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Abstract This paper focuses on spectral distribution of kernel matrices related to
radial basis functions. By relating a contemporary finite-dimensional linear alge-
bra problem to a classical problem on infinite-dimensional linear integral operator,
the paper shows how the spectral distribution of a kernel matrix relates to the
smoothness of the underlying kernel function. The asymptotic behaviour of the eigen-
values of a infinite-dimensional kernel operator are studied from a perspective of
low rank approximation—approximating an integral operator in terms of Fourier
series or Chebyshev series truncations. Further, we study how the spectral distribu-
tion of interpolation matrices of an infinite smooth kernel with flat limit depends
on the geometric property of the underlying interpolation points. In particularly, the
paper discusses the analytic eigenvalue distribution of Gaussian kernels, which has
important application on stably computing of Gaussian radial basis functions.
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1 Motivation

The increasing importance of high-dimensional problems and scattered data process-
ing motivates us to investigate the properties of kernel matrices related to radial basis
functions (RBFs). RBFs have been shown as an attractive approach for scattered data
approximation [46]. They can guarantee invertible linear systems [25], have good
approximating quality, and are promising to deal with high dimensional problems
and complex geometry domain. These attractive properties make RBFs one of the
foundations of many multivariate approximation based methods and techniques such
as mesh-free methods, machine learning, global optimization, surface reconstruction
and computing. However, research has found that linear systems related to some glob-
ally supported radial basis functions can be highly ill-conditioned for standard basis
which can result in extremely large condition number. The condition number of an
matrix A is defined by «(A) = A=A, where || - || denotes the standard 2-norm
of matrices. It depends on the ratio of the largest magnitude eigenvalue to the small-
est magnitude eigenvalue for symmetric matrices; many RBFs interpolation matrices
are of this type.

Stably computing the ill-conditioned linear system usually need to change the
standard basis to a better set of basis and to explore the spectral information. For

example, Gaussian radial basis functions e’ez“x”z, x € RY, with flat limit—the
cases corresponding to ¢ — O—can result in highly ill-conditioned linear systems
[13, 22]. Stably computing such highly ill-conditioned linear systems requires spec-
tral information of Gaussian kernel, see [9, 11, 23]. In the context of finite element
method (FEM), based on the spectral distribution of Galerkin mass matrices, a simple
and efficient diagonal preconditioner has been developed to speed up the computa-
tion [45]. Such work has already vividly shown that priori information on the spectral
distribution of a linear system is useful and sometime essential to design a simple
and efficient preconditioner for fast and stable solvers.

Pioneering results on the spectral information of RBFs interpolation matrices
focused primarily on the estimation of the smallest (magnitude) eigenvalue of the
underlying interpolation matrices. There are two fundamental motivations behind
such work: first, for understanding the solvability of high-dimensional interpolation
problem with certain radial basis functions, to prove the related matrices do not have
any zero eigenvalue [1, 25]; second, for understanding the stability of theoretical
computing, to estimate the upper bound of the norm of the inverse of an interpolation
matrix, or to estimate the condition number of the underlying interpolation matrix, in
this case, sharper estimation on the smallest magnitude eigenvalue is often required
[3,26-28, 40, 41].

Spectral distribution can further characterize the conditioning issues and reveal
more information than the conditioning number does [39]. Our recent research finds
that several other important computing issues are also closely related to the spec-
tral distribution (for example, constructing preconditioners and truncated SVD based
regularization). Further understanding the spectral information of RBFs interpolation
matrices is still necessary.

One main idea of the paper is to relate the RBFs interpolation scheme to the dis-
crete integral equation of the first kind, see Section 2. Instead of considering the
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finite-dimensional linear algebra problem directly, we investigate the correspond-
ing classical infinite-dimensional linear operator problem. Once put a contemporary
problem in a proper perspective, powerful tools are already available and many
results can be applied to explore the underlying problem. Combining several scat-
tered results, we obtain results on how the decay of eigenvalues of kernel matrices
of RBFs is closely related to the smoothness of the underlying RBFs (Theorem 4
and Theorem 5). The results perhaps are not striking new, but we have not seen the
results elsewhere. Several established results—Theorem 1, Theorem 3 and Theorem
6—are well known in the community of linear integral equations, but it seems that
these results drew little attention from the community of RBFs. The difference and
connections between these theorems are discussed.

