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Abstract We study the local convergence of Chebyshev-Halley-type methods of
convergence order at least five to approximate a locally unique solution of a non-
linear equation. Earlier studies such as Behl (2013), Bruns and Bailey (Chem. Eng.
Sci 32, 257–264, 1977), Candela and Marquina (Computing 44, 169–184, 1990),
(Computing 45(4):355–367, 1990), Chicharro et al. (2013), Chun (Appl. Math.
Comput, 190(2):1432–1437, 1990), Cordero et al. (Appl.Math. Lett. 26, 842–848,
2013), Cordero et al. (Appl. Math. Comput. 219, 8568–8583, 2013), Cordero and
Torregrosa (Appl. Math. Comput. 190, 686–698, 2007), Ezquerro and Hernández
(Appl. Math. Optim. 41(2):227–236, 2000), (BIT Numer. Math. 49, 325–342, 2009),
(J. Math. Anal. Appl. 303, 591–601, 2005), Gutiérrez and Hernández (Comput.
Math. Applic. 36(7):1–8, 1998), Ganesh and Joshi (IMA J. Numer. Anal. 11, 21–31,
1991), Hernández (Comput. Math. Applic. 41(3–4):433–455, 2001), Hernández and
Salanova (Southwest J. Pure Appl. Math. 1, 29–40, 1999), Jarratt (Math. Comput.
20(95):434–437, 1966), Kou and Li (Appl. Math. Comput. 189, 1816–1821, 2007),
Li (Appl. Math. Comput. 235, 221–225, 2014), Ren et al. (Numer. Algorithm.
52(4):585–603, 2009), Wang et al. (Numer. Algorithm. 57, 441–456, 2011), Kou
et al. (Numer. Algorithm. 60, 369–390, 2012) show convergence under hypotheses
on the third derivative or even higher. The convergence in this study is shown under
hypotheses on the first derivative. Hence, the applicability of the method is expanded.
The dynamical analyses of these methods are also studied. Finally, numerical
examples are also provided to show that our results apply to solve equations in cases
where earlier studies cannot apply.
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1 Introduction

In this study we are concerned with the problem of approximating a locally unique
solution x∗ of equation

F(x) = 0, (1.1)

where F is a differentiable function defined on a convex subset D of S with values
in S, where S is R or C.

Many problems from Applied Sciences including engineering can be solved by
means of finding the solutions of equations in a form like (1.1) using Mathematical
Modelling [4, 5, 28, 31]. For example, dynamic systems are mathematically modeled
by difference or differential equations, and their solutions usually represent the states
of the systems. Except in special cases, the solutions of these equations can be found
in closed form. This is the main reason why the most commonly used solution meth-
ods are usually iterative. The convergence analysis of iterative methods is usually
divided into two categories: semilocal and local convergence analysis. The semilocal
convergence matter is, based on the information around an initial point, to give crite-
ria ensuring the convergence of iteration procedures. A very important problem in the
study of iterative procedures is the convergence domain. In general the convergence
domain is small. Therefore, it is important to enlarge the convergence domain with-
out additional hypothesis. Another important problem is to find more precise error
estimates on the distances ‖xn+1 − xn‖, ‖xn − x∗‖. These are with the study of the
dynamical behavior our objectives in this paper.

The dynamical properties related to an iterative method applied to polynomi-
als give important information about its stability and reliability. In recently studies,
authors such as Cordero et al. [10–14], Amat et al [1, 2, 5], Gutiérrez et al. [18], Chun
et al. [11], Magreñán [25, 26], and many others [6–9, 15–24, 29–33] have found inter-
esting dynamical planes, including periodical behavior and others anomalies. One of
our main interests in this paper is the study of the parameter spaces associated to
a family of iterative methods, which allow us to distinguish between the good and
bad methods in terms of its numerical properties. Recently, D. Li, P. Liu and J. Kou
studied the local convergence of the method in [24] defined for each n = 0, 1, 2, . . .

by

yn = xn − F ′(xn)
−1F(xn)

zn = xn − (1 + (F (xn) − 2αF(yn))
−1F(yn))F

′(xn)
−1F(xn)

xn+1 = zn − (F ′(xn) + F̄ ′′(xn)(zn − xn))
−1F(zn),

(1.2)

where x0 is an initial point, α ∈ S a given parameter and F̄ ′′(xn) =
2F(yn)F

′(xn)
2F(xn)

−2.
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The order of convergence was shown to be at least five and if α = 1 the order of
convergence is six.

