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Abstract This paper is concerned with numerical methods for a class of time
fractional convection-diffusion-wave equations. The convection coefficient in the
equation may be spatially variable and the time fractional derivative is in the Caputo
sense with the order α (1 < α < 2). The class of the equations includes time frac-
tional convection-diffusion-wave/diffusion-wave equations with or without damping
as its special cases. In order to overcome the difficulty caused by variable coefficient
problems, we first transform the original equation into a special and equivalent form,
which is then discretized by a fourth-order compact finite difference method for the
spatial derivative and by the L1 approximation coupled with the Crank-Nicolson
technique for the time derivative. The local truncation error and the solvability of the
method are discussed in detail. A rigorous theoretical analysis of the stability and
convergence is carried out using a discrete energy analysis method. The optimal error
estimates in the discrete H 1, L2 and L∞ norms are obtained under the mild condi-
tion that the time step is smaller than a positive constant, which depends solely upon
physical parameters involved (this condition is no longer required for the special case
of constant coefficients). Applications using three model problems give numerical
results that demonstrate the effectiveness and the accuracy of the proposed method.
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1 Introduction

Fractional differential equations have been successfully used in the modeling of many
different processes and systems. The monograph [43] presents a detailed description
for different applications of derivatives and integrals of fractional order in physics,
chemistry, engineering, astrophysics, and so on. Some applications of fractional
differential equations in classical mechanics, quantum mechanics, nuclear physics,
hadron spectroscopy, and quantum field theory can be found in [17, 18, 36]. For other
interesting models related to fractional differential equations we refer the reader to
[1, 3, 15, 29, 31, 40, 47]. Among different applications, models for anomalous trans-
port processes in the form of time and/or space fractional convection-diffusion-wave
equations enjoyed a particular attention and have been considered by a number of
researchers (see [13, 14, 21, 30, 32]).

In general cases, numerical methods have become important in obtaining the
approximate solutions of fractional differential equations [2, 4–6, 16, 22, 24, 25, 48,
51, 52]. Various numerical methods have been developed for fractional convection-
diffusion equations such as explicit and implicit finite difference methods [7, 9,
26, 27, 41, 49], compact finite difference methods [11, 34], finite element methods
[53], Sinc-Legendre collocation methods [38], and radial basis function approxima-
tion methods [28, 44]. Significant progress has also already been made in numerical
methods for time fractional diffusion-wave equations. Sun andWu [42] proposed and
analyzed a finite difference method for a one-dimensional time fractional diffusion-
wave equation. Du et al. [12] improved the spatial accuracy of the method in [42]
by introducing a fourth-order compact finite difference discretization in the spa-
tial direction. Based on an equivalent partial integro-differential equation, Huang
et al. [20] constructed two finite difference methods for solving a similar time frac-
tional diffusion-wave equation to that in [42]. Li et al. [23] developed a numerical
scheme combining a finite difference method in the temporal direction and a finite
element method in the spatial direction for a one-dimensional time-space fractional
diffusion-wave equation. Hu and Zhang [19] presented a finite difference method for
a fourth-order time fractional diffusion-wave equation.

There is relatively little discussion on numerical methods for time fractional
convection-diffusion-wave equations. The most recent work on this subject was
given in [27], where an implicit finite difference method with the first-order spatial
accuracy was established, and the discussions were limited to the case of constant
coefficients. In practical computations, a proper high-order numerical method is
required for the more accurate numerical simulation. On the other hand, the coef-
ficients in the equations are usually spatially and/or temporally variable. Thus, we
were motivated in this paper to propose and analyze a high-order compact finite dif-
ference method for a class of time fractional convection-diffusion-wave equations
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with variable convection coefficients. The class of equations under consideration is
given by

β2
∂αv

∂tα
(x, t) + β1

∂v

∂t
(x, t) = d

∂2v

∂x2
(x, t) − p(x)

∂v

∂x
(x, t) + f (x, t),

(x, t) ∈ (0, L) × (0, T ] (1.1)

with the boundary conditions

v(0, t) = φ0(t), v(L, t) = φL(t), t ∈ (0, T ] (1.2)

and the initial conditions

v(x, 0) = ϕ(x),
∂v

∂t
(x, 0) = ψ(x), x ∈ [0, L], (1.3)

where β1, β2 and d are known parameters with β1 ≥ 0, β2 ≥ 0, β1 + β2 �= 0 and
d > 0. The fractional derivative ∂αv

