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Abstract Time series data with periodic trends like daily temperatures or sales of
seasonal products can be seen in periods fluctuating between highs and lows through-
out the year. Generalized least squares estimators are often computed for such time
series data as these estimators have minimum variance among all linear unbiased
estimators. However, the generalized least squares solution can require extremely
demanding computation when the data is large. This paper studies an efficient algo-
rithm for generalized least squares estimation in periodic trended regression with
autoregressive errors. We develop an algorithm that can substantially simplify gener-
alized least squares computation by manipulating large sets of data into smaller sets.
This is accomplished by coining a structured matrix for dimension reduction. Simu-
lations show that the new computation methods using our algorithm can drastically
reduce computing time. Our algorithm can be easily adapted to big data that show
periodic trends often pertinent to economics, environmental studies, and engineering
practices.
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1 Introduction

Suppose that we analyze time series data by fitting a linear regression model. The
model can be expressed as

y = Xβ + ε, (1)

where y = (y1, . . . , yn)
T is a vector of n responses,X = (x1, . . . , xk) is a n×k matrix

with j th covariate xj = (xj1, . . . , xjn)
T for j ∈ {1, . . . , k}, β = (β1, . . . , βk)

T is
a k-dimensional vector of unknown regression parameters, and ε = (ε1, . . . , εn)

T is
a n-dimensional vector of zero-mean autocorrelated errors with variance-covariance
matrix �. The regression parameter associated with a covariate is often estimated by
the generalized least squares (GLS) method. Computing GLS solution is based on a
general linear model form. Specifically, the GLS estimator for β, denoted by β̂, is

β̂ = (XT�−1X)−1XT�−1y (2)

with variance

var(β̂) = (XT�−1X)−1. (3)

The GLS estimator β̂ is the best linear unbiased estimator (BLUE) for β if the regres-
sion model errors {εt } have a second-moment stationary autocorrelation function.
Ordinary least squares (OLS) estimators are also often calculated since OLS estima-
tors can be asymptotically BLUE under some mild conditions [4]. OLS estimators do
not need � for their values but require it for their variances. However, most statistical
software computes OLS estimator variances by treating the data as being indepen-
dent, producing biased OLS estimator variances. Also, GLS methods can be more
efficient when there is substantial autocorrelation [16]. We do not particularly favor
one method over the other but focus in this paper on an efficient GLS algorithm.

In practice, the variance-covariance matrix � is unknown, and we must estimate �

to find GLS. The resulting estimator with estimated � is called the feasible general-
ized least squares (FGLS) estimator. The FGLS estimate is obtained by iterating GLS
computation until all the model parameter estimates converge. This GLS method
can be computationally demanding when the sample size n is large, mostly because
GLS requires the inverse of n × n matrix �. Some numerical algorithms have been
developed to bypass the direct inverse matrix calculation for more efficient GLS. For
instance, the Durbin-Levinson algorithm and the Innovations algorithm sequentially
compute one-step ahead predictions and their mean square prediction errors in lieu
of �−1 [2, 13]. Some GLS algorithms do not require the full-sized n × n matrix
inverse. Lee [7] develops a fast algorithm for GLS estimators and their variances
using an end-points matching approach. This algorithm simplifies the GLS compu-
tation by inverting a dimension-reduced n

2 × n
2 matrix, instead of the n × n matrix �.

These algorithms work fast enough for small or relatively large sets of data but take
longer to compute as the data sets get larger with a computation complexity of order
at least O(n2). This could be a computational challenge when GLS is iterated for
FGLS and/or when GLS is applied to big data. This could be even more troublesome
when the GLS method is applied to unknown multiple changepoint problems where
all possible segmentations are considered for any possible changepoint times.
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We consider periodic trended regression with first-order autoregressive errors.
This regression model is applied in many econometric, environmental, and engi-
neering practices. Our objective is to develop an efficient GLS algorithm for such
periodic trended regression models. For this, we propose using a dimension reduction
matrix that significantly reduces the dimension of the regression model by compress-
ing replicative periodic patterns in the data. This matrix is made by matching those
responses with the identical periodic patterns. Appealingly, our algorithm requires an
inverse of m × m dimensional matrix with m � n and m not increasing with n. As a
result, unlike other algorithms, our algorithm has a constant computation complexity,
not proportional to the sample size n, in computing the inverse matrix.