This method includes the modifications of Chebyshev’s method (α = 0), Halley’s
method (α = 1/2) and super-Halley method (α = 1). Method (1.2) is a usefull
alternative to the third order Chebyshev-Halley-methods [15–21] defined for each
n = 0, 1, 2, . . . by

xn+1 = xn −
(

1 + 1

2
(1 − αKF (xn)

)−1

KF (xn))F
′(xn)

−1F(xn), (1.3)

where
KF (xn) = F ′(xn)

−1F ′′(xn)F
′(xn)

−1F(xn),

since the computation of F ′′(xn) is being avoided.
However, the convergence of the method (1.2) has been shown under hypothe-

ses on at least the third derivative although only the first derivative appears in this
method. These hypotheses limit the applicability of method (1.2). For a motivational
example, define function F on X = Y = R, D = Ū (0, 1) by

F(x) =
{

c1x
3 ln x2 + c2x

5 + c3x
4, x �= 0

0, x = 0

where c1 �= 0, c2 and c3 are real parameters. Then, we have that

F ′(x) = 3c1x
2 ln x2 + 5c2x

4 + 4c3x
3 + 2c1x

2,

F ′′(x) = 6c1x ln x2 + 20c2x
3 + 12c3x

2 + 10c1x

and
F ′′′(x) = 6c1 ln x2 + 60c2x

2 + 24c3x + 22c1.

Then, obviously, function F ′′′(x) is unbounded on D. Hence, the results in [24],
cannot apply to show the convergence of method (1.2) or its special cases requir-
ing hypotheses on the third derivative of function F or higher. In particular, there is
a plethora of iterative methods for approximating solutions of nonlinear equations
defined in R or C [1–33].

These results show that if the initial point x0 is sufficient close to the solution
x∗, then the sequence {xn} converges to x∗. But how close to the solution x∗ the
initial guess x0 should be? The local results give no information on the radius of the
convergence ball for the corresponding method. We address this question for method
(1.2) in Section 2. The same technique can be used to other methods.

In this paper we present the local convergence analysis of method (1.2) using
hypotheses only on the first derivative of function F . Hence, the applicability of these
methods is expanded under less restrictive conditions.

The dynamics of this family applied to an arbitrary quadratic polynomial p(z) =
(z − A)(z − B) will also be analyzed. The study of the dynamics of families of
iterative methods has grown in the last years due to the fact that this study allows to
know the best choices of the parameter in terms of stability and to find the values of
the parameter for which appear anomalies, such as convergence to cycles, divergence
to infinity, etc. The graphic tool used to obtain the parameter space and the different
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dynamical planes have been introduced by Magreñán in [25, 26], but there exist other
techniques such as the one given by Chicharro et al in [10].

The rest of the paper is organized as follows: in Section 2 we present the local
convergence analysis of method (1.2). The dynamics of method (1.2) are given in
Section 3. Finally, the numerical examples are presented in the concluding Section 4.

2 Local convergence

In this Section we present the local convergence analysis of method (1.2). Let
U(v, ρ), Ū (v, ρ) stand for the open and closed balls in S, respectively with center
v ∈ S and of radius ρ > 0. Let L0 > 0, L > 0, M > 0 and α ∈ S be given param-
eters with L0 ≤ L. It is convenient for the local convergence analysis that follows to
introduce some functions and parameters. Define function on the interval [0, 1

L0
) by

g1(t) = Lt

2(1 − L0t)

and parameter

r1 = 2

2L0 + L
<

1

L0
. (2.1)

Notice that g1(r1) = 1. Define functions g2 and h2 on the interval [0, 1
L0

) by

g2(t) = L0t

2
+ |α|ML

1 − L0t
,

and
h2(t) = g2(t) − 1.

Suppose that
0 < |α|ML < 1. (2.2)

Then, we have by (2.2) that h2(0) = |α|ML − 1 < 0 and h2(t) → ∞ as t →
( 1
L0

)−. It follows from the Intermediate Value Theorem that function h2 has zeros

in the interval (0, 1
L0

). Denote by r2 the smallest such zero. The value of r2 can be
obtained explicitly as follows:

h2(t) = 0 ⇔ g2(t) = 1 ⇔ L0t

2
+ |α|ML

1 − L0t
= 0.