∂tα
in (1.1) is given in the Caputo sense:

∂αv

∂tα
(x, t) = 1

�(2 − α)

∫ t

0

∂2v

∂s2
(x, s)(t − s)1−αds, 1 < α < 2. (1.4)

In terms of convection-diffusion problems, the first two terms on the right-hand
side of (1.1) describe “diffusion” and “convection”, respectively. In particular, d is
referred to as the diffusivity or diffusion coefficient and p(x) is called the average
convective velocity or convection coefficient. Compared to the commonly discussed
time fractional convection-diffusion-wave equation, the equation (1.1) is more physi-
cally flexible due to the new term ∂v

∂t
(x, t) and the additional parameter β1 (see [50]).

Since the term ∂v
∂t

(x, t) describes a damping effect, the equation (1.1) with p(x) �≡ 0
and β2 �= 0 is called the time fractional convection-diffusion-wave equation with
damping (β1 �= 0) or without damping (β1 = 0) (see [27, 50] and the references
therein). Similarly, if p(x) ≡ 0 and β2 �= 0, the equation (1.1) is referred to as the
time fractional diffusion-wave equation with damping (β1 �= 0) or without damping
(β1 = 0) (see [8] and the references therein). In the equation (1.1), we allow β2 = 0.
This implies that it may be a classical convection-diffusion equation of integer order
with a variable convection coefficient. In the following discussions, we also include
this equation as special case of the equation (1.1). In this case, the second initial
condition in (1.3) will be removed.

When the coefficient p(x) ≡ p is independent of the variable x, some numerical
treatments to the equation (1.1) with the boundary and initial conditions (1.2) and
(1.3) were given in [8, 27, 46]. Specifically, the works in [8, 46] give two different
implicit finite difference methods for the special case of p = 0. For any constant p,
a stable implicit numerical method by the basic finite difference discretization was
presented in [27]. But the accuracy of the method proposed there is only of order
O(τ+h) for β1 �= 0, where τ is the time step and h is the spatial step. In this paper, we
propose a high-order compact finite difference method for the problem (1.1)–(1.3),
where the coefficient p(x) may be spatially variable. In our method, we use a fourth-
order compact finite difference approximation for the spatial discretization and apply
the L1 approximation [10, 35, 42] coupled with the Crank-Nicolson technique for the
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temporal discretization. The resulting finite difference scheme from this new method
has the local truncation error O(β2τ

3−α + β1τ
2 + h4). Moreover, it is stable and

convergent with the same order as the truncation error under the mild condition that
the time step τ is smaller than a positive constant, which depends solely upon phys-
ical parameters involved. This condition is no longer required if the coefficient p(x)

is reduced to a constant.
In general, a direct discretization of the equation (1.1) by a high-order compact

difference is much more complicated due to the dependence of p(x) on the spatial
variable x. One inconvenience is that it is often not clear how to analyze theoretically
the resulting scheme. In order to overcome this difficulty, we here use an indirect
approach by transforming (1.1) into a special and equivalent form, which is then
discretized by a high-order compact finite difference method. The main advantage
behind this approach is that it yields a very simple and effective high-order scheme
for (1.1), especially when the equation is not convection-dominated. More impor-
tantly, it is very convenient for us to use a discrete energy analysis method to carry out
the stability and convergence analysis of the derived scheme for the present variable
coefficient problem.

The outline of the paper is as follows. In Section 2, we transform the equation
(1.1) into a special and equivalent form, and then discretize the equivalent form into
a compact finite difference system. The local truncation error and the solvability of
the resulting finite difference scheme are discussed in Section 3. In Section 4, we
use a discrete energy analysis method to prove the stability and convergence of the
method, and provide the optimal error estimates (i.e., the error estimate with the
same order as the truncation error) of the numerical solution in the discrete H 1, L2

and L∞ norms. In Section 5, we give some applications to three model problems.
We use numerical results to confirm the theoretical analysis and to illustrate the
effectiveness of the proposed method. The final section contains some concluding
remarks.