The remaining of the paper is organised as follow. Section 2 introduce the connec-
tion between the RBFs interpolation problem and the Fredholm integral equation of
the first kind. Also introduced are several relevant lemmas including Weyl-Courant
minimax principle. Main results are discussed in Section 3. Finally, we discuss other
relevant results in existence, the connection with RBF-QR method, and possible
applications.

2 Preliminaries

Consider the following integral equation of the first kind
| K yawdy = £ M
Q

where X,y € RY. We call K (X,y) a kernel function in RY. Further, if K (x,y) satis-
fies f o K&, y)a(y)a(x) dxdy > 0 for any non-zero function «(x), then K (x,y) is
positive definite. If a simple quadrature rule is applied to sample «(y), then we get a
discrete equation

N
DK ypwialy)) = f(X). ©)
j=1
Further collocating at X1, X2, - - - , Xy gives
N
D> K&i.ypwjely)) = fi.i =12, N, 3)

j=1

where f; = f(x;). Let K(x,y) = ¢(||x — y||), then we can write these equations as
the linear system

odIx1 —yil) éUlxi —y20) --- odlxt —ynl) oy fi
o(Ix2 —y1l) ¢Ulx2 —y20) --- o(Ix2 —ynl) o | 2 @
d(Ixy —y1l) oUxy —y21D) -+ dUlxy —ynID ay SN

@ Springer



712 Numer Algor (2015) 70:709-726

where oj = w;a(y;), j =1,2,---, N. We denote the matrix in (4) by Ay x, where
X denotes the set {x1, X3, --- ,Xy}. Whenx; =y;, 1 <i < N, the linear system (4)
is the same as that obtained for interpolation matrices with the radial basis function
¢ at the points X1, Xp, - - - , Xy. In this paper we call the matrix in (4) a kernel matrix.

On the other hand, consider the interpolation scheme with a sum of translates of a
radial basis function

N
s =Y a;jp (Ix—yjl)- (5)
j=1

If s(x) interpolates an unknown function, f(x), on the data set X', and further
X; =Y;, 1 < j < N,itresults in the same linear system (4). In this case we call the
matrix Ag x an interpolation matrix. In this paper, we use kernel matrices for short.

We investigate the spectral distribution of kernel matrices related to radial basis
function by studying the infinite dimensional linear operator

xwm=£mewwm ©)

where K (X,y) = ¢ (||x — y|) is a radial function ¢. To investigate the spectral dis-
tribution of the operator X in (6), consider the following well known Weyl-Courant
minimax principle.

Lemma 1 (The Weyl-Courant minimax principle) Let X be a compact symmetric
operator on a Hilbert space H with eigenvalues

Aol = [A1] = [A2] = -+ = [An| = -+ -,

and S be any operator of rank < n on 'H, then | K — S| = |Anl.

The reader is directed to [24] for proof of the lemma. In [24], Little and Reade
apply the Weyl-Courant minimax principle to tails of the Chebyshev expansion for
analytic kernels, and conclude that the eigenvalues of an analytic kernel on a finite
interval go to zero at least as fast as R™" for some fixed R > 1. The proof depends
on the estimation of Chebyshev coefficients of analytic functions. Some results used
in their proof in fact date back to Bernstein [4] and relate to the so-called Bernstein’s
ellipse, denoted as &, [44, p.56]. The ellipse, &,, has foci at +1, and the sum of the
semi-axes equals p > 1.

Lemma 2 ([4][44, p.57]) Let a function, f, analytic in [—1, 1] be analytically con-
tinuable to the open Bernstein ellipse £,, where it satisfies | f (z)| < M for some M.
Then its Chebyshev coefficients, a,, satisfy ag < M and

la,| <2Mp~™",n > 1. @)
Its Chebyshev truncations satisfy

—n

Mp

2
If = Sull = ®)
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and its Chebyshev interpolants satisfy

4Mp™"
-1’

If = pall < )
where S, (x) = ZZ:O ai Ty (x), and p,(x) is the polynomial obtained by interpola-
tion in Chebyshev points.

The formula (7) is due to Bernstein, and the second part of the lemma can be found
in [44, p.57, Thm. 8.2].

A function of bounded variation on R, f(x), is a real-valued function, it is an
integrable function, say, f(x) € L(R), and, V, the supremum of f f(x)dg(x) over
all g(x) € C!'(R) with |g(x)| < 1 is finite. If f(x) is continuous, then the supremum
of >0 1 (x;) = f (xj—1) | is bounded over all finite samples xo, x1, - - -, x. For
finitely differentiable functions with the highest derivatives of bounded variations,
we consider the following result.