The rest of this paper proceeds as follows: Section 2 illustrates our algorithm in
some fundamental periodic trended regression models in which the matrix inverse
dimension for GLS computation is greatly reduced to a small constant. In Section 3,
the GLS methods using our algorithm are compared with other existing GLS
methods. Section 4 concludes with some remarks.

2 An efficient GLS algorithm

Although some GLS algorithms would reduce a significant amount of computing
time in many practices, they still might need very demanding computation if n is big
and/or if GLS is iterated to improve accuracy. However, if the errors {εt } in a periodic
trended regression model are a first-order autoregressive, AR(1), process, we find
that the GLS computation complexity can be greatly further reduced. To elaborate,
when we fit a time series regression model to a periodic trend plus AR(1) noise data,
the model can be expressed as a sum of sinusoidal waves:

yt = β0 +
k∑

i=1

αi1 cos(2πt/Ti + αi2) + εt ,

where β0 is the overall mean of {yt }, αi1 is the amplitude associated with period Ti ,
and αi2 is a phase shift which is not necessarily zero in actual data. We assume that
Ti’s are known. Use of a trigonometric identity reexpresses this model as a linear
model in terms of all regression parameters:

yt = β0 +
k∑

i=1

{βi1 cos(2πt/Ti) + βi2 sin(2πt/Ti)} + εt ,

where βi1 = αi1 cos(αi2) and βi2 = −αi1 sin(αi2). We illustrate our GLS algorithm
in the following four periodic trended regression models.

Model 1 We first consider simple periodic trended regression with AR(1) errors:

yt = β0 + β1 cos(2πt/T ) + εt (4)

for t ∈ {1, . . . , n} with n = CT − 1. Here yt is the observed value at time t with
period T , {εt } are a stationary AR(1) error series in the sense that εt = φεt−1 + Zt ,
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|φ| < 1, with {Zt } being a zero-mean white noise series with variance σ 2, and C is
the number of cycles in {yt }.

We illustrate our algorithm when the data has a period of T = 12 (equivalent to
monthly data). For data with a different period, the same approach can be used. The
GLS estimator for β = (β0, β1)

T in (4) can be written as:

β̂ = (β̂0, β̂1)
T =

(
n∑

t=1

w0t yt ,

n∑

t=1

w1t yt

)T

. (5)

The weights {w0t } and {w1t } for the GLS estimator β̂ on {yt } are dependent on the
AR parameter φ and the covariate cos(2πt/T ). An explicit expression for these GLS
weights in (5) is presented in Appendix. Figure 1 displays these weights over the
corresponding time t when C = 3 for simplicity. Interestingly, as the weights {w0t }
and {w1t } periodically change, those responses with the same weights can be merged,
subsequently producing equivalent GLS results. For C = 3, matching such periodic
patterns in {w0t } and {w1t } gives us the following 8 × n dimensional matrix:

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We callD a matching matrix as the column element inD signifies whether the weight
w0t (or w1t ) is identical (coded as 1) or not (coded as 0) for time t .

Extension of D to larger cycles is straightforward. To specify D in a general case
with C ∈ {3, 4, . . .}, we first define the following two sub-pattern matrices:

D∗ = (e2, e3, e4, e5, e6, e5, e4, e3, e2), D∗ = (e7, e8, e7),

where ei is an 8-dimensional column vector having one in the ith element and zeros
in the other elements for i ∈ {1, . . . , 8}. For a general C cycle, we then simply repeat
D∗ and D∗ by C − 1 times to obtain the following 8 × n matching matrix:

D = (e1,D∗,D∗,D∗, · · · ,D∗,D∗, e1).