The solutions are

t = 3 ± √
1 + 8|α|ML

2L0
.

Since |α|ML < 1, 1 <
√

1 + 8|α|ML < 3. Thus

0 <
3 − √

1 + 8|α|ML

2L0
<

1

L0
<

2

L0
<

3 + √
1 + 8|α|ML

2L0
<

3

L0
.

Therefore

r2 = 3 − √
1 + 8|α|ML

2L0
.
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Moreover, define functions g3 and h3 on the interval (0, r2) by

g3(t) = g1(t)

[
1 + 2M2

2(1 − L0t) − L0t (1 − L0t) − 2|α|ML

]

and
h3(t) = g3(t) − 1.

Then, we have that h3(0) = −1 and h3(t) → ∞ as t → r−
2 . Hence, function h3 has

zeros in the interval (0, r2). Denote by r3 the smallest such zero.
Furthermore, define functions g4 and h4 on the interval [0, r2) by

g4(t) =
⎡
⎢⎣L0 + M3L(1 + g3(t))

(1 − L0t)(1 − L0

2
t)2

⎤
⎥⎦ t

and
h4(t) = g4(t) − 1.

We have that h4(0) = −1 and h4(t) → ∞ as t → r−
2 . Hence, function h4 has zeros

in the interval (0, r2). Denote by r4 the smallest such zero.
Finally, define functions g5 and h5 on the interval (0, r3) if r3 < r4 and on the

interval (0, r4) if r4 ≤ r3 by

g5(t) =
(

1 + M

1 − g4(t)

)
g3(t)

and
h5(t) = g5(t) − 1.

If r3 < r4, we have that h5(0) = −1 < 0 and h5(r3) = M3
1−g4(r3)

> 0, since
g3(r3) = 1 and g4(r3) < 1. Moreover, if r4 ≤ r3, then r3 < r2 and we also have that
h5(0) = −1 < 0 and h5(t) → ∞ as t → r−

4 (since g3(r4) > 0). Hence, function h5
has zeros in these intervals. Denote by r5 the smallest such zero in either case.

Set

r = min{r1, r3, r4, r5} <
1

L0
. (2.3)

Then, we have that for each t ∈ [0, r)

0 ≤ g1(t) < 1, (2.4)

0 ≤ g2(t) < 1, (2.5)

0 ≤ g3(t) < 1, (2.6)

0 ≤ g4(t) < 1, (2.7)

and
0 ≤ g5(t) < 1. (2.8)

Using the preceding notation we can show the main local convergence result for
method (1.2).
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Theorem 1 Let F : D ⊂ S → S be a differentiable function. Let L0 > 0, L > 0,
M > 0, α ∈ S be given parameters. Suppose that there exists x∗ ∈ D such that for
all x, y ∈ D the following hold:

F(x∗) = 0, F ′(x∗)−1 ∈ L(S, S),

|α|ML < 1,

‖F ′(x∗)−1(F ′(x) − F ′(x∗)‖ ≤ L0‖x − x∗‖, (2.9)

‖F ′(x∗)−1(F ′(x) − F ′(y)‖ ≤ L‖x − y‖, (2.10)

‖F ′(x∗)−1F ′(x)‖ ≤ M, (2.11)

and

Ū (x∗, r) ⊆ D, (2.12)

where r is given in (2.3). Then, the sequence {xn} generated by method (1.2) for
x0 ∈ U(x∗, r) \ {x∗} is well defined, remains in Ū (x∗, r) for each n = 0, 1, 2, . . .

and converges to x∗. Moreover, the following estimates hold

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ < r, (2.13)

‖zn − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖, (2.14)

and

‖xn+1 − x∗‖ ≤ g5(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖, (2.15)

where the “g” functions are defined above Theorem 2.1. Furthermore, suppose that
there exists R ∈ [r, 2

L0
) such that Ū (x∗, R) ⊆ D, then the limit point x∗ is the only

solution of equation F(x) = 0 in Ū (x∗, R).