Lemma 3 ([44, p.52-p.53]) For any integer v > 0, let u and its derivatives

w,. ., uD be absolutely continuous on [—1, 1], and u™ be of bounded variation
V, then for any n > v + 1, the Chebyshev coefficients of u satisfy
2V
lay| < > V. (10)

S S,
w(n — )Vl
Its Chebyshev truncations S,, satisfy

2V

||M—Sn||§m,n>v (11)
and its Chebyshev interpolants satisfy
4v
If=pull = ———— ., n>v. (12)
wv(n —v)Y

For details of the proof of Lemma 3, the reader is directed to Trefethen’s new book
[44, Thm 7.1 and Thm 7.2].

Besides Chebyshev truncations, we also consider the Fourier series truncations.
Such an approximation is valid for a kernel function which is Lebesgue integrable,
not necessarily analytic, and it can be generalized to higher dimensional space. Here,
we demonstrate the idea with the simplest one dimensional case. For a Lebesgue
integrable function u on £2, say, u € L'(£2), the n-th Fourier coefficient of u is
defined by

/2 ,
iy :=un) = —/ u(t)e "™ dt (13)
T ) 1

for a T-periodic function, u, on 2 = [—T/2, T /2], where T could be finite or
infinite. If there is no confusion we use u, for short, otherwise we use u(n). The

@ Springer



714 Numer Algor (2015) 70:709-726

Fourier series S[u] of a function u € L'(£2) is the trigonometric series

o0
S[u] ~ Z e (14)
n=—0oo

A

The n-th Fourier series truncation is denoted as Sy[u] = Y j__, fi,e"™. Remem-
bering the Euler’s formula el = cost + isint, the Fourier series of a function
ueLY(2)is equal to

A x
O—i—Z(A cosnt + B, smm)——0 Z,/ 24 B2sin(nt +6,),  (15)

n=1 n=

where A, = ily + li_y, By = i {ily — li_,} and arcsin®, = B,/\/A2+ B?.In

A

particularly, when u is an even function, i, = it_,,

n
Sp=10(0)+2) diycosnt. (16)
k=1
As discussed above, it is clear that the Fourier series truncation S,, is a function of
finite rank n + 1.
According to standard classical Fourier analysis, Fourier coefficients have the
following properties, for example, see [20, p.3].

Proposition 1 Ifu € L! (£2), then

(a) denoteu; =u(t — 1), T € 2; then ii;(n) = liye™"7;
(b) liinl < 7 [lu(®)|dt = ||ull1;
(c) denote u.(t) = u(et) for some € > 0, then iio(n) = 112 (E)’ 1

(d) if u has v-the order derivative, then 1) (n) = (ln)”u(n);
(e) (The Riemann-Lebesgue Lemma) lim,|— o0 it(n) = 0.

If u is a v-times differentiable function and u") € L!(£2), then according to the
Riemann-Lebesgue Lemma

lim %) = lim (in)'d(n) =0, (17)
|n|]—o00

|n]—o00

which suggest ii(n) = o (%) as |n| — oo. The small “0” symbol is defined in

the standard way : u(k) = o(g(k)) as k — oo if limy_ o [u(k)|/|g(k)| =0.
If u is of bound variation V on £2, then integrate (13) by parts

2V
<= (18)

A 1 7'1
=|= My (H)dt
|t (72)] ’T/e u(t) Tl

1 .
| — tdfml
‘iTn/u() ¢

1a (%) is defined similarly as the Fourier coefficients, but note that £ may not be an integer.
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In this case i(n) = O (ﬁ), i.e. as |n| — oo, there exist a constant C such that

|t(n)| < C/|n|. Similarly if u has up to v— 1-time continuous derivatives and the v-th

derivative is of bounded variation and belongs to L!(£2), then &i(n) = O (1 / n”+1).
One case of great interest is the square integrable function u on 2, say, u €

L2(£2). In this case, u = lim,,_ oo > hen iie'*! in the L2 norm. And further we have

3

n=—oo

ﬁ(n)2’ = %/|u(t)|2dt. (19)

Because the series in (19) is convergent, further suppose iu(n) > 0, then
i(n)? = o(1/n) and it(n) = o (1/n'/?). Similarly, if u is k-times differentiable, and
u® e Lz(.Q), then 4® (n)=o (1/nk+1/2). By such standard analysis, see [20] for
example, we have

Lemma 4 (Fourier coefficients of differentiable functions) Let u be a square integral
function on §2 with Fourier transform u and Fourier coefficients iiy,.