Next, we multiply both sides of the regression model (1) by D, resulting in a
dimension-reduced regression model:

yr = Xrβ + εr. (6)

Note that yr = Dy is 8 × 1, Xr = DX is 8 × 2, and εr = Dε is 8 × 1. Interestingly,
this dimension-reduced model (6) has a similar expression to the linear model (1) but
consists of only 8-dimensional, not n-dimensional, column vectors. The dimension-
reduced response vector yr has then the compressed 8×8 variance-covariance matrix:

�r = var(yr) = D�DT.
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Fig. 1 The weight of the GLS intercept parameter β0 estimate (top) and weight of GLS covariate
parameter β1 estimate (bottom) on the response series in Model 1 with AR parameter φ = 0.8

The resulting GLS estimator from the model (6) is

β̂ = (XT
r�

−1
r Xr)

−1XT
r�

−1
r yr (7)

with variance
var(β̂) = (XT

r�
−1
r Xr)

−1. (8)
The dimension-reduced GLS expressions in (7) and (8) produce identical results with
the original GLS expressions in (2) and (3).

Note that the matching matrix D is used to reduce our effort in GLS computation.
The number of rows in D is only 8 for T = 12, not proportional to n. Multiplying
the 8 × n dimensional D to y, X, and � (for �r = D�DT) and then inverting only
8 × 8 dimensional matrix �r comprise our computational cost to obtain the equiva-
lent GLS estimator and variance in (7) and (8). This new algorithm is substantially
more efficient than directly inverting n × n dimensional � as n gets larger. We also
emphasize that the matrix inverse dimension for GLS computation is a small constant
in our algorithm for any C ∈ {2, 3, . . .}, implying that the inverse computation com-
plexity via our algorithm is always constant and not monotonically increasing with
sample size n unlike other existing GLS methods. The matching matrix D for differ-
ent values of n can be found in the same manner. We present the matching matrices
for n = CT and n = CT + 1 in Appendix for further illustration.
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Model 2 We consider the following periodic regression model with AR(1) errors:

yt = β0 + β1 sin(2πt/T ) + εt

for t ∈ {1, . . . , n} with n = CT + T/2− 1. We use T = 12 for illustration purposes.
The GLS estimator can be expressed as (5). Finding an explicit expression for the
weights {w0t } and {w1t } can be laborious. However, {w0t } and {w1t } for this model
also show a periodic pattern as depicted in Fig. 2 when C = 3. Use of this periodic
pattern leads to the following matching matrix:

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Extension to a general cycle C ∈ {3, 4, . . .} is simple. We expand D by repeatedly
inserting D∗ and D∗ for C times:

D = (e1,D∗,D∗,D∗, · · · ,D∗,D∗, e1),

where ei is an 8-dimensional column vector having one in the ith element and zeros
in the other elements for i ∈ {1, . . . , 8}, and D∗ and D∗ are identical to those of
Model 1. After multiplying D to y, X, and � to obtain the dimension-reduced yr, Xr,
and �r, we compute the GLS estimator and variance using the expressions in (7) and
(8).

Our algorithm requires only a few simple steps: (i) multiplying the matching
matrix D to the response vector y and the covariate matrix X, (ii) computing the com-
pressed 8 × 8 variance-covariance matrix �r, and (iii) inverting �r for GLS results.
For different periods and sample sizes, our algorithm can be similarly applied to
produce equivalent results.

Model 3 Consider another periodic trended regression model with AR(1) errors:

yt = β0 + β1 cos(2πt/T ) + β2 sin(2πt/T ) + εt

for t ∈ {1, . . . , n} with n = CT + T/6. The periodicity of T = 12 is used again for
our illustration. The GLS estimator can be expressed as:

β̂ = (β̂0, β̂1, β̂2)
T =

(
n∑

t=1

w0t yt ,

n∑

t=1

w1t yt ,

n∑

t=1

w2t yt

)T

.

