditions.
Finally, several numerical simulations are given to confirm the high accuracy of the
proposed algorithm.

The rest of this article is organized as follows. In Section 2, we present some frac-
tional calculus preliminaries and properties of Legendre polynomials and then we
construct the operational matrices of Legendre polynomials with a particular focus
on the Caputo definition. In Section 3, by using tau spectral method, we construct and
develop an algorithm for the solution of the two-sided space and time FDWE with
Dirichlet conditions. Section 4 is devoted to extensions of this approach to more gen-
eral boundary conditions. The convergence analysis is provided in Section 5 for the
Dirichlet boundary conditions. In Section 6, some illustrative numerical experiments
are given and some comparisons are made between our method and other methods
in the open literature. Convergence of the method for other types of boundary condi-
tions is explored through these examples. The paper ends with some conclusions and
observations in Section 7.

2 Preliminaries and fundamentals

In this section, we recall some basic properties of fractional calculus theory. Then we
present some properties of the Legendre polynomials [15, 43, 49].
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2.1 The fractional integral and derivative

A complication associated with fractional derivatives is that there are several defini-
tions of exactly what a fractional derivatives means, for example, Riemann-Liouville,
Caputo, Riesz, Riesz-Caputo, Weyl, Grunwald- Letnikov, Hadamard, and Chen. Here
we recall some basic concepts of Caputo’s fractional derivative. For proofs and details
on the subject, we refer the readers to [39].

Let f : [0, �] → R be an integrable function and � be the Gamma function. The
left- and right-sided Riemann-Liouville fractional integral operators are respectively
defined by [39]

0I
ν
x [f ] := x �→ 1

�(ν)

∫ x

0
(x − t)ν−1f (t)dt,

xI
ν
� [f ] := x �→ 1

�(ν)

∫ �

x

(t − x)ν−1f (t)dt. (2.1)

where ν > 0 is the order of the derivative. The operator 0I
ν
x satisfies the following

properties

0I
ν
x ◦ 0I

μ
x = 0I

ν+μ
x ,

0I
ν
x ◦ 0I

μ
x = 0I

μ
x ◦ 0I

ν
x ,

0I
ν
x xβ = �(β + 1)

�(β + ν + 1)
xβ+ν . (2.2)

The left- and right-sided Riemann-Liouville fractional derivative operators are
defined, respectively, by [39]

0D
ν
x := dn

dxn
◦ 0I

n−ν
x ,

xD
ν
� := (−1)n

dn

dxn
◦ xI

n−ν
� . (2.3)

where n = �ν�. Interchanging the composition of operators in the definition of
Riemann-Liouville fractional derivatives, we obtain the left- and right-sided Caputo
fractional derivatives:

C
0 Dν

x := 0I
n−ν
x ◦ dn

dxn
,

C
x Dν

� := xI
n−ν
� ◦ (−1)n

dn

dxn
. (2.4)

The Caputo and the Riemann-Liouville derivatives are equivalent under some
conditions, which given as follows,

C
0 Dν

xf (x) = 0D
ν
xf (x) −

�ν�−1∑
i=0

f (i)(0)

�(i + 1 − ν)
xi−ν, (2.5)

C
x Dν

�f (x) = xD
ν
�f (x) −

�ν�−1∑
i=0

(−1)if (i)(�)

�(i + 1 − ν)
(� − x)i−ν . (2.6)
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Therefore, if f (0) = f ′(0) = . . . = f (�ν�−1)(0) = 0, then C
0 Dν

xf (x) = 0D
ν
xf (x)

and if f (�) = f ′(�) = . . . = f (�ν�−1)(�) = 0, then C
x Dν

�f (x) = xD
ν
�f (x).

These fractional operators are linear, i.e.,

P(μf (t) + λg(t)) = μPf (t) + λPg(t), (2.7)

where P is 0D
ν
x, xD

ν
� , C

0 Dν
x, C

x Dν
� , 0I

ν
x or xI

ν
� , and μ and λ are real num-

bers. The Caputo fractional derivative, nowadays the most popular fractional operator
among engineers and applied scientists, was obtained by reformulating the classi-
cal definition of Riemann-Liouville fractional derivative in order to make possible
the solution of fractional initial value problems with standard initial conditions. For
the Riemann-Liouville definition, such conditions must be imposed on fractional
derivatives which is often not available. For this reason we shall focus on the Caputo
definition in this work. For the Caputo derivative, we have the following some basic
properties which are needed in this paper [22].

C
0 Dν

xC = C
x Dν

�C = 0, (C is constant), (2.8)

0I
ν
x

C
0 Dν

xf (x) = f (x) −
�ν�−1∑
i=0

f (i)(0+)
xi

i! , (2.9)

C
0 Dν

xxi =
⎧⎨
⎩

0, for i ∈ N0 and i < �ν�,
�(i + 1)

�(i + 1 − ν)
xi−ν, for i ∈ N0 and i ≥ �ν�, (2.10)

C
x Dν

� (x − �)i =
⎧⎨
⎩

0, for i ∈ N0 and i < �ν�,
(−1)i�(i + 1)

�(i + 1 − ν)
(� − x)i−ν, for i ∈ N0 and i ≥ �ν�, (2.11)

where �.� is the ceiling function and N0 = {0, 1, 2, ...}.
The Riesz-Caputo fractional derivative of order ν of f (x) is defined as,

∂ν

∂|x|f (x) = Cν( 0D
ν
xf (x) + xD

ν
�f (x)). (2.12)

where

Cν = − 1

2 cos(πν
2 )

, ν �= 1.

2.2 Shifted Legendre polynomials

It is well-known that the classical Legendre polynomials are defined on [−1, 1] by
the three-term recurrence relation

L0(x) = 1, L1(x) = x,

Li+1(x) = 2i + 1

i + 1
xLi(x) − i

i + 1
Li−1(x), i = 1, 2, . . . .

Assume x ∈ [xa, xb] and let x̃ = (2x − xa − xb)/(xb − xa). Then {Li(x̃)} are
called the shifted Legendre polynomials on [xa, xb]. In this paper, we mainly consider
the shifted Legendre polynomials defined on [0, �]. For x ∈ [0, �], let L�,i(x) =
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Li

(
2x
�

− 1
)
, i = 0, 1, . . . . Then the shifted Legendre polynomials {L�,i(x)} are

defined by

L�,0(x) = 1, L�,1(x) = 2x

�
− 1,

L�,i+1(x) = (2i + 1)(2x − �)

(i + 1)�
L�,i(x) − i

i + 1
L�,i−1(x), i = 1, 2, . . . .(2.13)

For i = 0, 1, . . ., the analytic form of L�,i(x) is given by

L�,i(x) =
i∑

k=0

(−1)i+k(i + k)!
(i − k)! (k!)2�k

xk,

=
i∑

k=0

(i + k)!
(i − k)!(k!)2 �k

(x − �)k. (2.14)

The set of L�,i(x) is a complete L2(0, �)-orthogonal system, namely
∫ �

0
L�,i(x)L�,j (x)dx = �

2i + 1
δi,j , (2.15)

where δi,j the Kronecker symbol. So we define

PM = span{L�,0, L�,1 . . . , L�,M}. (2.16)

Thus, for any u(x) ∈ L2(0, �), we write

u(x) =
∞∑
i=0

ciL�,i(x),

from which the coefficients ci are given by

ci = 2i + 1

�

∫ �

0
u(x)L�,i(x)dx, i = 0, 1, · · · . (2.17)

In practice, only the first (M + 1) terms of shifted Legendre polynomials are
considered.