1. Ifu has v — 1 continuous derivatives in LZ(.Q) for some v > 0, and the pth
derivative is of bounded variation, then u, = O (|n|7”’1) as |n| — oo.

2. Ifu e L*(2) andu € C*®, then i, = O(|n|™") as |n| — oo for every v > 0.

3. Ifu has up to v times continuous derivatives and u”) e L2(£2), then ti(n) =
0 (nfvfl/Z)'

3 Main results

The eigenvalue problem of the linear integral operator (6) has been well-studied for
many years since the work of Fredholm in 1903 [15]. There are many insightful
results in the literature, see [8, 15, 17, 18, 21, 24, 30-38, 43, 47] for example. This
paper only collects the most relevant and brief results, provides alternative simple
proofs, and develops new results.

Theorem 1 (Weyl[47, p.449-450]) If the kernel function K(x,y) = K(y,x) and

v
W exist and are continuous, then the magnitude of its eigenvalues decays at the

order |\,| = o (n_"_l/z).

The original result of Weyl only states this results for the case v = 1, and states it
as lim,, oo n3/%1,, = 0 [47, p.449].
If the kernel function is positive definite, sharper results hold [7, 16, 36].

Theorem 2 (Reade-Ha[16, 36]) If a kernel function K (x, y) is positive definite, 27 -
periodic in x and y, and v times continuously differentiable, then

L A =0m"");

2. foreven v, the sharper result Y > | n" A, < 00 holds.
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Remark 1 As far as we know, the above theorem was first proved for v = 1 in
[32] and then for the general case [33]. The second part of the theorem was initially
believed to be true for all v [16], but Reade [36] constructs a counter example show-
ing that the second part doesn’t hold for odd p. The eigenvalues of positive kernels
have also been considered in [5, 6, 10] with additional constraints.

It has been noted that both Theorem 1 and Theorem 2 are sharp [35].

Without the positive definite constraint, similar results can be obtained accord-
ing to the following results which state the essential connection between the Fourier
coefficients of a 27 -periodic kernel function and the eigenvalues of its corresponding
integral operator.

Theorem 3 (Hille-Tamarkin[17, p.10]) If K (x, y) = k(x—y) and k(x) € L [—n, 7]
is a periodic kernel, then \,, = 2wk, where k, = % ffﬂ k(x)e "™ dx is the Fourier
coefficient of the kernel function.

Applying Lemma 4 and Theorem 3, it is easy to show the following results.

Theorem 4 Let K(x,y) = k(x — y), where k(x) is a 2m periodic and square
integrable function on [—m, w]. Further let |A,| be the n'™ largest eigenvalue in
magnitude of its corresponding integral operator, then

1. if k(x) € CV, for some natural number v > 0 and its v-th derivative is of
bounded variation, then |\,| = O (n_"_l) asn — oo;

2. ifk(x) € C*, then |Ay| = O(n™") asn — 0 foranyv > 0;

3. ifk(x) € CV has up to v times continuous derivatives and the v-th derivative is
square integrable, then |A,| = o (nf”’l/z).

Now, we consider methods for more general cases.
3.1 First method: truncated Fourier series approximation
For simplicity, we consider the compactly supported radial basis functions; such
functions are even, though themselves are not necessarily periodic but can be

extended to be periodic on the real line. Let k(x) be a square integrable even function
in R. Its Fourier series truncation has the form in (16). Furthermore,

lim [k — Syll,2 = 0. (20)
n—>0oo

This implies Y .- |I€(n)|2 is convergent. According to the translation property of
Fourier coefficient, Proposition 1(a),

k(x = y) ~ k() + ) k(m)e™™ cosnx, @D

n=1
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since |ky (n)|> = |k(n)e="|> = |k(n)|?, and thus

k(x =) = Sulky 7. = Y Ik = " [k(m). (22)
m=n+1 m=n+1

According to the Weyl-Courant minimax principle, the n 4 1-st eigenvalue of the
kernel function k(x, y) satisfies

o
Pns1l? < k=) = Su[k]|72 = > lkam) 2. (23)
m=n+1
Suppose k(x) satisfies Lemma 4.1, then we get
o0 o
haniP = Y kP = Y |em7?
m=n+1 m=n+1

*© C C 1
= f pdt = ol
ntl Qv+ 1D+ 1)+
Thus, [A,| = O (n_”_l/z). Similarly for k") € L2(£2), we have |A,| = o(n™").