2 Compact finite difference method

Assume that the coefficient p(x) is differentiable in [0, L]. Let

k(x) = exp

(
− 1

2d

∫ x

0
p(s)ds

)
, v(x, t) = u(x, t)/k(x).

We transform the problem (1.1)–(1.3) into

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

β2
∂αu

∂tα
(x, t) + β1

∂u

∂t
(x, t) = d

∂2u

∂x2
(x, t) + q(x)u(x, t) + g(x, t), (x, t) ∈ (0, L) × (0, T ],

u(0, t) = φ∗
0 (t), u(L, t) = φ∗

L(t), t ∈ (0, T ],

u(x, 0) = ϕ∗(x),
∂u

∂t
(x, 0) = ψ∗(x), x ∈ [0, L],

(2.1)
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where

q(x) = 1
2

(
dp
dx (x) − p2(x)

2d

)
,

g(x, t) = k(x)f (x, t), φ∗
0 (t) = φ0(t),

φ∗
L(t) = k(L)φL(t), ϕ∗(x) = k(x)ϕ(x), ψ∗(x) = k(x)ψ(x).

(2.2)

It is clear that v(x, t) is a solution of (1.1)–(1.3) if and only if u(x, t) = k(x)v(x, t)

is a solution of (2.1).
Our compact finite difference method for the problem (1.1)–(1.3) is based on the

above equivalent form (2.1). For a positive integer N , we let τ = T/N be the time
step. Denote tn = nτ(0 ≤ n ≤ N) and t

n− 1
2

= (n − 1
2 )τ (1 ≤ n ≤ N). Given a grid

function w = {wn | 0 ≤ n ≤ N}, we define

wn− 1
2 = 1

2

(
wn + wn−1

)
, δtw

n− 1
2 = 1

τ

(
wn − wn−1

)
.

Let h = L/M be the spatial step, where M is a positive integer. We partition [0, L]
into a mesh by the mesh points xi = ih(0 ≤ i ≤ M). Denote x

i− 1
2

= (i − 1
2 )h(1 ≤

i ≤ M). For any grid function w = {wi | 0 ≤ i ≤ M}, we define spatial difference
operators

δxw
i− 1

2
= 1

h
(wi − wi−1) , δ2xwi = 1

h2
(wi+1 − 2wi + wi−1) , Hxwi =

(
I + h2

12
δ2x

)
wi,

where I denotes the identical operator. Let u(x, t) be the solution of (2.1), and define
the grid functions

Un
i = u(xi, tn), Wn

i = ∂u

∂t
(xi, tn), Zn

i =
∂2u

∂x2
(xi, tn), qi = q(xi), gn

i = g(xi, tn),

φ
∗,n
0 = φ∗

0 (tn), φ
∗,n
L = φ∗

L(tn), ϕ∗
i = ϕ∗(xi), ψ∗

i = ψ∗(xi).

We now discretize (2.1) into a compact finite difference system. Let μ = τα−1�(3−
α) and let

ak = (2 − α)

∫ k+1

k

t1−αdt = (k + 1)2−α − k2−α, k = 0, 1, . . . .

Using the L1 approximation of ∂αu
∂tα

(x, t) at (xi, tn) (see [10, 35, 42]), we have

∂αu

∂tα
(xi, tn) = 1

μ

(
Wn

i −
n−1∑
k=1

(an−k−1 − an−k)W
k
i − an−1W

0
i

)
− (Rα

t )ni , (2.3)

where the truncation error (Rα
t )ni satisfies

∣∣(Rα
t )ni

∣∣ ≤ τ 3−α

�(3 − α)

(
2 − α

12
+ 23−α

3 − α
− 1 − 21−α

)
max

t∈[0,tn]

∣∣∣∣∂
3u

∂t3
(xi, t)

∣∣∣∣ . (2.4)
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Substituting (2.3) into the first equation of (2.1), we obtain

β2

μ

(
Wn

i −
n−1∑
k=1

(an−k−1 − an−k)W
k
i − an−1W

0
i

)
+ β1W

n
i

= dZn
i + qiU

n
i + gn

i + β2(R
α
t )ni , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N.