Hence we can write

uM(x) 
M∑

j=0

cjL�,j (x), (2.18)

which alternatively may be written in the matrix form:

uM(x) = CT ��,M(x), CT = [c0, c1, · · · , cM ], (2.19)

with

��,M(x) = [L�,0(x), L�,1(x), · · · , L�,M(x)]T , (2.20)

where (.)T stands for the transpose.
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Consequently, a function of two independent variables u(x, t) which is infinitely
differentiable in [0, �] × [0, τ ] may be expressed in terms of the double shifted
Legendre polynomials as

uN,M(x, t) =
N∑

i=0

M∑
j=0

aijLτ,i(t)L�,j (x) = �T
τ,N(t)A��,M(x), (2.21)

where the shifted Legendre vectors �τ,N(t) and ��,M(x) are defined similarly to
(2.20); also the shifted Legendre coefficient matrix A is given by

A =

⎛
⎜⎜⎜⎝

a00 a01 · · · a0M

a10 a11 · · · a1M

...
... · · · ...

aN0 aN1 · · · aNM

⎞
⎟⎟⎟⎠ , (2.22)

where

aij =
(

2i + 1

τ

) (
2j + 1

�

) ∫ τ

0

∫ �

0
u(x, t)Lτ,i(t)L�,j (x)dxdt,

i = 0, 1, · · · , N, j = 0, 1, · · · , M. (2.23)

2.3 Operational matrices of shifted Legendre polynomials

Operational matrices are used in several areas of numerical analysis and they hold
particular importance for solving different kinds of problems in various subjects such
as differential equations [23, 54], integral equations [55], integro-differential equa-
tions [3, 12, 36], ordinary and partial fractional differential equations [2, 4, 5, 41],
optimal control problems [29] and etc. In what follows, we construct the operational
matrix of Riemann-Liouville fractional integral of the shifted Legendre vector.

Theorem 2.1 Let ��,M(x) be the shifted Legendre vector and ν > 0 then

0I
ν
x ��,M(x)  Pν��,M(x), (2.24)

where Pν is the (M + 1) × (M + 1) operational matrix of fractional integration of
order ν and is defined as follows:

Pν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν (0, 0) ν (0, 1) · · · ν (0, M)

ν (1, 0) ν (1, 1) · · · ν (1, M)
...

... . . .
...

ν (i, 0) ν (i, 1) · · · ν (i,M)
...

... . . .
...

ν (M, 0) ν (M, 1) · · · ν (M, M)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.25)

where

ν(i, j) =
i∑

k=0

(−1)i+k �ν(2j + 1) (i + k)! (k − j + ν + 1)j

(i − k)! k! �(k + ν + 1) (k + ν + 1)j+1
. (2.26)
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Proof The analytic form of the shifted Legendre polynomials L�,i(x) of degree i is
given by (2.14). Using (2.1) and (2.2), and since the Riemann-Liouville’s fractional
integration is a linear operation, we get

0I
ν
x L�,i(x) =

i∑
k=0

(−1)i+k(i + k)!
(i − k)! (k!)2 �k

0I
ν
x xk

=
i∑

k=0

(−1)i+k(i + k)!
(i − k)! k! �k �(k + ν + 1)

xk+ν, i = 0, 1, · · · . (2.27)

Now, approximate xk+ν by M + 1 terms of shifted Legendre series, yields

xk+ν =
M∑

j=0

ckjL�,j (x), (2.28)

where ckj is given from (2.17) with u(x) = xk+ν , and

ckj = (2j + 1) �k+ν

j∑
r=0

(−1)r+j (j + r)!
(j − r)! (r!)2 (k + r + ν + 1)

. (2.29)

In virtue of (2.28) and (2.27) we get

0I
ν
x L�,i(x) =

M∑
j=0

ν(i, j)L�,j (x), i = 0, 1, · · · , (2.30)

After some lengthly manipulation, ν(i, j) may be put in the form as in (2.26).

Theorem 2.2 Let ��,M(x) be the shifted Legendre vector and ν > 0 then the left-
sided Caputo fractional derivative of order ν > 0 of ��,M(x) can be expressed as

C
0 Dν

x��,M(x)  D+
ν ��,M(x), (2.31)

where D+
ν is the (M + 1) × (M + 1) Legendre operational matrix of the left- sided

fractional derivatives of order ν in the Caputo sense and is defined as follows:

D+
ν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
...

...
... · · · ...

0 0 0 · · · 0
S+

ν (�ν�, 0) S+
ν (�ν�, 1) S+

ν (�ν�, 2) · · · S+
ν (�ν�, M)

...
...

... · · · ...

S+
ν (i, 0) S+

ν (i, 1) S+
ν (i, 2) · · · S+

ν (i, M)
...

...
... · · · ...

S+
ν (M, 0) S+

ν (M, 1) S+
ν (M, 2) · · · S+

ν (M, M)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.32)
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where

S+
ν (i, j) =

i∑
k=�ν�

(−1)i+k (2j + 1) (i + k)! (k − j − ν + 1)j

�ν (i − k)! k! �(k − ν + 1) (k − ν + 1)j+1
, (2.33)

Proof For the proof (see [43]).

Now, we state and prove a new theorem for the operational matrix of right-sided
Caputo fractional derivative of any order for the shifted Legendre polynomials.

Lemma 2.3 Let L�,i(x) be a shifted Legendre polynomial; then
C
x Dν

�L�,i(x) = 0, i = 0, 1, ..., �ν� − 1, ν > 0. (2.34)

Proof This lemma can be easily proved by making use of relations (2.11) and (2.14).

Theorem 2.4 Let ��,M(x) be the shifted Legendre vector and ν > 0, then the right-
sided Caputo fractional derivative of order ν of ��,M(x) can be expressed as

C
x Dν

���,M(x)  D−
ν ��,M(x), (2.35)

where D−
ν is the (M + 1) × (M + 1) Legendre operational matrix of the right-sided

fractional derivatives of order ν in the Caputo sense and is defined as follows:

D−
ν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
...

...
... · · · ...

0 0 0 · · · 0
S−

ν (�ν�, 0) S−
ν (�ν�, 1) S−

ν (�ν�, 2) · · · S−
ν (�ν�, M)

...
...

... · · · ...

S−
ν (i, 0) S−

ν (i, 1) S−
ν (i, 2) · · · S−

ν (i, M)
...

...
... · · · ...

S−
ν (M, 0) S−

ν (M, 1) S−
ν (M, 2) · · · S−

ν (M, M)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.36)

where

S−
ν (i, j) =

i∑
k=�ν�

(−1)k+j (2j + 1) (i + k)! (−k + ν)j

�ν (i − k)! k! �(k − ν + 1) (k − ν + 1)j+1
. (2.37)

Proof The analytic form of the shifted Legendre polynomials L�,i(x) of degree i is
given by (2.14), using (2.11) we have

C
x Dν

�L�,i (x) =
i∑

k=0

(i + k)!
(i − k)! (k!)2 �k

C
x Dν

� (x − �)k

=
i∑

k=�ν�

(−1)k (i + k)!
(i − k)! k! �k �(k − ν + 1)

(� − x)k−ν, i = �ν�, �ν� + 1, · · · . (2.38)
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Now, (�−x)k−ν may be expressed in terms of shifted Legendre series, so we have

(� − x)k−ν =
M∑

j=0

bkjL�,j (x), (2.39)

where bkj is given from (2.17) with u(x) = (� − x)k−ν , and

bkj = (2j + 1) �k−ν

j∑
r=0

(−1)r (j + r)!
(j − r)! (r!)2 (k + r − ν + 1)

. (2.40)

Using (2.39), (2.40) in (2.38) it follows that

C
x Dν

�L�,i(x) =
M∑

j=0

S−
ν (i, j)L�,j (x), i = �ν�, �ν� + 1, · · · . (2.41)

After some lengthly manipulation, S−
ν (i, j) may be put in the form as in (2.37).