Theorem 5 Let ¢ be a radial basis function in L2(.Q), then

1. if¢ has v — 1 continuous derivatives for some v > 0 and the v derivative is of
bounded variation, then its eigenvalues decay at least in the order O (rf”*]/ 2).

2. if ¢ has v — 1 continuous derivatives and ¢\’ € L*(82), then the eigenvalues of
the corresponding linear operator decay in the order o(n™").

With Proposition 1.(c) and a few additional computations, we obtain the following
results for scaled radial basis functions.

Corollary 1 Let ¢.(x) = ¢ (ex), € > 0 be a scaled radial basis function in L2(£2),
then

1. if ¢ has v — 1 continuous derivatives for some v > 0 and the v derivative
is of bounded variation, then its eigenvalues in (4) decay at least in the order
O ((5)1}-%1/2).
n
2. ¢ has v continuous derivatives and ¢V € L*(82), then the eigenvalues of the
corresponding linear operator decay in the order o ((%) v).

The following method employing Chebyshev truncation brings sharper results.
3.2 Second method: truncated Chebyshev series approximation
Using truncated Chebyshev series approximations to an analytic function has been

studied in [24]. As mentioned, two key points in their poof are the Weyl-Courant
minimax principle and Bernstein’s results (7). A slightly different formula to (8) is
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needed. The Chebyshev expansion of a kernel function is

1 o0
K(x,y) = Ja0() + Y a0 Te(x) (24)
=1

Thus the estimation of a,(y) is needed. For details see [24].
Theorem 6 (Little-Reade [24]) If K(x,y) = K(y,x) € C[—1, 113, and for each
y € [—1, 1] there is an analytic continuation to K (z, y) for z inside the ellipse &,

which is uniformly bounded in z, y in this range, then the eigenvalues corresponding
to the kernel function K (x, y) decay in the order |Ay+1| = O(p™").

Proof See [24], or one can directly apply Lemma 2. O

Now consider the scaled kernel function K (ex, €y) in the unit square,

Kf(ex) = / K(ex, et) f(et)d(et). (25)

let|<1
Then the operator (25) is equivalent to the following

1/€
Kf(X) = / KX, T)f(T)d(T). (26)

—1/e

Suppose &, denotes the ellipse with foci at :I:é and semi-axis sum pe, then p = §.

If € < 1 and the kernel function K (x, y) is analytic in £,_, we have the shaper result.

Theorem 7 The scaled eigenvalues of the scaled kernel K (ex, €y), € < 1, decay in
the order |Ap11] = O(p.") = O(ep™").

It is observed that the case ¢ — 0 corresponds to the basis functions tending to
flatness; the smallest eigenvalue of the kernel matrix will become smaller.

Similarly, Lemma 3 can be used to obtain similar results as Theorem 5 accord-
ing to Chebyshev series truncation. The proof involves additional complex analysis
results, the reader is directed to [24, 44] for details.

3.3 Separable kernels in R?

A separable kernel in R? can be expressed as the product of multiple kernels, say

K(Xv y) = KI(XI, yl)K2(x21 )’2)Kd(xd, yd)vxsy € Rdv-xia i € R.

Such separable kernels exist and have been considered for a long time, see
[43] for example. The famous example is the Gaussian radial basis functions

exp (—[Ix — yII*).
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Consider the simplest separable kernel in the case d = 2, if there exist an
analytical eigenfunction expansions for each K;,i =1, 2,

KiG, y1) =Y Am@m(xD)@p (1) and Ka(x2, y2) = D s ¥ )P (32),
m=1 n=1

(27)
and further {Ax}72 | and {ug )2 | are absolute convergent, then according to Mercer
theorem [29, p.96]

/ / K1 Gers yD) Ka ez, y2)0p (r)¥g (2)dyidya

j / 0p(y1) (Z Amwmm)w;;(yl)) Vg (32) (Z 1n¥n (xzw:(yz)) dydy

m=1 n=1

= Aphg@p(x)Pg(x2).

Note that when the kernel is symmetric, then ¢, = ¢, and ¥, = . In this
way, one can show that if A is an eigenvalue of K (x1, y1) and u is an eigenvalue of
K»>(x2, y2), then Au is an eigenvalue of K (X, y).