The weight {w0t } behaves similarly to those of Model 1 and Model 2. The weights
{w1t } and {w2t } also vary periodically. Figure 3 shows these periodic patterns in
{w1t } and {w2t } for C = 3. Interestingly, these weights are symmetric to each other:
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Fig. 2 The weight of the GLS intercept parameter β0 estimate (top) and weight of GLS covariate
parameter β1 estimate (bottom) on the response series in Model 2 with AR parameter φ = 0.8

w2,t = w1,n+1−t . Using this symmetric property, we need to coin a matching matrix
associated with either of {w1t } or {w2t }, resulting in the following:

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For larger cycles, we just need to repeat the following pattern matrix E by C times
to obtain D:

D = (e1,E, · · · ,E, e14), E = (e2, · · · , e13). (9)
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Fig. 3 The weight of the GLS cosine parameter β1 estimate (top) and weight of GLS sine parameter β2
estimate (bottom) on the response series in Model 3 with AR parameter φ = 0.8

Here, ei is a 14-dimensional column vector with one in the ith element and zero in
the others for i ∈ {1, . . . , 14}. Therefore, the matching matrix D has a dimension of
14 × n. We do not need a separate matching matrix for the intercept weight {w0t } as
this matrix is in fact linearly dependent on D.

Appreciably, the 14×n dimensional matching matrix D in (9) is also applicable to
Model 1 and Model 2 for the sample size n = CT + T/6. The resulting compressed
variance-covariance matrix �r has a dimension of 14 × 14, which is slightly larger
than the 8 × 8 variance-covariance matrix in Model 1 and Model 2, but this small
increase in dimension does not add any meaningful complexity in GLS computation.

Model 4 We consider a multiple periodic trended regression model with AR(1)
errors:

yt = β0 +
2∑

i=1

{βi1 cos(2πt/Ti) + βi2 sin(2πt/Ti)} + εt (10)
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for t ∈ {1, . . . , n} with n = CT1 + T1/6. This model has two different periods at T1
and T2. We assume that C is an even integer. The GLS estimator can be expressed as:

β̂ = (β̂0, β̂11, β̂12, β̂21, β̂22)
T

=
(

n∑

t=1

w0t yt ,

n∑

t=1

w11t yt ,

n∑

t=1

w12t yt ,

n∑

t=1

w21t yt ,

n∑

t=1

w22t yt

)T

.

Figure 4 displays the weights {w11t }, {w12t }, {w21t }, and {w22t } when C = 6, T1 =
12, and T2 = 24 for our illustration. These weights exhibit a periodic pattern, similar
to that of Model 1, Model 2, and Model 3. Using the same approach used in the
previous models, we obtain the matching matrix as follows:

D = (e1,F, · · · ,F, e26), F = (e2, · · · , e25). (11)

Here, ei is a 26-dimensional column vector with one in the ith element and zeros in
the others for i ∈ {1, . . . , 26}. The 26 × 24 dimensional pattern matrix F is repeated
C/2 times to form the matching matrix D, setting D to be 26 × n dimensional. The
inverse of �r = D�DT should be comfortably calculable at a very fast speed without
any numerical issues. Again, we do not need to include a separate matching matrix
for {w0t } as this matrix is linearly dependent on D.

Our algorithm can be easily adapted to the general case that there are g periods
T1, . . . , Tg in the multiple periodic trended regression with AR(1) errors in (10). We
only need to configure the matching matrix D, akin to the matrix (11), from a smaller
sample size and extend this matching matrix to the full sample size. Multiplying this
D to y and X, and computing �r = D�DT and its inverse �−1

r are all computational
tasks to obtain the GLS results in (7) and (8). These matrix calculations are very
straightforward; there are no computational issues and/or numerical inaccuracies in
any of these matrix operations. Recall that the dimension of �r is very small (� n);
inverting �r is not an issue.