(2.5)

Similarly, on the time level n − 1, we have

β2

μ

(
Wn−1

i −
n−2∑
k=1

(an−k−2 − an−k−1)W
k
i − an−2W

0
i

)
+ β1W

n−1
i

= dZn−1
i + qiU

n−1
i + gn−1

i + β2(R
α
t )n−1

i , 1 ≤ i ≤ M − 1, 2 ≤ n ≤ N.

(2.6)

Since

−
n−2∑
k=1

(an−k−2 − an−k−1)W
k
i − an−2W

0
i = −

n−1∑
k=1

(an−k−1 − an−k)W
k−1
i − an−1W

0
i ,

the equation (2.6) can be reformulated as

β2

μ

(
Wn−1

i −
n−1∑
k=1

(an−k−1 − an−k)W
k−1
i − an−1W

0
i

)
+ β1W

n−1
i

= dZn−1
i + qiU

n−1
i + gn−1

i + β2(R
α
t )n−1

i , 1 ≤ i ≤ M − 1, 2 ≤ n ≤ N.

(2.7)

Letting t = 0 in the first equation of (2.1), it holds that β1W
0
i = dZ0

i + qiU
0
i + g0

i

which implies that (2.7) is true also for n = 1 with (Rα
t )0i = 0. Taking the arithmetic

mean of (2.5) and (2.7), we conclude that

β2

μ

(
W

n− 1
2

i −
n−1∑
k=1

(an−k−1 − an−k)W
k− 1

2
i − an−1W

0
i

)
+ β1W

n− 1
2

i

= dZ
n− 1

2
i + qiU

n− 1
2

i + g
n− 1

2
i + β2(R

α
t )

n− 1
2

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N.

(2.8)

An application of the Crank-Nicolson technique (see, e.g., [51]) gives

W
n− 1

2
i = δtU

n− 1
2

i + (Rc
t )

n− 1
2

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (2.9)

where

(Rc
t )

n− 1
2

i = τ 2

16

∫ 1

0

(
∂3u

∂t3

(
xi , tn− 1

2
+ sτ

2

)
+ ∂3u

∂t3

(
xi, tn− 1

2
− sτ

2

))
(1 − s2)ds. (2.10)

This implies that

β2

μ

(
δtU

n− 1
2

i −
n−1∑
k=1

(an−k−1 − an−k)δtU
k− 1

2
i − an−1W

0
i

)
+ β1δtU

n− 1
2

i

= dZ
n− 1

2
i + qiU

n− 1
2

i + g
n− 1

2
i + (Rt )

n− 1
2

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,

(2.11)

where

(Rt )
n− 1

2
i = β2(R

α
t )

n− 1
2

i − β2

μ

(
(Rc

t )
n− 1

2
i −

n−1∑
k=1

(an−k−1 − an−k)(R
c
t )

k− 1
2

i

)
− β1(R

c
t )

n− 1
2

i . (2.12)
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For the second-order spatial derivative Zn
i , we adopt the following fourth-order

compact approximation (see, e.g., [51]):

HxZ
n
i = δ2xU

n
i + (Rx)

n
i , (2.13)

where

(Rx)
n
i = h4

360

∫ 1

0

(
∂6u

∂x6
(xi − sh, tn) + ∂6u

∂x6
(xi + sh, tn)

)
ζ(s)ds (2.14)

with ζ(s) = 5(1− s)3 − 3(1− s)5. Multiplying (2.11) by μ and then applyingHx to
both sides yields

β2Hx

(
δtU

n− 1
2

i −
n−1∑
k=1

(an−k−1 − an−k)δtU
k− 1

2
i − an−1W

0
i

)
+ μβ1HxδtU

n− 1
2

i

= μ

(
dδ2xU

n− 1
2

i + Hx

(
qiU

n− 1
2

i

)
+ Hxg

n− 1
2

i + (Rxt )
n− 1

2
i

)
, 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,

(2.15)

where

(Rxt )
n− 1

2
i = Hx(Rt )

n− 1
2

i + d(Rx)
n− 1

2
i . (2.16)

Omitting the small term μ(Rxt )
n− 1

2
i and replacing W 0

i by ψ∗
i in (2.15), we obtain the

following compact finite difference scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β2Hx

(
δtu

n− 1
2

i −
n−1∑
k=1

(an−k−1 − an−k)δtu
k− 1

2
i − an−1ψ

∗
i

)
+ μβ1Hxδtu

n− 1
2

i

= μ

(
dδ2xu

n− 1
2

i + Hx

(
qiu

n− 1
2

i

)
+ Hxg

n− 1
2

i

)
, 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,

un
0 = φ

∗,n
0 , un

M = φ
∗,n
L , 1 ≤ n ≤ N,

u0i = ϕ∗
i , 0 ≤ i ≤ M,

(2.17)

where un
i denotes the finite difference approximation to Un

i .