Suppose the eigenvalues of K;(x;, y;), i = 1,2 are in the order O(1), O (R_l),
o0 (R_z) ,..., for some R > 1, then the eigenvalues of K (x,y) are expected in the
following order: 1 in order O(1), 2 in order O (R_l), 3 in order O (R_z) andm + 1
in order O(R™™). See Table 1 for illustration. Such a case can happen, for example,
with a separable kernel on a square with an equally spaced N x N regular mesh. If
K1(x1, y1) is the kernel in the horizontal direction, and K> (x2, y2) is the kernel in
the vertical direction, then their corresponding discrete kernel matrices should have
the same eigenvalues because their relative distances in each direction are identical.
Similarly, one can show in R? that, on a d x d cube with a regular equally spaced
mesh, the discrete kernel matrix of a separable kernel are supposed to have (kzd) =
(,f!“(Lj))!! eigenvalues in similar order. This number is equal to the number of terms in
the expansions of

(X1 + x4 .. 4 x)f (28)

and will become more clear as our discussion proceeds. We first use the analytic
and numerical results on Gaussian radial basis functions to verify the result.

Example 1 Consider a weighted inner product defined by

W), v(x) = / U (LW,

where w(x) > 0 is a density function, then the eigenvalues of a kernel are defined
by

f K (x. )wO)¥ (dy = A (x).

With the weighted function w(x) = %e’“zxz, a > 0, the analytic eigenvalues of

the Gaussian kernel (3_"32()‘_”2 in R are given forn = 1,2,3,--- by
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Table 1 The order of eigenvalues of tensor product Kernel in R?

1 R7! R72 R R~ R
1 1 R7! R™2 R3 R~ R
R R-! R2 R-3 R4 RS R—6
R—2 R—2 R-3 R4 RS R—6
R3 R3 R RS R
R4 R4 RS 6
R R R™©

Ol2 1 n—1
An = ,
" a2+82+82<1+82/82+a2/82>
5 a? 2¢\?
s =—1,1+(=) -1
2 o

See [48][29, p.97] for details. Clearly, 1 + 82/82 + a2/82 > 1 is the parameter p
in Theorem 6. For the multivariate Gaussian kernel

where

Kx,y) = e_‘g?(xl—Y1)2—~--—g§(xd_yd)2’

we only consider the case ey = ---g4 = ¢, according to formula (3.6a) in [9,
p-A742], the eigenvalues of multivariate Gaussian radial basis function under the
weighted inner product with the above weight function can be written as

d a2 d 1 27=1 nj —d
= || I, = . 29
n /1_[1 nj (a2+52+82) <1~|—82/s2+a2/82) (29)
Then if Z‘;Zl n;j = k, then there are (kj;d) = % possible combinations of

ny,---,nq.

3.4 Infinite smooth kernels in R¢ with flat limit

The discussion above is primarily based on the properties of the continuous integral
operator and pays little attention to the location of the underlying interpolation points.
This section concentrates on the discrete form, in particular, on those cases where
the shape parameter of the underlying radial basis function tends to 0. These radial
basis functions with shape parameter ¢ — 0 are called radial basis function with flat
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limit, and have received a lot attention in recent years [11-13]. The flatness brings
the advantage of asymptotic techniques in €.

Another technique used to investigate the spectral distribution of high dimen-
sional kernels with flatness limit is due to Schaback [42, Theorem 6,p.307]; it doesn’t
require the kernel function to be separable. In [42], the author focused on a geo-
metric property of the interpolation points and has not concerned explicit results on
the distribution of eigenvalues. The basic idea is to construct a sequence of nested
subspaces, and investigate quadratic forms corresponding to the interpolation matrix
(4). We combine these techniques with other linear algebra results to show the spec-
tral distribution of scaled infinitely smooth radial functions. To prove the results, we
introduce the following notation and lemma.