3 The shifted Legendre spectral tau method

As we know, the FWE is a generalization of the classical wave equation and it models
the practical phenomena of a wave in fluid flow, oil strata and others that cannot
be modeled accurately by the second-order wave equation. The spectral method has
been an efficient tool for computing approximate solutions of differential equations
because of its high-order accuracy. The use of the spectral method both temporal and
spatial discretizations of FPDEs may significantly reduce the storage requirement
because, as compared to low order methods, much fewer time and space levels are
needed to compute a smooth solution.

In this section, a new algorithm for solving two-sided one dimensional space-
time FDWE is proposed based on Legendre-tau spectral method in conjunction
with the operational matrices of left- and right-sided Caputo fractional derivatives
and the operational matrix of Riemann-Liouville fractional integral of the Legendre
polynomials. A FDWE with damping is given by [11, 30]:

C
0 Dα

t u(x, t)+γ
∂u(x, t)

∂t
= c+(x) C

0 Dν
xu(x, t)+c−(x) C

x Dν
�u(x, t)+q(x, t). (3.1)

with initial conditions:

u(x, 0) = f0(x),
∂u(x, 0)

∂t
= f1(x), 0 < x < �, (3.2)

and the Dirichlet boundary conditions:

u(0, t) = g0(t), u(�, t) = g1(t), 0 < t ≤ τ, (3.3)

where 1 < α, ν ≤ 2, c+(x) ≥ 0, c−(x) ≥ 0, and q(x, t) is a source term.
Particular cases of (2.13) are summarized as:
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When α = 2, ν = 2, c(x) = c+(x) + c−(x), (2.13) is the telegraph equation
which governs electrical transmission in a telegraph cable [11],

∂2u(x, t)

∂t2
+ γ

∂u(x, t)

∂t
= c(x)

∂2u(x, t)

∂x2
+ q(x, t).

Let γ = 0, α = 2, ν = 2, c(x) = c+(x) + c−(x), (2.13) becomes the classical
wave equation of the following form,

∂2u(x, t)

∂t2
= c(x)

∂2u(x, t)

∂x2
+ q(x, t).

If γ = 0, c−(x) = 0, then (2.13) has no right-sided fractional derivative, (2.13)
becomes the space-time fractional diffusion-wave equations [17, 21, 25, 47]

C
0 Dα

t u(x, t) = c+(x) C
0 Dν

xu(x, t) + q(x, t).

If γ = 0, α = 2, (2.13) reduces to two-sided space fractional wave equation
[45, 48]

∂2u(x, t)

∂t2
= c+(x) C

0 Dν
xu(x, t) + c−(x) C

x Dν
�u(x, t) + q(x, t).

Let us start our algorithm to solve (3.1)-(3.3) by applying the left- sided Riemann-
Liouville integral of order α on (3.1), and making use of (2.9), then we get the
integrated form of (3.1)

u(x, t) − f (x, t) + γ 0I
α−1
t u(x, t) = c+(x) 0I

α
t

[
C
0 Dν

xu(x, t)
]

+c−(x) 0I
α
t

[
C
x Dν

�u(x, t)
]+ 0I

α
t [q(x, t)] ,

u(0, t) = g0(t), u(�, t) = g1(t), 0 < t ≤ τ,

(3.4)
where f (x, t) = f0(x) + tf1(x) + γ 0I

α−1
t f0(x).

It is clear that the initial condition (3.2) is satisfied exactly in (3.4). Now we
approximate u(x, t), c+(x), c−(x), q(x, t) and f (x, t) by the shifted Legendre
polynomials as

uN,M(x, t) = �T
τ,N(t)A��,M(x),

c+M(x) = CT+��,M(x),

c−M(x) = CT−��,M(x),

qN,M(x, t) = �T
τ,N (t)Q��,M(x),

fN,M(x, t) = �T
τ,N (t)F��,M(x), (3.5)
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where A is an unknown (N +1)× (M +1) matrix, but CT+, CT−, Q and F are known
matrices which can be written as

CT+ = [c+0, c+1, · · · , c+M ],
CT− = [c−0, c−1, · · · , c−M ],

Q =

⎛
⎜⎜⎜⎝

q00 q01 · · · q0M

q10 q11 · · · q1M

...
... · · · ...

qN0 qN1 · · · qNM

⎞
⎟⎟⎟⎠ , F =

⎛
⎜⎜⎜⎝

f00 f01 · · · f0M

f10 f11 · · · f1M

...
... · · · ...

fN0 fN1 · · · fNM

⎞
⎟⎟⎟⎠ , (3.6)

where c±j are given as in (2.17) but qij and fij are given as in (2.23). Using (2.24),
(2.31), (2.35) and (3.5) it easy to obtain that

0I
α
t

[
c+(x) C

0 Dν
xu(x, t)

]
 (

CT+��,M(x)
)(

0I
α
t

[
�T

τ,N (t)
])
A

(
C
0 Dν

x��,M(x)
)

= (
CT+��,M(x)

)(
�T

τ,N(t)PT
αAD

+
ν ��,M(x)

)
= �T

τ,N(t)PT
αAD

+
ν ��,M(x)�T

�,M(x)C+
= �T

τ,N(t)PT
αAD

+
ν H

+��,M(x), (3.7)

and

0I
α
t

[
c−(x) C

x Dν
�u(x, t)

]
 (

CT−��,M(x)
)(

0I
α
t

[
�T

τ,N (t)
])
A

(
C
x Dν

���,M(x)
)

= (
CT−��,M(x)

)(
�T

τ,N(t)PT
αAD

−
ν ��,M(x)

)
= �T

τ,N(t)PT
αAD

−
ν ��,M(x)�T

�,M(x)C−
= �T

τ,N(t)PT
αAD

−
ν H

−��,M(x), (3.8)

where

��,M(x)�T
�,M(x)C±  H±��,M(x), (3.9)

and H± is a (M+1)×(M+1) matrix. To explain the construction of H±, making use

of (3.9) and the orthogonal property (2.15) the elements
{
H±

ij

}M

i,j=0
can be calculated

from

H±
ij = 2j + 1

�

M∑
k=0

c±kh±
ijk,

where h±ijk is given by

h±
ijk =

∫ �

0
L�,i(x)L�,j (x)L�,k(x)dx.

By using the well-known Neumann-Adams formula, we can expresses the product of
two shifted Legendre polynomials as a sum of such polynomials as follows

L�,i(x)L�,j (x) =
min(i,j)∑

s=0

dj−sdsdi−s

di+j−s

2i + 2j − 4s + 1

2i + 2j − 2s + 1
L�,i+j−2s(x),
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where ds = (2s)!
2s (s!)2 . Multiplying both sides of the above equation by L�,k(x), k =

0, 1, · · · , M , integrating the result from 0 to �, and using the orthogonal property,
we obtain

h±
ijk =

min(i,j)∑
s=0

� dj−s ds di−s

(2i + 2j − 2s + 1) di+j−s

δi+j−2s,k, (3.10)

Making use of (2.24) and (3.5) we get

0I
(α−1)
t [u(x, t)] = �T

τ,N(t)PT
(α−1)A��,M(x), (3.11)

and

0I
α
t

[
qN,M(x, t)

] = �T
τ,N(t)PT

αQ��,M(x). (3.12)

Equations (3.7), (3.8), (3.11), (3.12) with (3.5), enable us to write the residual
RN,M(x, t) for (3.4) in the form

RN,M(x, t) = �T
τ,N (t)

[
A − F + γ PT

(α−1)A − PT
αAD

+
ν H

+ − PT
αAD

−
ν H

−

−PT
αQ

]
��,M(x)

= �T
τ,N (t)E��,M(x), (3.13)

where

E = A − F + γ PT
(α−1)A − PT

αAD
+
ν H

+ − PT
αAD

−
ν H

− − PT
αQ.