3 Numerical comparisons

This section compares our GLS computation methods with other methods: GLS via
a direct inverse, GLS via the Cholesky decomposition, and GLS via the Durbin-
Levinson algorithm. To be specific, we briefly describe the other three methods
below.

First, the GLS method via a direct inverse uses the expression in (2). This method
directly computes �−1 and uses this inverse matrix to compute GLS estimates.
Second, the GLS method via the Cholesky decomposition decomposes the variance-
covariance matrix � = QQT and then multiplies the n×n dimensionalQ−1 by y and
X, rewriting the linear model (1) as follows [5, pp. 329–330]:

yq = Xqβ + εq, (12)
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Fig. 4 The GLS parameter estimate weights on the response variable in Model 4 with AR parameter
φ = 0.8: period-12 cosine (first), period-12 sine (second), period-24 cosine (third), and period-24 sine
(last)
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where yq = Q−1y, Xq = Q−1X, and εq = Q−1ε. As εq is a vector of independent
errors (note that var(εq) = Q−1�Q−1T = Q−1QQTQT−1 = I), the GLS estimates
are equivalent to the OLS estimates for the model (12), giving us:

β̂ = (XT
qXq)

−1XT
qyq = (XTQ−1TQ−1X)−1XTQ−1TQ−1y.

This Cholesky decomposition GLS method can be faster than the direct inverse GLS
method. A caveat for this Cholesky GLS method is, however, that it still requires
computing an inverse matrix of n × n dimensional matrix Q. Third, the GLS method
via the Durbin-Levinson algorithm directly finds n × n dimensional matrix P akin
to Q−1 as in (12) by the Durbin-Levinson algorithm [2, pp. 169–170]. To elaborate,
we predict the error εt+1 by the one-step ahead best linear predictor, denoted by
ε̂t+1 = P(εt+1|εt , . . . , ε1), as follows: begin with the start-up value ε̂1 = 0 and
compute

ε̂t+1 =
t∑

j=1

φt,j εt+1−j

for t ∈ {1, . . . , n − 1}. The mean squared prediction error for ε̂t+1 is denoted by
vt = E[(εt+1 − ε̂t+1)

2]. The terms {φt,j } and {vt } can be expressed as a simple
form for AR(1) autocorrelation, but we consider the Durbin-Levinson algorithm for
general stationary {εt } as this general setting is coded in most software packages.
Specifically, the Durbin-Levinson algorithm recursively computes {φt,j } and {vt } as
follows: begin with the start-up values v0 = γ (0) and φ1,1 = γ (1)/γ (0) and find

φt,t = v−1
t−1

⎛

⎝γ (t) −
t−1∑

j=1

φt−1,j γ (n − j)

⎞

⎠ ,

φt,j = φt−1,j − φt,tφt−1,t−j , j ∈ {1, . . . , t − 1},
vt = vt−1(1 − φ2

t,t ),

where γ (h) = cov(εt , εt+h) for h ∈ {0, . . . , n − 1}. These calculations are then
repeated for each successive t . Using these {φt,j } and {vt }, we construct

P =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
v0

0 0 · · · 0 0
−φ1,1√

v1

1√
v1

0 · · · 0 0
−φ2,2√

v2

−φ2,1√
v2

1√
v2

· · · 0 0
...

...
...

. . .
...

...
−φn−2,n−2√

vn−2

−φn−2,n−3√
vn−2

−φn−2,n−4√
vn−2

· · · 1√
vn−2

0
−φn−1,n−1√

vn−1

−φn−1,n−2√
vn−1

−φn−1,n−3√
vn−1

· · · −φn−1,1√
vn−1

1√
vn−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and multiply this P to the linear model (1) to obtain:

yp = Xpβ + εp, (13)

where yp = Py, Xp = PX, and εp = Pε. Note that the t th element in εp is a stan-
dardized prediction error (εt − ε̂t )/

√
vt−1 for t ∈ {1, . . . , n}. These prediction errors
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are mutually independent by the projection theorem [2, pp. 53–54], and therefore the
GLS estimates are equivalent to the OLS estimates for the model (13):

β̂ = (XT
pXp)

−1XT
pyp = (XTPTPX)−1XTPTPy.