3 Truncation error and solvability

We now estimate the truncation error (Rxt )
n− 1

2
i . Assume that the solution u(x, t) of

the problem (2.1) is in C(6,3)((0, L) × [0, T ]). It follows from (2.10) that∣∣∣∣(Rc
t )

n− 1
2

i

∣∣∣∣ ≤ τ 2

12
max

t∈[0,T ]

∣∣∣∣∂
3u

∂t3
(xi, t)

∣∣∣∣ , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N. (3.1)

We thus have from (2.4) and (2.12) that

∣∣∣∣(Rt )
n− 1

2
i

∣∣∣∣ ≤
(

β2Cα

�(3 − α)
τ 3−α + β1

12
τ 2

)
max

t∈[0,T ]

∣∣∣∣∣
∂3u

∂t3
(xi , t)

∣∣∣∣∣ , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (3.2)
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where Cα = 2−α
12 + 23−α

3−α
− 21−α − 5

6 . Since Hxwi = 1
12 (wi−1 + 10wi + wi+1), we

apply the estimates (2.14) and (3.2) in (2.16) to get the following result immediately.

Theorem 3.1 Assume that the solution u(x, t) of problem (2.1) is in C(6,3)((0, L) ×
[0, T ]). Then the truncation error (Rxt )

n− 1
2

i of the scheme (2.17) satisfies∣∣∣∣(Rxt )
n− 1

2
i

∣∣∣∣ ≤ C∗ (
β2τ

3−α + β1τ
2 + h4

)
, 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,(3.3)

where C∗ is a positive constant independent of the step sizes τ and h and the time
level n.

For implementing the scheme (2.17), it is more convenient to consider its matrix
form. To do this, we define the following column vectors:

un = (
un
1, u

n
2, . . . , u

n
M−1

)T
, gn− 1

2 =
(

g
n− 1

2
1 , g

n− 1
2

2 , . . . , g
n− 1

2
M−1

)T

,

un−1,∗ =
(
u

n−1,∗
1 , u

n−1,∗
2 , . . . , u

n−1,∗
M−1

)T

,

where

u
n−1,∗
i =

n−1∑
k=1

(an−k−1 − an−k)δtu
k− 1

2
i + an−1ψ

∗
i , 1 ≤ i ≤ M − 1.

We also define the following (M − 1)-order tridiagonal or diagonal matrices:

A = tridiag(−1, 2, −1), B = tridiag

(
1

12
,
5

6
,
1

12

)
, Q = diag (q1, q2, . . . , qM−1) .

A simple process shows that the scheme (2.17) can be expressed in the matrix form
as(

(β2+ μβ1)B + d

2

μτ

h2
A − μτ

2
BQ

)
un

=
(

(β2 + μβ1)B − d

2

μτ

h2
A + μτ

2
BQ

)
un−1+τB

(
β2un−1,∗ + μgn− 1

2

)
+ rn,

(3.4)

where rn absorbs the boundary values of the solution vector and the source terms.

Theorem 3.2 The compact finite difference scheme (2.17) is uniquely solvable if and
only if the matrix

Q∗ ≡ (β2 + μβ1)B + d

2

μτ

h2
A − μτ

2
BQ (3.5)

is nonsingular.

Define

q = max
x∈[0,L]

q(x), q = min
x∈[0,L] q(x). (3.6)
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A sufficient condition for the matrix Q∗ to be nonsingular is given by

μτ max

{
q

2
,
5q − q

8

}
≤ β2 + μβ1. (3.7)

Corollary 3.1 The compact finite difference scheme (2.17) is uniquely solvable if the
condition (3.7) is true.