According to the typical tau method see [16], we generate (N + 1) × (M −
1) linear algebraic equations in the unknown expansion coefficients, aij , i =
0, 1, · · · , N; j = 0, 1, · · · , M − 2, namely

∫ �

0

∫ τ

0
RN,M(x, t) Lτ,i(t)L�,j (x) dt dx = 0, i = 0, 1, · · · , N,

j = 0, 1, · · · , M − 2. (3.14)

and the rest of linear algebraic equations are obtained from the boundary conditions
(3.3), as

�T
τ,N(t)A��,M(0) = g0(t),

�T
τ,N (t)A��,M(�) = g1(t), (3.15)

respectively. Equation (3.15) are collocated at (N+1) points. For suitable collocation
points we use the shifted Legendre roots ti , i = 1, 2, · · · , N + 1 of Lτ,N+1(t).

The number of the unknown coefficients aij is equal to (N + 1) × (M + 1) and
can be obtained from (3.14)-(3.15). Consequently uN,M(x, t) given in (3.5) can be
calculated.

In our implementation, we have solved this system using the Mathematica function
FindRoot, which uses Newton’s method as the default method. In all the considered
examples, this function has succeeded to obtain an accurate approximate solution of
the system, even starting with a zero initial approximation.



164 Numer Algor (2016) 71:151–180

4 Extensions to more general boundary conditions

Since many application problems in science and engineering involve Neumann and
Robin boundary conditions [15, 20, 24, 40, 42, 58], such as zero flow or speci-
fied flow flux condition, it is important to extend the result of the present section
to account for more general boundary conditions so that the shifted Legendre tau
technique can be used efficiently to simulate these models.

Let us consider the FDWEs (3.1) subject to (3.2) and the Robin boundary
conditions

λ1u(0, t) + λ2
∂u(0, t)

∂x
= g0(t),

μ1u(�, t) + μ2
∂u(�, t)

∂x
= g1(t),

0 < t ≤ τ, (4.1)

In general, the Dirichlet or Neumann boundary conditions may be obtained as a
special case from the general boundary conditions.

If we apply the shifted Legendre tau technique based on operational matrices to
the modified (3.1), we get (N + 1)× (M − 1) linear algebraic equations system from

Eij = 0, i = 0, 1, · · · , N, j = 0, 1, · · · , M − 2. (4.2)

The operational matrix formulation of the Robin conditions (4.1) is:

λ1�
T
τ,N(t)A��,M(0) + λ2 �T

τ,N(t)AD(1)��,M(0) = g0(t)

μ1�
T
τ,N(t)A��,M(�) + μ2 �T

τ,N(t)AD(1)��,M(�) = g1(t) (4.3)

Which generates a (N + 1) × (2) linear algebraic equations by collocating these
two equations at the zeros ti , i = 1, 2, · · · , N + 1 of Lτ,N+1(t). Consequently the
approximate solution can be obtained from solving the generated algebraic system.

5 Convergence analysis

In this section we present a general approach to the convergence analysis of the Leg-
endre Tau method for the FDWE. The convergence analysis of this method is based
on the Legendre orthogonal polynomials using the operator theory. The convergence
of the proposed method is established in the L2(It ; L2(Ix))-norm. Here, we will
confine ourselves to the FDWE of the form⎧⎪⎪⎨

⎪⎪⎩

C
0 Dα

t u(x, t) = c+(x) C
0 Dν

xu(x, t) + c−(x) C
x Dν

�u(x, t) + q(x, t),

u(x, 0) = ∂u(x, 0)

∂t
= 0, 0 < x < 1,

u(0, t) = u(1, t) = 0, 0 < t ≤ 1,

(5.1)

noting that more complicated boundary conditions will be shown to converge on
a case-by-case basic in the examples provided in the next section. Let us define
eN,M(x, t) = uN,M(x, t) − u(x, t) as the error function of the Tau approxima-
tion, where u(x, t) is the exact solution of (5.1) and uN,M(x, t) is the Legendre Tau
approximation for u(x, t).
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First, we provide some definitions and lemmas which are important for the deriva-
tion of the main results in this section. Through this section denote by Ci, i =
1, 2, . . . , generic positive constant independent of N , M and any function.

Definition 5.1 For p < +∞ and I = (a, b), we denote by Lp(I) the Banach space
of the measurable functions u : (a, b) → R such that

∫ b

a
|u(x)|p dx < +∞. It is

endowed with the norm

‖u‖Lp(I) =
(∫ b

a

|u(x)|pdx

)1/p

.

The space L2(I ) is a Hilbert space with the inner product

(u, v) =
∫ b

a

u(x)v(x)dx,

and the norm

‖u‖L2(I ) =
(∫ b

a

|u(x)|2dx

)1/2

.

Definition 5.2 (see [8]) For any integer k ≥ 0. We define

Hm(I) =
{
u ∈ L2(I ); ∂ku

∂xk
∈ L2(I ), 0 ≤ k ≤ m

}
.

Hm(I) is endowed with the inner product

(u, v)m =
m∑

j=0

(
dju(x)

dxj
,
dj v(x)

dxj

)
,

for which Hm(I) is a Hilbert space. The associated norm is

‖u‖Hm(I) =
⎛
⎝ m∑

j=0

∥∥∥∥dju

dxj

∥∥∥∥
2

L2(I )

⎞
⎠

1/2

.

Definition 5.3 �M : L2(I ) → PM is an orthogonal projection if and only if for any
u ∈ L2(I ), we have

(
�Mu − u, v

)
= 0, ∀v ∈ PM.

Lemma 5.1 (see [8]) For all u ∈ Hk(I), k � 0, there exists a constant C

independent of M , such that

‖u − �Mu‖Hk(I) ≤ CMσ(k)−m|u|Hm;M(I) 0 ≤ k ≤ m, (5.2)
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where σ(k) = 0 if k = 0 and σ(k) = 2k − 1
2 for k > 0. The seminorm on the

right-hand side is defined as

|u|Hm;M(I) =
⎛
⎝ m∑

j=min(m,M+1)

∥∥∥∥dju

dxj

∥∥∥∥
2

L2(I )

⎞
⎠

1/2

;

note that whenever M ≥ m − 1, one has

|u|Hm;M(I) =
∥∥∥∥∂mu

∂xm

∥∥∥∥
L2(I )

= ‖u‖Hm(I).

We consider here a two-dimensional domain, say  = It × Ix = (0, 1)2 and
consider

PN,M = span{L�,i(x)L�,j (t), i = 0, 1, · · · , M, j = 0, 1, · · · , N}.

Let us denote by Hr,0 = L2(It ; Hr(Ix)) the space of the measurable functions
u :  → R such that

‖u‖Hr,0 =
(∫ 1

0
‖u(., t)‖2

Hr(Ix)dt

)1/2

< +∞.