Note that this technique does not require any large matrix inversion for the GLS
estimates.

We now consider the running time of our algorithm. For this, we simulated time
series from Model 4 with β0 = 10, β11 = 1, β12 = 1.5, β21 = 0.5, β22 = 2,
φ = 0.8, and σ 2 = 1. Simulation results will be invariant to these parameter selec-
tions. GLS regression parameter estimators depend on the AR(1) parameter φ and
the white noise variance σ 2 associated with {εt }. These error parameters must be esti-
mated in practice. For this, we iterate a recursive two-stage method to convergence
to obtain optimal GLS estimates for β = (β0, β11, β12, β21, β22)

T. Elaborating, OLS
estimates for β are initially calculated. Residuals from this OLS fit, denoted by rt ,
are computed by rt = yt − β̂0 − ∑2

i=1(β̂i1 cos(2πt/Ti) + β̂i2 sin(2πt/Ti)). We
then estimate φ by the lag-1 sample autocorrelation from the residual series {rt } and
σ 2 by (1 − φ̂2)

∑n
t=1 r2t /n. Using these error parameter estimates, we estimate the

variance-covariance matrix �, and then compute the GLS regression parameter esti-
mates. These GLS estimates are used to obtain the residual series of this GLS fit, and
new estimates for φ and σ 2 are calculated. These procedures are iterated recursively
until convergence meets a relative tolerance of 0.0001.

All simulations were run using a PC with 2.7 GHz Intel Core i5, and 8 GB 1600
MHz DDR3 under OS X 10.8.5. R (version 3.0.1) was used. We considered var-
ious cycles C ∈ {100, 200, . . . , 1400} or equivalently the corresponding sample
sizes n ∈ {1202, 2402, . . . , 16802}. Each cycle (sample size) is repeated ten times
to obtain accurate running times. As all GLS methods considered in our simula-
tion, excluding the Durbin-Levinson algorithm GLS method, requires a laborious
construction of the n × n variance-covariance matrix �, we employed a truncation
technique without a substantial loss of accuracy. Specifically, the autocovariances
{γ (0), γ (1), . . . , γ (n−1)} are truncated to {γ (0), γ (1), . . . , γ (nτ −1), 0, . . . , 0} for
a large value of nτ . We used nτ = 200. Applying this truncation technique to each
GLS method, except the Durbin-Levinson algorithm GLS method, produces seven
different methods: GLS with full autocovariance via a direct inverse (FINV), GLS
with truncated autocovariance via a direct inverse (TINV), GLS with full autocovari-
ance via Cholesky decomposition (FCHO), GLS with truncated autocovariance via
Cholesky decomposition (TCHO), GLS via the Durbin-Levinson algorithm (DLA),
our matching GLS with full autocovariance (FMAT), and our matching GLS with
truncated autocovariance (TMAT).

All methods in our simulation study gave us approximately identical GLS esti-
mates, but the running times are quite different. Figure 5 summarizes running times
for these seven GLS methods. As expected, the GLS methods (FINV, TINV, FCHO,
and TCHO) based on a direct inverse and the Cholesky decomposition get drastically
slower as n gets larger. The Durbin-Levinson algorithm GLS method (DLA) runs
fast but experiences an increasingly slow performance for large n. Appealingly, GLS
methods (FMAT and TMAT) using our algorithm are fastest; the truncation technique
makes the computation run slightly faster with a more noticeable difference for larger
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Fig. 5 Comparison of GLS computation running times: FINV (blue), TINV (dark blue), FCHO (orange),
TCHO (dark orange), DLA (grey), FMAT (green), and TMAT (dark green)

n. We also comment that unlike other methods, our methods FMAT and TMAT run
closely at a constant rate as n increases.