Proof Using (2.9), the definition of r and the hypothesis x0 ∈ U(x∗, r), we have that

‖F ′(x∗)−1(F ′(x0) − F ′(x∗))‖ ≤ L0‖x0 − x∗‖ < L0r < 1.

It follows from the preceding inequality and the Banach lemma on invertible
functions [4, 5, 28] that F ′(x0)

−1 ∈ L(S, S) and

‖F ′(x0)
−1F ′(x∗)‖ ≤ 1

1 − L0‖x0 − x∗‖ ≤ 1

1 − L0r
. (2.16)

Then, y0 is well defined by the first substep of the method (1.2) for n = 0. By the
first substep of method (1.2) for n = 0, we get the approximation

y0 − x∗ = x0 − x∗ − F ′(x0)
−1F(x0)

= −F ′(x0)
−1F ′(x∗)

∫ 1

0

[
F ′(x∗ + θ(x0 − x∗)) − F ′(x0)

]
(x0 − x∗)dθ

(2.17)
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Using (2.3), (2.4), (2.10),(2.16) and (2.17), we obtain in turn that

‖y0 − x∗‖ ≤ ‖F ′(x0)
−1F ′(x∗)‖‖∫ 1

0 F ′(x∗)−1[F ′(x∗ + θ(x0 − x∗)) − F ′(x0)]‖dθ‖x0 − x∗‖
≤ L‖x0 − x∗‖2

2(1 − L0‖x0 − x∗‖) = g1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

which shows (2.13) for n = 0 and y0 ∈ U(x∗, r).
In view of (2.3), (2.5), (2.10), (2.11), (2.13), (2.16) and (2.17), we get that

‖(F ′(x∗)(x0 − x∗))−1
[
F(x0) − F(x∗) − 2αF(y0) − F ′(x∗)(x0 − x∗)

] ‖
≤ 1

‖x0 − x∗‖‖∫ 1
0 F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗)) − F ′(x∗))(x0 − x∗)dθ‖

+2|α|‖∫ 1
0 F ′(x∗)−1F ′(x∗ + θ(x0 − x∗))dθ

F ′(x0)
−1F ′(x∗)

∫ 1
0 F ′(x∗)−1[F ′(x∗ + θ(x0 − x∗)) − F ′(x0)](x0 − x∗)dθ‖

≤ L0‖x0 − x∗‖
2

+ |α|ML

1 − L0‖x0 − x∗‖ = g2(‖x0 − x∗‖)

< g2(r) < 1,

(2.18)
where we used that

F ′(x∗)−1F(y0)) = F ′(x∗)−1(F (y0)−F(x∗)) =
∫ 1

0
F ′(x∗)−1F ′(x∗ + θ(y0 −x∗))(y0 −x∗)dθ,

(2.19)
so

‖F ′(x∗)−1F(y0)‖ ≤ M‖y0 − x∗‖ ≤ Mg1(‖x0 − x∗‖)‖x0 − x∗‖
and

‖x∗ + θ(y0 − x∗) − x∗‖ = θ‖y0 − x∗‖ ≤ ‖y0 − x∗‖ < r.

Hence, (F (x0) − 2αF(y0))
−1 ∈ L(S, S) and

‖(F (x0) − 2αF(y0))
−1F ′(x∗)‖ ≤ 1

‖x0 − x∗‖(1 − g2(‖x0 − x∗‖)) . (2.20)

Hence, z0 is well defined. Using the second substep of method (1.2) for n = 0,
(2.3), (2.5), (2.13), (2.16), (2.19) (for y0 = x0) and (2.20) we obtain that
‖z0 − x∗‖ ≤ ‖x0 − x∗ − F ′(x0)

−1F(x0)‖

+‖F ′(x∗)−1F(y0)‖‖F ′(x∗)−1F(x0)‖‖F ′(x0)
−1F ′(x∗)‖‖(F (x0) − 2αF(y0))

−1F ′(x∗)‖

≤ g1(‖x0 − x∗‖)‖x0 − x∗‖ + M2‖x0 − x∗‖‖y0 − x∗‖
(1 − L0‖x0 − x∗‖)‖x0 − x∗‖[1 − 1

2 (L0‖x0 − x∗‖ + 2|α|ML
1−L0‖x0−x∗‖ )]