For r = 0, this norm will be denoted briefly by

‖u‖L2() =
(∫ 1

0

∫ 1

0
|u(x, y)|2dxdt

)12

,

where L2() = H 0,0 = L2(It ; L2(Ix)).

Moreover, for any positive integer s we define

H 0,s = Hs(It ; L2(Ix)) =
{
u ∈ L2()

∣∣∣∣∂
ju

∂tj
∈ L2(), 0 ≤ j ≤ s

}
;

the norm is given by

‖u‖H 0,s =
⎛
⎝ s∑

j=0

∥∥∥∥∂ju

∂tj

∥∥∥∥
2

L2()

⎞
⎠

1/2

.

Definition 5.4 We define

Hr,s()=Hs(It ; Hr(Ix))=
{
u ∈ L2()

∣∣∣∣ ∂i+j u

∂xi∂tj
∈ L2(), 0≤ i ≤ r, 0 ≤ j ≤ s

}
.
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Hr,s() is a Hilbert space equipped with the inner product and the norm as

(u, v)r,s =
r∑

i=0

s∑
j=0

∫ 1

0

∫ 1

0

∂i+j u(x, t)

∂xi∂tj

∂i+j v(x, t)

∂xi∂tj
dxdt,

‖u‖Hr,s =
⎛
⎝ r∑

i=0

s∑
j=0

∥∥∥∥∂i+j u(x, t)

∂xi∂tj

∥∥∥∥
2

L2()

⎞
⎠

1/2

.

Theorem 5.2 For any function u ∈ L2(), let �N,Mu denote the projection of u

upon PN,M , i.e.,

(�N,Mu)(x, t) = uN,M(x, t).

Then, for all r, s ≥ 0, we have

∥∥u − �N,Mu
∥∥

L2()
≤ C1M

−r ‖u‖Hr,0 + C2N
−s ‖u‖H 0,s ,

for all u for which the norms on the right-hand side are finite.

Proof Let �N and �M be the one-dimensional orthogonal projections defined in
Definition 5.3. Then,

�N,Mu = �N ◦
(
�Mu

)
.

Hence, using Lemma 5.1 leads to

∥∥u − �N,Mu
∥∥

L2()
≤ ‖u − �Nu‖L2() +

∥∥∥�N ◦
(
u − �Mu

)∥∥∥
L2()

≤ ‖u − �Nu‖L2() + C2 ‖u − �Mu‖L2()

≤ M−r

∥∥∥∥∂ku

∂xr

∥∥∥∥
L2()

+ C2N
−s

∥∥∥∥∂�u

∂t�

∥∥∥∥
L2()

≤ C1M
−r ‖u‖Hr,0 + C2N

−s ‖u‖H 0,s . (5.3)

This ends the proof.

Theorem 5.3 (The convergence theorem) Suppose u is the exact solution of (5.1)
and �N,M = uN,M is the solution of (3.14) which is obtained by the method
presented in Section 3. Assume that u ∈ L2(). Then, for sufficiently smooth func-
tions c+(x), c−(x) and q(x, t) in (5.1) and for all sufficiently Large N and M we
have

∥∥uN,M(x, t) − u(x, t)
∥∥

L2()
→ 0.
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Proof Let us define the error functions eN,M(u(x, t)) = �N,M(u(x, t)) − u(x, t)

where u(x, t) is a continuous function on . According to the proposed method, we
obtain

uN,M(x, t) = c+(x)

�(α)�(m − ν)
�N,M

×
(∫ t

0

∫ x

0
(t − s)α−1(x − r)m−ν−1 ∂muN,M(r, s)

∂rm
drds

)

+ c−(x)

�(α)�(m − ν)
�N,M

×
(∫ t

0

∫ 1

x

(t − s)α−1(r − x)m−ν−1 ∂muN,M(r, s)

∂rm
drds

)
. (5.4)

Again, we rewrite (5.1) as

u(x, t) = c+(x)

�(α)�(m − ν)

(∫ t

0

∫ x

0
(t−s)α−1(x−r)m−ν−1 ∂mu(r, s)

∂rm
drds

)

+ c−(x)

�(α)�(m − ν)

(∫ t

0

∫ 1

x

(t−s)α−1(r−x)m−ν−1 ∂mu(r, s)

∂rm
drds

)
.(5.5)

Subtracting (5.4) from (5.5), we obtain

eN,M(x, t) = G1 + G2 + G3 + G4 (5.6)

where

G1 = c+(x)

�(α)�(m − ν)
eN,M

(∫ t

0

∫ x

0
(t−s)α−1(x−r)m−ν−1 ∂muN,M(r, s)

∂rm
drds

)
,

G2 = c+(x)

�(α)�(m − ν)

∫ t

0

∫ x

0
(t − s)α−1(x − r)m−ν−1 ∂meN,M(r, s)

∂rm
drds,

G3 = c−(x)

�(α)�(m − ν)
eN,M

(∫ t

0

∫ 1

x

(t−s)α−1(r−x)m−ν−1 ∂muN,M(r, s)

∂rm
drds

)
,

G4 = c−(x)

�(α)�(m − ν)

∫ t

0

∫ 1

x

(t−s)α−1(r−x)m−ν−1 ∂meN,M(r, s)

∂rm
drds. (5.7)

Then we can write

∥∥eN,M(x, t)
∥∥

L2()
≤

4∑
i=1

‖Gi‖L2(). (5.8)

Now, it is sufficient to show that the right hand of (5.8) tends to zero for sufficiently
large N and M . To this end, in virtue of (5.3), we obtain

‖G1‖L2() ≤ C1M
−1

∥∥∥∥
∫ t

0

∫ x

0
(t−s)α−1(x−r)m−ν−1 ∂muN,M(r, s)

∂rm
drds

∥∥∥∥
H 1,0

+ C2N
−1

∥∥∥∥
∫ t

0

∫ x

0
(t−s)α−1(x−r)m−ν−1 ∂muN,M(r, s)

∂rm
drds

∥∥∥∥
H 0,1

.(5.9)
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The first term on the right-hand side of the above equation can be written as follows

∥∥∥∥
∫ t

0

∫ x

0
(t − s)α−1(x − r)m−v−1 ∂muN,M(r, s)

∂rm
drds

∥∥∥∥
2

H 1,0

=
∥∥∥∥
∫ t

0

∫ x

0
(t − s)α−1(x − r)m−v−1 ∂muN,M(r, s)

∂rm
drds

∥∥∥∥
2

L2()

+
∥∥∥∥ ∂

∂x

∫ t

0

∫ x

0
(t − s)α−1(x − r)m−v−1 ∂muN,M(r, s)

∂rm
drds

∥∥∥∥
2

L2()

. (5.10)

Due to (2.5), we obtain following relation

∂

∂x

∫ x

0
(x − r)m−ν−1u(r)dr =

∫ x

0
(x − r)m−ν−1 ∂u(r)

∂r
dr,

and using Young inequality [1, 18], we obtain

∥∥∥∥
∫ t

0

∫ x

0
(t − s)α−1(x − r)m−v−1 ∂muN,M(r, s)

∂rm
drds

∥∥∥∥
2

H 1,0

=
∥∥∥∥
∫ x

0
(x − r)m−v−1

(∫ t

0
(t − s)α−1 ∂muN,M(r, s)

∂rm
ds

)
dr

∥∥∥∥
2

L2()