Proof In fact, Q∗ = tridiag(p∗
i−1, q

∗
i , p∗

i+1) with p∗
0 = p∗

M = 0 and

p∗
i = 1

12
(β2 + μβ1) − d

2

μτ

h2
− qi

24
μτ,

q∗
i = 5

6
(β2 + μβ1) + d

μτ

h2
− 5qi

12
μτ (1 ≤ i ≤ M − 1).

The condition (3.7) implies that q∗
i > 0 for each 1 ≤ i ≤ M − 1.

Case 1 Assume that p∗
i �= 0 for all 1 ≤ i ≤ M − 1. In this case, the matrix Q∗ is

irreducible. By the condition (3.7), we have that for 2 ≤ i ≤ M − 2,

|p∗
i−1| + |p∗

i+1| ≤ 1

6
(β2 + μβ1) + d

μτ

h2
− qi−1 + qi+1

24
μτ

≤ 1

6
(β2 + μβ1) + d

μτ

h2
− μτ

12
q

≤ 5

6
(β2 + μβ1) + d

μτ

h2
− 5qi

12
μτ = |q∗

i |.
Similarly,

|p∗
2 | ≤ 1

12
(β2 + μβ1) + d

2

μτ

h2
− q2

24
μτ ≤ 1

12
(β2 + μβ1) + d

2

μτ

h2
− μτ

24
q ≤ q∗

1

2
< |q∗

1 |,

|p∗
M−2| ≤ 1

12
(β2 + μβ1) + d

2

μτ

h2
− qM−2

24
μτ ≤ 1

12
(β2 + μβ1) + d

2

μτ

h2
− μτ

24
q ≤ q∗

M−1

2
< |q∗

M−1|.

This proves that Q∗ is irreducibly diagonally dominant and thus nonsingular (see
[45]).

Case 2 Assume that p∗
i0

= 0 for some 1 ≤ i0 ≤ M − 1. In this case, we complete
the proof by partitioning Q∗ and considering the submatrices of Q∗.

Corollary 3.2 The compact finite difference scheme (2.17) is uniquely solvable if the
function q(x) is nonpositive and convex in [0, L].

Proof WewriteQ∗ = tridiag(p∗
i−1, q

∗
i , p∗

i+1) as in the proof of Corollary 3.1. Since
the function q(x) is nonpositive and convex, we have that for 2 ≤ i ≤ M − 2,

|p∗
i−1| + |p∗

i+1| ≤ 1

6
(β2 + μβ1) + d

μτ

h2
− qi−1 + qi+1

24
μτ

<
5

6
(β2 + μβ1) + d

μτ

h2
− 5qi

12
μτ = |q∗

i |,
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and

|p∗
2 | ≤ 1

12
(β2 + μβ1) + d

2

μτ

h2
− q2

24
μτ

<
5

6
(β2 + μβ1) + d

μτ

h2
− 5q1

12
μτ = |q∗

1 |,

|p∗
M−2| ≤ 1

12
(β2 + μβ1) + d

2

μτ

h2
− qM−2

24
μτ

<
5

6
(β2 + μβ1) + d

μτ

h2
− 5qM−1

12
μτ = |q∗

M−1|.
This shows that the matrix Q∗ is strictly diagonally dominant and thus nonsingular
(see [45]).

Remark 3.1 When q(x) ≡ q is independent of x and q ≤ 0, the conditions in
Corollaries 3.1 and 3.2 are trivially satisfied. We notice that if the convection coef-
ficient p(x) in the original equation (1.1) is independent of x, i.e., p(x) ≡ p, we

must have q(x) ≡ −p2

4d ≤ 0. Therefore, for the fractional convection-diffusion-wave
equation (1.1) with constant coefficients, the corresponding compact finite difference
scheme (2.17) is always uniquely solvable without any additional constraints.

4 Stability and convergence

We now carry out the stability and convergence analysis of the compact finite differ-
ence scheme (2.17) using a technique of discrete energy analysis. Let Sh = {u | u =
(u0, u1, . . . , uM), u0 = uM = 0} be the space of the grid functions defined in the
spatial mesh and vanishing on two boundary points. For any grid functions v,w ∈ Sh,
we define the inner product (v, w), L2 norm ‖v‖ and L∞ norm ‖v‖∞ by

(v, w) = h

M−1∑
i=1

viwi, ‖v‖ = (v, v)
1
2 , ‖v‖∞ = max

0≤i≤M
|vi |.