≤ g1(‖x0 − x∗‖)‖x0 − x∗‖
[

1 + 2M2

2(1 − L0‖x0 − x∗‖) − L0‖x0 − x∗‖(1 − L0‖x0 − x∗‖) − 2αML

]

= g3(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

which shows (2.14) for n = 0 and z0 ∈ U(x∗, r).
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It follows from the definition of r and (2.9) that

‖(F ′(x∗)(x0−x∗))−1(F (x0)−F(x∗)−F ′(x∗)(x0−x∗))‖ ≤ L0

2
‖x0−x∗‖ <

L0

2
r < 1. (2.21)

It follows from (2.21) that F(x0)
−1 ∈ L(S, S) and

‖F(x0)
−1F ′(x∗)‖ ≤ 1

‖x0 − x∗‖[1 − L0
2 ‖x0 − x∗‖] . (2.22)

Next, we shall show that

(F ′(x0) + 2F(y0)F
′(x0)

2F(x0)
−2(z0 − x0))

−1 ∈ L(S, S). (2.23)

Using (2.3), (2.8), (2.9), (2.11), (2.13), (2.14), (2.19) and (2.22), we have in turn
that

‖F ′(x∗)−1[F ′(x0) − F ′(x∗) + 2F(y0)F
′(x0)

2F(x0)
−2(z0 − x0)]‖

≤ ‖F ′(x∗)−1[F ′(x0) − F ′(x∗)]‖ + 2‖F ′(x∗)−1F(y0)‖‖F ′(x∗)−1F ′(x0)‖2‖F ′(x0)
−1F ′(x∗)‖2‖z0 − x0‖

≤ L0‖x∗ − x0‖ + 2‖∫ 1
0 F ′(x∗)−1F ′(x∗ + θ(y0 − x∗))dθ(y0 − x∗)‖

‖F ′(x∗)−1F ′(x0)‖2‖F(x0)
−1F ′(x∗)‖2(‖z0 − x∗‖ + ‖x0 − x∗‖)

≤ L0‖x∗ − x0‖ + 2M3‖y0 − x∗‖(‖z0 − x∗‖ + ‖x0 − x∗‖)
‖x0 − x∗‖2(1 − L0

2 ‖x0 − x∗‖)2

≤ L0‖x∗ − x0‖ + 2M3g1(‖x0 − x∗‖)(1 + g3(‖x0 − x∗‖)‖x0 − x∗‖2

‖x0 − x∗‖2(1 − L0
2 ‖x0 − x∗‖)2

≤ L0‖x∗ − x0‖ + 2M3L‖x0 − x∗‖(1 + g3(‖x0 − x∗‖))
2(1 − L0‖x0 − x∗‖)(1 − L0

2 ‖x0 − x∗‖)2

= g4(‖x0 − x∗‖) < 1.

(2.24)

It follows from (2.24) that (2.23) holds and

‖(F ′(x0) + 2F(y0)F
′(x0)

2F(x0)
−2(z0 − x0))

−1F ′(x∗)‖ ≤ 1

1 − g4(‖x0 − x∗‖) .
(2.25)

Hence, x1 is well defined. Then, using the last substep of method (1.2) for n = 0 and
x1 ∈ U(x∗, r), (2.3), (2.8), (2.11), (2.14), (2.19) (for y0 = z0), and (2.25), we get that

‖x1 − x∗‖ ≤ ‖z0 − x∗‖ + M‖z0 − x∗‖
1 − g4(‖x0 − x∗‖)

=
[

1 + M

1 − g4(‖x0 − x∗‖)
]

‖z0 − x∗‖

≤
[

1 + M

1 − g4(‖x0 − x∗‖)
]

g3(‖x0 − x∗‖)‖x0 − x∗‖

= g5(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,
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Fig. 1 Parameter space associated to the free critical point cr1(α)

which shows (2.15) for n = 0 and x1 ∈ U(x∗, r). By simply replacing x0, y0, z0, x1
by xk , yk , zk , xk+1 in the preceding estimates we arrive at (2.13)–(2.15). Using the
estimates

‖xk+1 − x∗‖ < ‖xk − x∗‖ < r,

we deduce that lim
k→∞ xk = x∗ and xk+1 ∈ U(x∗, r).