+
∥∥∥∥
∫ x

0
(x − r)m−v−1

(∫ t

0
(t − s)α−1 ∂m+1uN,M(r, s)

∂rm+1
ds

)
dr

∥∥∥∥
2

L2()

≤
∥∥∥(x − r)m−v−1

∥∥∥2

L1(Ix)

∥∥∥∥
∫ t

0
(t − s)α−1 ∂muN,M(r, s)

∂rm
ds

∥∥∥∥
2

L2()

+
∥∥∥(x − r)m−v−1

∥∥∥2

L1(Ix)

∥∥∥∥
(∫ t

0
(t − s)α−1 ∂m+1uN,M(r, s)

∂rm+1
ds

)∥∥∥∥
2

L2()

≤
∥∥∥(x − r)m−v−1

∥∥∥2

L1(Ix)

∥∥∥(t − s)α−1
∥∥∥2

L1(It )

∥∥∥∥∂muN,M(r, s)

∂rm

∥∥∥∥
2

L2()

+
∥∥∥(x − r)m−v−1

∥∥∥2

L1(Ix)

∥∥∥(t − s)α−1
∥∥∥2

L1(It )

∥∥∥∥∂m+1uN,M(r, s)

∂rm+1

∥∥∥∥
2

L2()

≤ C3

∥∥∥∥∂muN,M(x, t)

∂xm

∥∥∥∥
2

L2()

+ C3

∥∥∥∥∂m+1uN,M(x, t)

∂xm+1

∥∥∥∥
2

L2()

= C3

∥∥∥∥∂muN,M(x, t)

∂xm

∥∥∥∥
2

H 1,0

≤ C3
∥∥uN,M(x, t)

∥∥2
Hm+1,0 = C3

∥∥eN,M(x, t) − u(x, t)
∥∥2

Hm+1,0

≤ C3
(∥∥eN,M(x, t)

∥∥
Hm+1,0 + ‖u(x, t)‖Hm+1,0

)2
. (5.11)
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Also we can obtain

∥∥∥∥
∫ t

0

∫ x

0
(t − s)α−1(x − r)m−v−1 ∂muN,M(r, s)

∂rm
drds

∥∥∥∥
2

H 0,1

≤ C4

∥∥∥∥∂muN,M(r, s)

∂xm

∥∥∥∥
2

L2()

+ C4

∥∥∥∥∂m+1uN,M(r, s)

∂xm∂t

∥∥∥∥
2

L2()

= C4
∥∥uN,M(x, t)

∥∥2
Hm,1

≤ C4
∥∥eN,M(x, t) − u(x, t)

∥∥2
Hm,1

≤ C4
(∥∥eN,M(x, t)

∥∥
Hm,1 + ‖u(x, t)‖Hm,1

)2
. (5.12)

According to (5.9), (5.11) and (5.12), we obtain

‖G1‖L2() ≤ C3M
−1 (∥∥eN,M(x, t)

∥∥
Hm+1,0 + ‖u(x, t)‖Hm+1,0

)
+ C4N

−1 (∥∥eN,M(x, t)
∥∥

Hm,1 + ‖u(x, t)‖Hm,1

)
. (5.13)

From (5.2), we can conclude ‖G1‖L2() → 0 for sufficiently large N and M .
Further, consider the second term of (5.8). In a similar manner with G1, employing

Young inequality and properties of Sobolev norm we have

‖G2‖L2() ≤
∥∥∥∥
∫ t

0

∫ x

0
(t − s)α−1(x − r)m−v−1 ∂meN,M(r, s)

∂rm
drds

∥∥∥∥
L2()

≤
∥∥∥(x − r)m−v−1

∥∥∥
L1(Ix)

∥∥∥(t − s)α−1
∥∥∥

L1(It )

∥∥∥∥∂meN,M(r, s)

∂rm

∥∥∥∥
L2()

≤ C5

∥∥∥∥∂meN,M(x, t)

∂xm

∥∥∥∥
2

L2()

≤ C5
∥∥eN,M(x, t)

∥∥
Hm,0 . (5.14)

Making use of (5.2), we conclude that ‖G2‖L2() → 0. For the third term, we may
write

‖G3‖L2() ≤ C1M
−1

∥∥∥∫ t

0

∫ 1
x
(t − s)α−1(r − x)m−ν−1 ∂muN,M(r,s)

∂rm drds

∥∥∥
H 1,0

+C2N
−1

∥∥∥∫ t

0

∫ 1
x
(t − s)α−1(r − x)m−ν−1 ∂muN,M(r,s)

∂rm drds

∥∥∥
H 0,1

. (5.15)

Due to (2.6), we obtain following relation

∂

∂x

∫ 1

x

(r − x)m−ν−1u(r)dr =
∫ 1

x

(x − r)m−ν−1 ∂u(r)

∂r
dr.
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The first term on the right-hand side of (5.15) can be written as∥∥∥∥∥
∫ t

0

∫ 1

x

(t − s)α−1(r − x)m−v−1 ∂muN,M(r, s)

∂rm
drds

∥∥∥∥∥
2

H 1,0

=
∥∥∥∥∥
∫ 1

x

(r − x)m−v−1
(∫ t

0
(t − s)α−1 ∂muN,M(r, s)

∂rm
ds

)
dr

∥∥∥∥∥
2

L2()

+
∥∥∥∥∥
∫ 1

x

(r − x)m−v−1
(∫ t

0
(t − s)α−1 ∂m+1uN,M(r, s)

∂rm+1
ds

)
dr

∥∥∥∥∥
2

L2()

≤ C6

∥∥∥∥∂muN,M(x, t)

∂xm

∥∥∥∥
2

L2()

+ C6

∥∥∥∥∂m+1uN,M(x, t)

∂xm+1

∥∥∥∥
2

L2()

= ∥∥uN,M(x, t)
∥∥2

Hm+1,0 ≤ ∥∥eN,M(x, t) − u(x, t)
∥∥2

Hm+1,0

≤ C6
(∥∥eN,M(x, t)

∥∥
Hm+1,0 + ‖u(x, t)‖Hm+1,0

)2
. (5.16)

Moreover, the second term can be estimated as follows∥∥∥∥∥
∫ t

0

∫ 1

x

(t − s)α−1(r − x)m−ν−1 ∂muN,M(r, s)

∂rm
drds

∥∥∥∥∥
2

H 0,1

≤ C7

∥∥∥∥∂muN,M(r, s)

∂xm

∥∥∥∥
2

L2()

+C7

∥∥∥∥∂m+1uN,M(r, s)

∂xm∂t

∥∥∥∥
2

L2()

= C7

∥∥∥∥∂muN,M(r, s)

∂xm

∥∥∥∥
2

H 0,1

≤ C7
∥∥uN,M(x, t)

∥∥2
Hm,1 ≤ C7

∥∥eN,M(x, t) − u(x, t)
∥∥2

Hm,1

≤ C7
(∥∥eN,M(x, t)

∥∥
Hm,1 + ‖u(x, t)‖Hm,1

)2
. (5.17)

Making use of (5.16), (5.17) and (5.15), we obtain

‖G3‖L2() ≤ C6M
−1 (∥∥eN,M(x, t)

∥∥
Hm+1,0 + ‖u(x, t)‖Hm+1,0

)
+ C7N

−1 (∥∥eN,M(x, t)
∥∥

Hm,1 + ‖u(x, t)‖Hm,1

)
. (5.18)

Finally, we can obtain

‖G4‖L2() ≤
∥∥∥∥∥
∫ t

0

∫ 1

x

(t − s)α−1(r − x)m−ν−1 ∂meN,M(r, s)

∂rm
drds

∥∥∥∥∥
L2()

≤ C8

∥∥∥∥∂meN,M(x, t)

∂xm

∥∥∥∥
L2()

≤ C8
∥∥eN,M(x, t)

∥∥
Hm,0 . (5.19)

From (5.2), we can conclude ‖G3‖L2() and ‖G4‖L2() → 0 for sufficiently large
N , M .