We also define

(δxv, δxw] = h

M∑
i=1

δxvi− 1
2
δxwi− 1

2
, |v|1 = (δxv, δxv] 12 .

For any v ∈ Sh, its H 1 norm is defined by ‖v‖1 = (‖v‖2 + |v|21
) 1
2 . Some simple

calculations show that for any grid functions v, w ∈ Sh,

(δ2xv,w) = −(δxv, δxw], h‖δ2xv‖ ≤ 2|v|1, h|v|1 ≤ 2‖v‖. (4.1)

The inverse estimate h‖δ2xv‖ ≤ 2|v|1 in (4.1) implies that |v|21 − h2

12‖δ2xv‖2 ≥ 2
3 |v|21.

For convenience, we introduce the following notation:

‖v‖∗ =
(

|v|21 − h2

12
‖δ2xv‖2

) 1
2

.
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Then we have

2

3
|v|21 ≤ ‖v‖2∗ ≤ |v|21. (4.2)

Lemma 4.1 For any grid function v ∈ Sh,

‖v‖2 ≤ 3L2

16
‖v‖2∗, ‖v‖2∞ ≤ 3L

8
‖v‖2∗, ‖v‖21 ≤ 3(8 + L2)

16
‖v‖2∗,

‖Hxv‖2 ≤ 3L2

16
‖v‖2∗.

Proof It is known that ‖v‖2 ≤ L2

8 |v|21 and ‖v‖2∞ ≤ L
4 |v|21 (see [39], pp. 111 and

112). On the other hand, we have from (4.1) that

‖Hxv‖2 = ‖v‖2 − h2

6
|v|21 + h4

144
‖δ2xv‖2 ≤ ‖v‖2 − 5h2

36
|v|21 ≤ ‖v‖2. (4.3)

Thus, the desired inequalities follow from |v|21 ≤ 3
2‖v‖2∗ in (4.2) immediately.

Lemma 4.2 Let γ (x) be a continuous function in [0, L]. For any grid function v ∈
Sh, we have ‖Hx(γ v)‖ ≤ ‖γ ‖∞‖v‖.

Proof By (4.3), ‖Hx(γ v)‖2 ≤ ‖γ v‖2. It is clear that ‖γ v‖2 ≤ ‖γ ‖2∞‖v‖2. This
completes the proof.

Lemma 4.3 (Discrete Gronwall lemma [37]). Assume that {kn} and {sn} are nonneg-
ative sequences, and that the sequence {φn} satisfies

φ0 ≤ g0, φn ≤ g0 +
n−1∑
l=0

sl +
n−1∑
l=0

klφl, n ≥ 1,

where g0 ≥ 0. Then the sequence {φn} satisfies

φn ≤
(

g0 +
n−1∑
l=0

sl

)
exp

(
n−1∑
l=0

kl

)
, n ≥ 1.

Based on the above lemmas, we now discuss the stability of the compact finite
difference scheme (2.17) with respect to the initial values ϕ∗, ψ∗ and the forcing
term g.

Theorem 4.1 Let un = (un
0, u

n
1, . . . , u

n
M) be the solution of the compact finite dif-

ference scheme (2.17) with un
0 = un

M = 0. Then when τ‖q‖2∞ ≤ 4d
3CL2 , it holds

that

∥∥un
∥∥2∗ ≤

(
G0 + 8τC

d

n∑
k=1

∥∥∥Hxg
k− 1

2

∥∥∥2
)
exp

(
3T C‖q‖2∞L2

2d

)
, 1 ≤ n ≤ N,(4.4)
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where

G0 = 2
∥∥ϕ∗∥∥2∗ + 4τC‖q‖2∞

d

∥∥ϕ∗∥∥2 + 4β2T
2−α

d�(3 − α)
‖Hxψ

∗‖2,

C = T α−1�(2 − α)

β2 + 4β1T α−1�(2 − α)
. (4.5)

Proof Let bn,k = an−k−1 − an−k . It is clear that bn,k ≥ 0. Taking the inner product

of (2.17) with Hxδtu
n− 1

2 gives

(β2 + μβ1)