Finally to show the uniqueness part, let T = ∫ 1
0 F ′(y∗ + θ(x∗ − y∗))dθ for some

y∗ ∈ Ū (x∗, R) with F(y∗) = 0. In view of (2.9), we get in turn that

‖F ′(x∗)−1(T − F ′(x∗))‖ ≤ ‖∫ 1
0 L0‖y∗ + θ(x∗ − y∗)‖dθ

= L0
∫ 1

0 (1 − θ)‖y∗ − x∗‖ = L0

2
R < 1.

(2.26)

It follows from (2.26) that T −1 ∈ L(S, S). Then, from the identity 0 = F(y∗) −
F(x∗) = T (y∗ − x∗), we conclude that x∗ = y∗.
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Fig. 2 Parameter space associated to the free critical point cr2(α)

Remark 1 1. In view of (2.10) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x) − F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x) − F ′(x∗))‖
≤ 1 + L0‖x0 − x∗‖

condition (2.12) can be dropped and M can be replaced by

M(t) = 1 + L0t.

Moreover, condition (2.12) can be replaced by the popular but stronger
conditions

‖F ′(x∗)−1(F ′(x) − F ′(y))‖ ≤ L‖x − y‖ for each x, y ∈ D (2.27)

or

‖F ′(x∗)−1(F ′(x∗ + θ(x −x∗))−F ′(x))‖ ≤ L(1 − θ)‖x −x∗‖ for each x ∈ D and θ ∈ [0, 1].
(2.28)
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Fig. 3 Detail of the parameter space associated to the free critical point cr2(α)

2. The results obtained here can be used for operators F satisfying the autonomous
differential equation [4, 5] of the form

F ′(x) = P(F(x)),

where P is a known continuous operator. Since F ′(x∗) = P(F(x∗)) = P(0),

we can apply the results without actually knowing the solution x∗. Let as an
example F(x) = ex − 1. Then, we can choose P(x) = x + 1.

3. The radius r1 was shown in [4], [5] to be the convergence radius for Newton’s
method under conditions (2.11) and (2.30)

xn+1 = xn − F ′(xn)
−1F(xn), for each n = 0, 1, 2 . . . . (2.29)

It follows from (2.6) and the definition of r1 that the convergence radius r of the
method (2.1) cannot be larger than the convergence radius r1 of the second order
Newton’s method (2.29). As already noted in r1 is at least as the convergence
ball give by Rheinboldt [28]

rR = 2
3L

. (2.30)

In particular, for L0 < L we have that

rR < r1
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Fig. 4 Detail of the parameter space associated to the free critical point cr2(α)

and
rR

r1
→ 1

3
as

L0

L
→ 0.

That is our convergence ball r1 is at most three times larger than Rheinboldt’s.
The same value for rR given by Traub [29].

4. It is worth noticing that method (2.1) is not changing if we use the conditions
of Theorem 2.1 instead of the stronger conditions given in [24]. Moreover, for
the error bounds in practice we can use the computational order of convergence
(COC) [4, 5]

ξ = sup
ln

‖xn+2−xn+1‖
‖xn+1−xn‖

ln
‖xn+1−xn‖
‖xn−xn−1‖

, for each n = 1, 2, . . .

or the approximate computational order of convergence (ACOC) [14]

ξ∗ = sup
ln

‖xn+2−x∗‖
‖xn+1−x∗‖

ln
‖xn+1−x∗‖
‖xn−x∗‖

, for each n = 0, 1, 2, . . .

This way we obtain in practice the order of convergence in a way that avoids the
bounds involving estimates higher than the first Fréchet derivative.
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Fig. 5 Detail of the parameter space associated to the free critical point cr2(α)

3 Dynamical study of the method (1.2)

Firstly, some dynamical concepts of complex dynamics that are used in this work are
shown. Given a rational function R : Ĉ → Ĉ, where Ĉ is the Riemann sphere, the
orbit of a point z0 ∈ Ĉ is defined as

{
z0, R (z0) , R2 (z0) , ..., Rn (z0) , ...

}
.

A point z0 ∈ Ĉ, is called a fixed point of R(z) if it verifies that R(z) = z.
Moreover, z0 is called a periodic point of period p > 1 if it is a point such that
Rp (z0) = z0 but Rk (z0) �= z0, for each k < p. Moreover, a point z0 is called
pre-periodic if it is not periodic but there exists a k > 0 such that Rk (z0) is periodic.