The theoretical numbers of numerical operations in these methods also can be
compared. As the dominating part of computation in FINV is �−1, FINV has a com-
putation complexity of order O(n3). Similarly, FCHO is of O(n3) as the Cholesky
decomposition involvesO(n3) computations. The DLAmethod needs approximately
n2 + O(n) additions/subtractions and n2 + O(n) multiplications in the Durbin-
Levinson algorithm, n2/2 + O(n) additions and n2/2 + O(n) multiplications in
Py, and 5n2/2 + O(n) additions and 5n2/2 + O(n) multiplications in PX, result-
ing in a total complexity of 8n2 + O(n). On the other hand, FMAT requires less
complexity as follows: the dominating part in FMAT is D�DT which involves
2n2 + O(n) additions. Note that in FMAT, Dy and Dy are of order O(n), which
does not add significant complexity in computation. In addition, FMAT requires
(D�DT)−1, but this nearly does not increase complexity. As a result, FMAT is of
order 2n2 + O(n), about a quarter of the DLA method. Figure 5 also verifies these
complexities.

4 Concluding remarks

We develop an efficient GLS algorithm for periodic trended regression with first-
order autoregressive errors. For each model considered in this paper, we find
a periodic matching matrix that drastically reduces the dimension of the lin-
ear model into a small constant dimension, not dependent on sample size unlike
existing GLS estimation algorithms. The new algorithm is similar to the real-
valued fast Fourier transform (FFT) algorithms in that these FFT algorithms use
Hermitian symmetry pertinent to the real-valued data at every stage to remove
redundant computations of repetitive parts [1, 14]. However, our algorithm uses
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specific periodic pattern in GLS estimators in one single step to reduce compu-
tation time. This paper considered two periods, T ∈ {12, 24}, but our algorithm
can be easily adapted to different periods. Our algorithm should be greatly appre-
ciated if the data are big or the GLS computation is repeated in computationally
demanding procedures, including the FGLS estimation in unknown regression
error parameter settings and/or unknown multiple changepoint estimation problems
via the Generic Algorithm [8]. Our method can be applied to estimate periodic
trends of time series data in diverse applications, including signal processing [6],
two-photon imaging and fMRI data [9, 12], microarray data [15], climatic time
series [10], environmental data [11, pp. 243–246], and economic seasonal data
[3].

There are a few things that can make our algorithm more useful in practice.
We considered the AR(1) error model in this study, but more general error mod-
els, including a stationary autoregressive moving-average process, can be studied.
We can also consider our algorithm for periodic models with stochastic period-
icity [3], including periodic trended models with seasonal AR errors or periodic
trended models with periodic AR errors, to accurately model more complicated peri-
odic autocorrelations in actual data. Further study is needed for this possibility. One
issue in our algorithm is somewhat increasing running times for very large n. This
could be addressed if the compressed variance-covariance matrix �r is more effi-
ciently calculated. Specifically, we calculated this matrix by �r = D�DT, which
can require laborious matrix operations. This calculation seems to be replaceable
by a more efficient method that simplifies the matrix operations by using either
periodic pattern in D or Toeplitz structure in �. With this simplification, our algo-
rithm can run faster with a more constant increasing rate of running times as n gets
larger.
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Appendix

Explicit expression for (5) We obtain an explicit expression of the GLS weights in
(5) when C = 3 for simplicity. For this, we rewrite (5) as:

β̂ =
(

β̂0

β̂1

)
=

( ∑n
t=1 w0t yt∑n
t=1 w1t yt

)
= 1

v∗

( ∑n
t=1 w∗

0t yt∑n
t=1 w∗

1t yt

)
,
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where these weights are

w∗
0t =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

17 − 2φ + 16φ2 + (1 − 33φ + φ2) cos(π/6), if t ∈ R1;
1
2 (35 − 35φ + 35φ2 − 32φ3) − φ(34 − 33φ + φ2) cos(π/6), if t ∈ R2;
(1 − φ)[17 + 31