The desired convergence result for the proposed space-time Legendre tau scheme
is obtained by combining (5.13), (5.14), (5.18), (5.19) and (5.8). The presented
results show that the convergence of the approximate solution uN,M(x, t) to u(x, t)
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as N, M → ∞ depends on how many times u(x, t) is differentiable with respect to
x and t .

6 Numerical results and comparisons

In this section, we present four numerical examples to demonstrate the accuracy and
applicability of the proposed method. The obtained results of these examples show
that SLT method, by selecting a few number of shifted Legendre polynomials, is more
accurate than explicit difference approximation [48], implicit difference approxima-
tion [11, 48], compact finite difference method [40] and the Crank-Nicolson method
[40].

Example 1 As a first application, we offer the following one-dimensional space-time
fractional wave equation [19]:

C
0 Dα

t u(x, t) = ∂βu(x, t)

∂|x|β + q(x, t), 0 < x, t < 1, 1 < α, β < 2, (6.1)

with initial conditions

u(x, 0) = 1 − x2,
∂u(x, 0)

∂t
= 0, (6.2)

and Robin boundary conditions

u(0, t) + ∂u(0, t)

∂x
= 1 + t2α,

u(1, t) − ∂u(1, t)

∂x
= 2(1 + t2α), (6.3)

where

q(x, t) = �(3 + α)(1 − x2)

�(3)
t2 + 2Cβ(1 + t2+α)

�(3 − β)
(x2−β + (1 − x)2−β).

The exact solution of this problem is u(x, t) = (1 + t2+α)(1 − x2).

The maximum absolute errors (MAEs) between the exact solution u(x, t) and the
approximate solution uN,M(x, t) with various choices of N (N = M) and three
choices of the fractional derivatives α and β are given in Table 1. We see in this table
that the results are accurate for even small choices of N and M . Fig. 1 shows the error
functions u(x, 0.9) − u10,10(x, 0.9) and u(0.6, t) − u10,10(0.6, t) with α = β = 1.9.
In addition, to demonstrate the convergence of the proposed method, in Fig. 2, we
plot the logarithmic graphs of MAEs (log10Error) at various values of the fractional
derivatives α and β. From these figures, we conclude that the numerical errors for all
chosen fractional derivatives (α, β) decay rapidly as N and M increase. We observe
also that the suggested algorithm provides accurate and stable numerical results.
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Table 1 Maximum absolute errors at various choices of N, M, α and β for Example 1

N = M α = β = 1.1 α = β = 1.3 α = β = 1.5 α = β = 1.7

3 6.299 × 10−3 3.348 × 10−3 6.133 × 10−3 9.227 × 10−3

5 3.366 × 10−4 7.827 × 10−5 8.609 × 10−5 6419 × 10−5

7 1.920 × 10−5 9.016 × 10−6 8.361 × 10−6 5.214 × 10−6

9 1.859 × 10−6 1.850 × 10−6 1.535 × 10−6 8.550 × 10−7

11 3.461 × 10−7 5.249 × 10−7 4.025 × 10−7 2.052 × 10−7

13 1.627 × 10−7 1.187 × 10−7 1.860 × 10−7 4.829 × 10−8

Example 2 Consider the following two-sided space-fractional wave equation [48]:

∂2u(x, t)

∂t2
= c+(x) C

0 D1.8
x u(x, t) + c−(x) C

x D1.8
� u(x, t) + q(x, t), (6.4)

with the initial and boundary conditions:

u(x, 0) = 4x2(2 − x)2,

u(0, t) = 0,

∂u(x, 0)

∂t
= −4x2(2 − x)2, x ∈ (0, 2),

u(2, t) = 0, t ∈ (0, τ ],
(6.5)

where c+(x) = �(1.2) x1.8, and c−(x) = �(1.2) (2 − x)1.8, while

q(x, t) = 4e−t x2(2 − x)2 − 32e−t
(
x2 + (2 − x)2 − 2.5(x3 + (2 − x)3)

+ 25

22
(x4 + (2 − x)4)

)
.

The exact solution of this problem is u(x, t) = 4e−t x2(2 − x)2.

In [48], Sweilam et al. applied the implicit and explicit methods to introduce an
approximate solution of this problem at τ = 2 with several choices of �x and �t ,
where �x and �t are space and time step sizes, respectively. Regarding problem
(6.4), in [48], the best result is achieved with the implicit method at �t = 4 × 10−3

and �x = 2 × 10−6 and the maximum absolute error is 3 × 10−3. In Table 2, we

0.0 0.2 0.4 0.6 0.8 1.0
x

4.5 10 9

4. 10 9

3.5 10 9

3. 10 9

2.5 10 9

2. 10 9

1.5 10 9

error

0.4
t

1. 10 8

5. 10 9

5. 10 9

1. 10 8

error

0.2 0.6 0.8 1.0

Fig. 1 Errors at t = 0.9 (left) and x = 0.6 (right) with N = M = 11, α = β = 1.9 for Example 1
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Fig. 2 Convergence rates of the numerical method for problem (6.1) at various choices of α and β

list MAEs at τ = 2 with various choices of N and M . Our method is more accurate
than the implicit and explicit methods [48]. We see in this table that the results are
accurate for even small choices of N and M .

Example 3 Consider the following fractional wave equation with damping (γ =
1)[11]:

C
0 Dα

t u(x, t) + ∂u(x, t)

∂t
= ∂2u(x, t)

∂x2
+ q(x, t), (6.6)

with the initial and boundary conditions:

u(x, 0) = 0,

u(0, t) = 0,

∂u(x, 0)

∂t
= 0, 0 < x < �,

u(�, t) = 0, 0 < t ≤ τ,
(6.7)

where

q(x, t) = 2x(� − x)

�(3 − α)
t2−α + 2tx(� − x) + 2t2.

The exact solution is u(x, t) = t2x(� − x).

Recently, Chen et al. [11] applied the method of separation of variables with con-
structing the implicit difference approximation to introduce an approximate solution
of this problem at � = 2, τ = 1 and α = 1.7 using the Caputo form of the
fractional derivative. Regarding problem (6.6), in [11], the best result is achieved at

Table 2 Maximum absolute errors with τ = 2 and various choices of N and M for Example 2

N = M 4 5 7 9 11

MAE 2.315 × 10−3 2.291 × 10−4 3.407 × 10−5 1.015 × 10−5 3.973 × 10−6
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� = 2, τ = 1 and α = 1.7 with 640 steps and the maximum absolute error is
5.316 × 10−5. In Table 3, we list MAEs at τ = 1, � = 2 and various choices of
N, M and α. Our method is more accurate than the method of separation of vari-
ables combined with the implicit difference approximation [11]. We see in this table
that the results are accurate for even small choices of N and M .

In addition, to demonstrate the convergence of the proposed method, in Fig. 3, we
plot the logarithmic graphs of MAEs (log10Error) at τ = 1, � = 2 and various
values of the fractional derivative α with various values of N (N = M); by using
the presented algorithm. Clearly, the numerical errors decay rapidly as N and M

increase.