There exist different types of fixed points depending on its associated multiplier
|R′(z0)|. Taking the associated multiplier into account, a fixed point z0 is called:

• superattractor if |R′(z0)| = 0,
• attractor if |R′(z0)| < 1,
• repulsor if |R′(z0)| > 1,
• and parabolic if |R′(z0)| = 1.



14 Numer Algor (2016) 71:1–23

Fig. 6 Basins of attraction associated to the method with α = 2.3

The fixed points that do not correspond to the roots of the polynomial p(z) are
called strange fixed points. On the other hand, a critical point z0 is a point which
satisfies that R′ (z0) = 0.

The basin of attraction of an attractor α is defined as

A (α) = {z0 ∈ Ĉ : Rn (z0)→α, n→∞}.
The Fatou set of the rational function R, F (R), is the set of points z ∈ Ĉ whose

orbits tend to an attractor (fixed point, periodic orbit or infinity). Its complement in
Ĉ is the Julia set, J (R). That means that the basin of attraction of any fixed point
belongs to the Fatou set and the boundaries of these basins of attraction belong to the
Julia set.

In this section we are going to study the complex dynamics of the method (1.2).
By applying this operator on a generic polynomial p(z) = (z − A)(z − B), and by
using the Möebius map h(z) = z−A

z−B
, whose properties are

i) h (∞) = 1, ii) h (A) = 0, iii) h (B) = ∞,

the rational operator associated to the family of iterative schemes is finally

G(z, α) = z6(2 − 2α + z)2

(1 − 2(−1 + α)z)2
. (3.1)
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Fig. 7 Basins of attraction associated to the method with α = 0.452

3.1 Study of the fixed points and their stability

It is clear that z = 0 and z = ∞ are fixed points of G(z, α) which are related to the
root A and B respectively. Now, focussing the attention on the extraneous fixed points
(those points which are fixed points but are not solution of the equation f (z) = 0.
First of all, we notice that z = 1 is a strange fixed point, which is associated with the
original convergence to infinity. Moreover, there are also other strange fixed which
are the solutions of the polynomial

p(z) = 1+5z−4αz+9z2−12αz2+4α2z2+9z3−12αz3+4α2z3+9z4−12αz4+4α2z4+5z5−4αz5+z6

It is easy to see that the solutions of this polynomial depend on the value of the
parameter α.

3.2 Study of the critical points and parameter spaces

In this section, the critical points will be calculated and the parameter spaces associ-
ated to the free critical points will be shown. It is well known that there is at least one
critical point associated with each invariant Fatou component. The critical points of
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Fig. 8 Basins of attraction associated to the method with α = 1.9

the family are the solutions of is G′(z, α) = 0, where

G′(z, α) =
4(−2+2α−z)z5

(
3−3α+6z−8αz+4α2z+3z2−3αz2

)
(−1−2z+2αz)3 .

By solving this equation, it is clear that z = 0 and z = ∞ are critical points, which
are related to the roots of the polynomial p(z) and they have associated their own
Fatou component. Moreover, there exist critical points no related to the roots, these
points are called free critical points. Their expressions are:

cr1(α) = 2(−1 + α)

cr2(α) = 3−4α+2α2−
√

−6α+19α2−16α3+4α4

3(−1+α)

cr3(α) = 3−4α+2α2+
√

−6α+19α2−16α3+4α4

3(−1+α)

The relations between the free critical points are described in the following
result.
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Fig. 9 Basins of attraction associated to the method with α = 0.08125 + 0.7875i

Lemma 1 a) If α = 1
2

(i) cr1(α) = cr2(α) = cr3(α) = −1.

b) If α = 3
2

(i) cr1(α) = cr2(α) = cr3(α) = 1.

c) If α = 0

(i) cr1(α) = −2 and cr2(α) = cr3(α) = −1.

d) If α = 2

(i) cr1(α) = 2 and cr2(α) = cr3(α) = 1.

Moreover, it is clear that for every value of α cr2(α) = 1
cr3(α)

So, there are only three independent free critical points, without loss of general-
ity, we consider in this paper the free critical point cr2(α). In order to find the best
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Fig. 10 Basins of attraction associated to the method with α = 2

members of the family in terms of stability, the parameter space corresponding to this
independent free critical point will be shown.