Let {p1, p2.---, po} be a basis set for my_; (R?), the multivariate polyno-
mial space of degree at most k — 1, and denote by P the matrix with entries
(pj (X"))1<1<N 1<j<0’ then for any given data set X = {x|,X2, -+ ,Xy} C £2 C

RY, we have ker (Pk+1) C ker (P]) fork =1,2,3, - - -. Further denote ker(P}) =
RN , then for any finite set X', there is a positive integer ©(X) such that

) = ker (P;C(X)) C ... Cker (P,ZH) C ker (PkT) C ... Cker (PIT) C ker (Pg).
0

w(X) can be viewed as a geometric property of the data set X, see [42] for details.
Let A be the Euclidean distance matrix with entries (||X,~ —X; ||)l <ij<N and A =

(||X,~ —X; & )151',1' <N denote the element-wise power of A, then there is a well known

result due to Micchelli.
(a)
1 0.4
0 0.2
-1
_2 0
-3 -0.2
-4 -04
10 -5
- -0.6
12 -7 -0.8
2 4 6 8 10 12 2 3 4 5 6 7 8 9

a 9 X 9 mesh on unit square 27 equal spaced points on a circle

o] S N

oo
© 00 N O g b~ W N -

Fig. 1 Eigenvalues of kernel matrices of Gaussian radial basis function on different meshes. The shape
parameter ¢ = 5. We first sort the eigenvalues in descend order, then map the 1 dimensional array
to an 2 dimensional diagram by the inverting Cantor pairing function (http://mathworld.wolfram.com/
PairingFunction.html). The figure shows the log scale of the eigenvalues by Matlab function imagesc.
The dark blue area in the bottom-right corners is empty with NaN. Panel 1a demonstrates that, on the
regular mesh, the eigenvalues in the same order are grouped by 1, 2, 3, 4, - - - ; while panel 1b shows the
eigenvalues are grouped by 1,2,2,2, ---
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Lemma 5 (Micchelli [25]) IfZ?Zl aipx;) = 0 forall p € mp_ (Rd) , then the
following quadratic form satisfies (—1)fa” A*a > 0, where equality holds if and
onlyif Y1 a;p(x;) =0, for all p € m (R?).

For convenience, we denote the interpolation matrix (4) corresponding to the
scaled radial basis function ¢ (er) = g (¢%r?) by Ay, x = ¢(cA) = g (¢2A?). The
function g is taken to be infinitely smooth and has a Taylor expansion at the origin.

Theorem 8 Let Ay, x be an interpolation matrix corresponding to an infinitely
smooth radial basis function ¢z(r) = ¢(er) = g ((8}’)2). If g has a conver-
gent Taylor expansion near the origin in the real line, then, when ¢ — 0, there

are exactly dim (ker (P,{)) — dim (ker (P,{+ 1)) eigenvalues behaving like €%, for

0 <k <u(X)—1, where P,{ and 1 (X) are defined in (30). Furthermore, if each Py

k+d71) _ (k+d—-1)!

is full rank, then there are exactly ( i-1 ) = B@=n eigenvalues behaving like 2*.

Proof Since the function g has a convergent Taylor expansion near the origin, then
we can write the entries of the interpolation matrix as a sum of the element powers
of the distance matrix A,

© L1
Apx=g(€a?) = P ea 31
£=0 ’

Let m = u(X) — 1, @ € ker (P],), then by Lemma 5 al A%y = 0, for ¢ < m.
Therefore we have the following quadratic form

f™(0) . 0
aTAqﬁg,Xa — 82mTOlTA2mOl + Z 82€T“TA2@“ (32)
L=p(X)

decays like 2" as ¢ — 0. According the Courant-Fischer’s minimum-maximum
principle [19, p.179], Ay, x has at least dim (ker(P,Z;)) eigenvalues which decay at
least as fast as £,

Further denote the space M € ker (P]) and My L ker (P},

k+1)> then

dim(My) = dim (ker (P,{)) — dim (ker (P,{_H>> .
Applying the same argument on the space My, then we can find there are at
least dim(My) eigenvalues decaying at least as £2* in the subspace M. Since
ka=1 dim(My) = N, thus there are exactly dim(My,) eigenvalues decaying like g2k

when ¢ — 0.
If every Py is full rank, then rank(Py) = dim (7Tk—l (Rd)) = (k_ Cll+d) , and

dim(My) = dim (nk (Rd)) — dim (nk_l (Rd>) = %.

O

Note that the number (k_;’d) is the number of terms in the expansion of

(xp + - + xd)k_l, which is consistent with the discussion above, whereas the
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term dim (7% (RY)) — dim (x—; (R?)) depends on the geometric property of the
interpolation data points. The geometric property is not easy to identify in gen-
eral. For example, when the interpolation points in a circle with radius 1, then
dim (nk (Rz)) — dim (nk_l (Rz)) = 2 for k = 1,2, 3, because {1, x, y} are inde-
pendent, while for {x?, xy, y?}, we have y* = 1 — x?, for {x?, y3, x%y, y2x},
we have x2y = y — y3,xy2 = x — x2. It was observed that when the
eigenvalues kernel matrices of Gaussian radial basis function on a circle are
grouped in different orders, the numbers of each group in descending order are
1,2,2,2,2,---. The reader is directed to [14, p.389] for more scenarios. Figure 1b
illustrates the eigenvalues of a kernel matrix of Gaussian radial basis function on a
circle.