Example 4 Consider the time-fractional diffusion-wave problem [40]:

C
0 Dα

t u(x, t) = ∂2u(x, t)

∂x2
+ q(x, t), 1 < α < 2, 0 < x < 1, 0 < t < 1,

(6.8)
with initial conditions

u(x, 0) = ∂u(x, 0)

∂t
= 0, (6.9)

and Neumann boundary conditions

∂u(0, t)

∂x
= ∂u(1, t)

∂x
= 0. (6.10)

The forcing term is

q(x, t) = �(α + 3)

2
t2exx2(1 − x)2 − extα+2(2 − 8x + x2 + 6x3 + x4).

The exact solution of this problem has the form:

u(x, t) = exx2(1 − x)2tα+2.

Table 3 Maximum absolute errors at τ = 1, � = 2 and various choices of N, M and α for Example 3

N = M α = 1.2 α = 1.4 α = 1.6 α = 1.8

3 3.685 × 10−4 7.757 × 10−4 1.039 × 10−3 8.196 × 10−4

5 8.735 × 10−5 2.150 × 10−4 3.053 × 10−4 2.525 × 10−4

7 3.166 × 10−5 8.303 × 10−5 1.243 × 10−4 1.081 × 10−4

9 1.439 × 10−5 3.960 × 10−5 6.169 × 10−5 5.554 × 10−5

11 7.506 × 10−6 2.145 × 10−5 3.447 × 10−5 3.198 × 10−5

13 4.315 × 10−6 1.273 × 10−5 2.101 × 10−5 2.002 × 10−5

15 2.665 × 10−6 8.082 × 10−6 1.365 × 10−5 1.329 × 10−5

17 1.739 × 10−6 5.402 × 10−6 9.314 × 10−6 9.260 × 10−6

19 1.186 × 10−6 3.762 × 10−6 6.606 × 10−6 6.689 × 10−6

21 8.380 × 10−7 2.709 × 10−6 4.837 × 10−6 4.980 × 10−6

23 7.957 × 10−7 2.219 × 10−6 2.325 × 10−6 2.021 × 10−6

25 7.950 × 10−7 2.212 × 10−6 2.325 × 10−6 2.021 × 10−6



176 Numer Algor (2016) 71:151–180

5 10 15 20
7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

N

L
og

10
er
ro
r

1.9

1.7

1.5

1.1

Fig. 3 Convergence rates of the numerical method for problem (6.6) at τ = 1, α = 1.1, 1.5, 1.7, 1.9

Table 4 displays maximum absolute errors using SLT method with N = 8 together
with the results obtained by using the compact finite difference method (CFDM [40])
and the Crank-Nicolson method (CNM [40]), for different choices of α. From the
results of this example, we observe that the approximate solution by SLT method is
more better than those obtained by CFDM [40] and CNM [40].

Example 5 Consider the exact solution of the problem (6.8) as follows [40],

u(x, t) = t2+α sin x, (6.11)

defined on 0 < x < π , and 0 < t < τ , then the corresponding forcing term is

q(x, t) =
(

�(3 + α)

2
t2 + t2+α

)
sin x,

Table 4 MAEs of the SLT method and methods of [40] at different values of α for Example 4

SLT method CFD method [40] CN method [40]

α M = 4 M = 8 M = 12 M = 10 M = 160 M = 10 M = 160

1.2 2.80 × 10−5 4.58 × 10−7 3.82 × 10−7 − − − −
1.3 3.83 × 10−5 4.65 × 10−7 4.07 × 10−7 1.15.10−3 1.04.10−5 1.15 × 10−3 1.06 × 10−5

1.4 4.53 × 10−5 5.79 × 10−7 4.53 × 10−7 − − − −
1.5 4.85 × 10−5 5.51 × 10−7 4.37 × 10−7 2.54.10−3 3.99.10−5 2.54 × 10−3 4.00 × 10−5

1.6 4.77 × 10−5 4.47 × 10−7 4.47 × 10−7 − − − −
1.7 4.26 × 10−5 4.42 × 10−7 3.75 × 10−7 5.20 × 10−3 1.40 × 10−4 5 × 20.10−3 1 × 40.10−4

1.8 3.29 × 10−5 6.23 × 10−7 5.74 × 10−7 − − − −
2 4.09 × 10−7 4.05 × 10−7 4.04 × 10−7 − − − −
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Table 5 MAEs of the presented method and CFD method [40] at different values of α for Example 5

SLT method CFD method [40]

α N = 5 N = 9 N = 13 N = 10 M = 160

1.3 1.99 × 10−3 1.84 × 10−6 1.07.10−7 1.55 × 10−2 1.41 × 10−4

1.5 1.88 × 10−3 1.52 × 10−6 2.10.10−7 3.61 × 10−2 5.70 × 10−3

1.7 1.75 × 10−3 8.49 × 10−7 5.50.10−8 7.62 × 10−2 2.08 × 10−3

with initial conditions

u(x, 0) = ∂u(x, 0)

∂t
= 0, (6.12)

and the nonhomogeneous Robin boundary conditions

u(0, t) − ∂u(0, t)

∂x
= −t2+α,

u(π, t) + ∂u(π, t)

∂x
= t2+α. (6.13)

In this example, we implement the SLT method to solve the time-fractional
diffusion-wave Robin problem [40]. In Table 5, we make a comparison of the pre-
sented algorithm with the CFDM proposed in [40]. Obviously, our method is more
accurate than CFDM [40]. From the results of this table, the best result we have
achieved is at N = M = 13, we may conclude also that the obtained results
are excellent in terms of accuracy for problems with nonhomogeneous boundary
conditions.

7 Conclusions

We have presented a new space-time spectral algorithm based on shifted Legendre
tau approximation in conjunction with the operational matrices of left-sided Caputo,
right-sided Caputo fractional derivatives and Riemann-Liouville fractional integrals.
This method is implemented for solving the two-sided space-time Caputo FDWE
with damping subject to various boundary conditions. The fractional derivatives and
integrals were given in the Caputo description. In particular, the fractional derivative
is described in the Caputo sense to avoid hyper-singular improper integrals, mass
balance error, non-zero derivative of constant, and fractional derivative involved in
the initial data which is often ill-defined. The fractional derivative includes the left-
and right-sided Caputo derivatives that allow for the modeling of flow regime impacts
from either side of the domain. The method provided a very accurate approximate
solution using few terms of the shifted Legendre polynomial expansion. From the
numerical results given in Section 6, we may conclude that the obtained results are
excellent in terms of accuracy for all tested problems.

With this paper we have outlined the implementation of a shifted Legendre tau
approximation based on the fractional derivatives and fractional integrals operational
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matrices for solving the two-sided space-time Caputo FDWEs. In principle, this
method may be extended to related problems, such as coupled two-sided space-time
Caputo FDWEs. One might also consider other two-sided space-time Caputo par-
tial differential equations subject to Dirichlet, Robin and/or non-local conditions. We
should note that, as a numerical method, we are restricted to solving problems over
a finite domain. Hence, this method is particularly well suited for boundary value
problems with finite spatial intervals.

It is possible to use other orthogonal polynomials, say Chebyshev polynomials, or
Jacobi polynomials to solve the two-sided space-time Caputo FDWEs. Furthermore,
the proposed spectral method might be developed by considering the generalized
Laguerre [7] or modified generalized Laguerre polynomials to solve similar problems
in a semi-infinite spatial intervals. This is one possible area of future work.

Acknowledgments The authors thank the referees for constructive comments and suggestions which
have improved the paper.
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