The study of the orbits of the critical points gives rise about the dynamical behavior
of an iterative method. In concrete, to determinate if there exists any attracting strange
fixed point or periodic orbit, the following question must be answered: For which
values of the parameters, the orbits of the free critical points are attracting periodic
orbits? In order to answer this question we are going to draw the parameter spaces.
When the critical point is used as an initial estimation, for each value of the parameter,
the color of the point tell us about the place it has converged to: to a fixed point, to
an attracting periodic orbit or even the infinity.

In Fig. 1, the parameter space associated to cr1(α) is shown and in Figs. 2, 3, 4 5
the parameter spaces associated to cr2(α) are shown. A point is painted in cyan if the
iteration of the method starting in z0 = cr1(α) converges to the fixed point 0 (related
to root A), in magenta if it converges to ∞ (related to root B) and in yellow if the
iteration converges to 1 (related to ∞). Moreover, it appears in red the convergence,
after a maximum of 2000 iterations and with a tolerance of 10−6, to any of the strange
fixed points, in orange the convergence to 2-cycles, in light green the convergence to
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3-cycles, in dark red to 4-cycles, in dark blue to 5-cycles, in dark green to 6-cycles,
dark yellow to 7-cycles, and in white the convergence to 8-cycles. The regions in
black correspond to zones of convergence to other cycles. As a consequence, every
point of the plane which is neither cyan nor magenta is not a good choice of α in
terms of numerical behavior.

Once the values of the parameters where anomalies appear have been detected, the
next step consist on finding them in the dynamical planes. In these dynamical planes
the convergence to 0 appear in magenta, in cyan it appears the convergence to ∞ and
in black the zones with no convergence to the roots.

Then, focussing the attention in the region shown in Fig. 2 it is evident that there
exist members of the family with complicated behavior. In Fig. 6, the dynamical
planes of a member of the family with regions of convergence to any of the strange
fixed points is shown

In Figs. 7, 8 and 9 dynamical planes of members of the family with regions of
convergence to an attracting 2-cycle is shown.

On the other hand, in Fig. 10, a dynamical planes of a member of the family with
regions of convergence to z = 1, related to ∞ is shown.

Other special cases are shown in Figs. 11, 12 and 13.

Fig. 11 Basins of attraction associated to the method with α = 0



20 Numer Algor (2016) 71:1–23

Fig. 12 Basins of attraction associated to the method with α = −1

4 Numerical example and applications

We present numerical examples in this section.

Example 4.1 Let S = R, D = [−1, 1], x∗ = 0 and define function F on D by

F(x) = sin(x). (4.1)

Then, choosing
α = 0.75

we get
L0 = 1,

L = 1

and
M = 1.

Then, by the definition of the “g” functions we obtain

r1 = 0.666666 . . . , r3 = 0.121895 . . . , r4 = 0.134343 . . . , r5 = 0.107424 . . .

and as a consequence
r = r5 = 0.107424 . . .
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Fig. 13 Basins of attraction associated to the method with α = 1

So we can ensure the convergence of the method (1.2) with α = 0.75 by Theorem 1.

Example 4.2 Let S = R, D = [−1, 1], x∗ = 0 and define function F on D by

F(x) = ex − 1. (4.2)

Then, choosing
α = 0.125

we get
L0 = e − 1,

L = e

and
M = e.

Then, by the definition of the “g” functions we obtain

r1 = 0.324947 . . . , r3 = 0.005966 . . . , r4 = 0.007504 . . . , r5 = 0.002110 . . .

and as a consequence
r = r5 = 0.002110 . . .

So we can ensure the convergence of the method (1.2) with α = 0.125 by Theorem 1.
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Example 4.3 Returning back to the motivation example at the introduction on this
paper, we have L = L0 = 146.6629073 . . . and M = 101.5578008. Choosing α =
0.00006 and by the definition of the “g” functions we obtain

r1 = 0.004545 . . . , r3 = 1.40519×10−7 , r4 = 6.23297×10−9 , r5 = 1.96801×10−9

and as a consequence

r = r5 = 1.96801 × 10−9.

So we can ensure the convergence of the method (1.2) with α = 0.00006 by Theorem
1, while with the conditions in [24] as already noted in the Introduction of this study
the convergence is not guaranteed.
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