2 φ2 − 32φ cos(π/6)], if t ∈ R3;
1
2 (33 − 33φ + 27φ2 − 30φ3) − φ(30 − 31φ − φ2) cos(π/6), if t ∈ R4;
17 − 14φ + 14φ2 − 14φ3 − (1 + 31φ − 28φ2 − φ3) cos(π/6), if t ∈ R5;
16 − 16φ + 23

2 φ2 − 29
2 φ3 − 2φ(14 − 15φ − φ2) cos(π/6), if t ∈ R6;

17 − 20φ + 17φ2 − 17φ3 + (1 − 33φ + 36φ2 − φ3) cos(π/6), if t ∈ R7;
18 − 18φ + 39

2 φ2 − 33
2 φ3 − 2φ(18 − 17φ + φ2) cos(π/6), if t ∈ R8

and

w∗
1t =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 39
2 φ + 35

2 φ2 + (35 − 35φ + 2φ2) cos(π/6), if t ∈ R1;
1
2 (37 − 39φ + 41φ2 − 35φ3) − φ(37 − 37φ + 2φ2) cos(π/6), if t ∈ R2;
(1 − φ)[(1 − φ)2 − 2φ(1 − φ) cos(π/6)], if t ∈ R3;
− 1

2 (33 − 27φ + 29φ2 − 31φ3) + φ(33 − 29φ − 2φ2) cos(π/6), if t ∈ R4;
1 + 99

2 φ − 93
2 φ2 − φ3 − (35 − 31φ + 31φ2 − 31φ3) cos(π/6), if t ∈ R5;

−34 + 30φ − 32φ2 + 32φ3 + 2φ(34 − 31φ − φ2) cos(π/6), if t ∈ R6;
1 − 111

2 φ + 105
2 φ2 − φ3 + (35 − 35φ + 39φ2 − 35φ3) cos(π/6), if t ∈ R7;

36 − 36φ + 38φ2 − 34φ3 − 2φ(36 − 35φ + φ2) cos(π/6), if t ∈ R8

with

v∗ = 594 − 558φ + 1073

2
φ2 − 1015

2
φ3 + 4φ(φ2 + 262φ − 279) cos(π/6).

Here, R1, . . . , R8 denote the time points where the corresponding GLS weights are
identical, given by

R
 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1, 35}, if 
 = 1;
{2, 10, 14, 22, 26, 34}, if 
 = 2;
{3, 9, 15, 21, 27, 33}, if 
 = 3;
{4, 8, 16, 20, 28, 32}, if 
 = 4;
{5, 7, 17, 19, 29, 31}, if 
 = 5;
{6, 18, 30}, if 
 = 6;
{11, 13, 23, 25}, if 
 = 7;
{12, 24}, if 
 = 8.

Matching matrices for n = CT and n = CT +1 in Model 1 Here, we choose C = 3
for simplicity. Our approach of constructing D can be easily extended to any larger
C as illustrated in Section 2. As {w0t } has the same periodic pattern as {w1t }, we
consider only {w1t }. Plots like Fig. 1 show a periodic pattern (similar to the pattern
for n = CT − 1) in {w1t }. For n = CT , nine different values of {w1t } are identified,
giving us the following 9 × n matching matrix:
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D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This matrix is a straightforward extension from the case n = CT − 1. As w11 �=
w1n for n = CT , we use 9-dimensional ei’s (i ∈ {1, . . . , 9}) to trace the periodic
pattern in {w1t } with e9 as the last column of D. When n = CT + 1, this approach
gives us:

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This D follows the same pattern in the matching matrix for n = CT with the
successive pattern vector e8 inserted before the last column vector e9.
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