4 Discussion

It is noted that there are existing results on the conditioning issue of kernel matrices
related to radial basis function. As mentioned, they mainly focused on the smallest
eigenvalues and on the condition number. By contrast, here we give simple methods
to estimate every eigenvalue, or the distribution of the eigenvalues.

4.1 Comparison with other results

Noteworthy results on lower bounds for the smallest eigenvalue include [1, 3, 27, 28,
40, 41]. The technique employed to prove these results can be summarized as using
Fourier transform techniques to estimate a quadratic form in a subspace. There is
also one paper which discusses an upper bound on the smallest eigenvalues of the
kernel matrices [2], in which the authors construct a special vector, and then use the
vector to estimate the inverse norm of the interpolation matrix via some sophisticated
results on divided difference formula. Here, we use quite a different way to prove the
upper bound of every eigenvalue of the continuous operator. This technique is based
on the Weyl-Courant minimax principle via approximating an infinite dimensional
square integral operator by finite Fourier or Chebyshev truncations. After finding the
connections between the integral equations and the interpolation problem, the main
results are quickly derived. This method can be used in high dimensional space by
employing multivariate Fourier approximation.

We mention that the results of Theorem 5 are consistent with previous results.
It is likely we get more accurate estimates on the smallest eigenvalue of the ker-
nel matrix. For example for the compactly supported Wendland function, ¢4 €
C%, the lower bound of the smallest eigenvalues iS Amin > Cq*+1 [46, p-214]
for some constant C, where the g is the so-called separation distance. For equal
space sampling in the interval [—1, 1] with the sampling points arranged as —1 =
X0 < X1 < - < xp = 1,qg = %mini:j lxi — x| = %, so that Apin >
Cn=%-1  The proof of Theorem 5 shows that Ay, = o (n_Zk). Therefore, we
obtain both a lower and upper bound on the smallest eigenvalue for large n, say,
Clnizki1 =< Amin < C2n72k'
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4.2 Connection with QR-RBF

As seen, especially in Theorem 3, the eigenvalues of a kernel have a close rela-
tionship with coefficients of the orthogonal expansions of the kernel functions. The
eigenvalues of analytic kernels are in the same order as Chebyshev coefficients in
the Chebyshev truncations. The recent RBF-QR method which aims to compute
Gaussian radial basis function interpolants with flat limit is also based on orthog-
onal expansions [11]. In this method there arises a diagonal scaling matrix with
entries which are a part of the coefficients in the orthogonal expansion. Recalling
that the eigenvalues of integral operators with periodic kernel are closely related
to the Fourier coefficients, for multivariate cases, one might expect, the number
of the eigenvalues in the same order is the same as the number of the coeffi-
cients of orthogonal expansions with the same (polynomial) order. The number of
entries in the order £2f in the scaling matrix in the RBF-QR methods happens to
be dim (7 (R?)) — dim (mrx—1 (R?)), which is the number of the eigenvalues in the
corresponding order. This is unlikely to be a coincidence.

The spectral distribution can supply information on how to choose the right diag-
onal scaling matrix in the RBF-QR method. It can also be used to investigate the
smoothing effects of kernel matrices [39] and is closely related to several other
computing issues which go beyond discussion in this paper.

Acknowledgements We would like to thank the reviewers for their valuable suggestions and comments
which improve the shape of this paper.

Appendix

Hints of proof of theorem 3

Consider
T
Au(x) =f K (x — y)u(y)dy (33)
—7T
where K (x) is integrable and periodic of 2. Let
o 1 -
K(}C) ~ Z Kne—ll’lx’ Where K —_ K(x)e—lnxdx’
—0oQ 27[ —7T
o 1 -
~ N 7inx’ h noo— 7inxd .
u(x) gune where iy = B u(x)e X

Multiply e ~"** on both side of (33), we have

1 T :
Aiy, = —/ u(x)e ""dx
2 ),

1 T pm ) ) .
= E/ / K (x — y)e "V eIy (W dydx = 27 Kyily.
—T J—=TT
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