∥∥∥Hxδtu
n− 1

2

∥∥∥2−β2

n−1∑
k=1

bn,k

(
Hxδtu

k− 1
2 ,Hxδtu

n− 1
2

)

−β2an−1

(
Hxψ

∗,Hxδtu
n− 1

2

)

= μd
(
δ2xu

n− 1
2 ,Hxδtu

n− 1
2

)
+ μ

(
Hx(qun− 1

2 ),Hxδtu
n− 1

2

)

+μ
(
Hxg

n− 1
2 ,Hxδtu

n− 1
2

)
. (4.6)

By the Cauchy-Schwarz inequality and the relation (δ2xv,w) = −(δxv, δxw] in (4.1),

β2

n−1∑
k=1

bn,k

(
Hxδtu

k− 1
2 ,Hxδtu

n− 1
2

)

≤ β2

2

n−1∑
k=1

bn,k

(∥∥∥Hxδtu
k− 1

2

∥∥∥2 +
∥∥∥Hxδtu

n− 1
2

∥∥∥2
)

= β2

2

(
n−1∑
k=1

an−k−1

∥∥∥Hxδtu
k− 1

2

∥∥∥2 −
n−1∑
k=1

an−k

∥∥∥Hxδtu
k− 1

2

∥∥∥2 + (1 − an−1)

∥∥∥Hxδtu
n− 1

2

∥∥∥2
)

,

μd
(
δ2xun− 1

2 ,Hxδtu
n− 1

2

)
= μd

(
δ2xun− 1

2 , δt u
n− 1

2

)
+ μd

(
δ2xun− 1

2 ,
h2

12
δ2xδtu

n− 1
2

)

= −μd
(
δxun− 1

2 , δt δxun− 1
2

]
+ μdh2

12

(
δ2xun− 1

2 , δt δ
2
xun− 1

2

)

= −μd

2τ

(∣∣un
∣∣2
1 −

∣∣∣un−1
∣∣∣2
1

)
+ μdh2

24τ

(∥∥∥δ2xun
∥∥∥2 −

∥∥∥δ2xun−1
∥∥∥2

)

= −μd

2τ

(∥∥un
∥∥2∗ −

∥∥∥un−1
∥∥∥2∗

)

(4.7)

and

β2an−1

(
Hxψ

∗,Hxδtu
n− 1

2

)
≤ β2an−1

(
‖Hxψ

∗‖2 + 1

4

∥∥∥Hxδtu
n− 1

2

∥∥∥2
)

,

μ
(
Hxg

n− 1
2 ,Hxδtu

n− 1
2

)

≤ 2μ2

β2an−1 + 4μβ1

∥∥∥Hxg
n− 1

2

∥∥∥2 + 1

8
(β2an−1 + 4μβ1)

∥∥∥Hxδtu
n− 1

2

∥∥∥2 .

(4.8)
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We have from Lemma 4.2 that

μ
(
Hx(qun− 1

2 ),Hxδtu
n− 1

2

)

≤ 2μ2

β2an−1 + 4μβ1

∥∥∥Hx(qun− 1
2 )

∥∥∥2 + 1

8
(β2an−1 + 4μβ1)

∥∥∥Hxδtu
n− 1

2

∥∥∥2

≤ 2μ2‖q‖2∞
β2an−1 + 4μβ1

∥∥∥un− 1
2

∥∥∥2 + 1

8
(β2an−1 + 4μβ1)

∥∥∥Hxδtu
n− 1

2

∥∥∥2 .

(4.9)

Substituting the above inequalities (4.7)–(4.9) into (4.6), we obtain

β2τ

n∑
k=1

an−k

∥∥∥Hxδtu
k− 1

2

∥∥∥2 + μd
∥∥un

∥∥2∗ ≤ β2τ

n−1∑
k=1

an−k−1

∥∥∥Hxδtu
k− 1

2

∥∥∥2 + μd

∥∥∥un−1
∥∥∥2∗

+ 4τμ2

β2an−1 + 4μβ1

(
‖q‖2∞

∥∥∥un− 1
2

∥∥∥2 +
∥∥∥Hxgn− 1

2

∥∥∥2
)

+ 2τβ2an−1‖Hxψ∗‖2.

Let

F 0 = μd

∥∥∥u0
∥∥∥2∗ , F n = β2τ

n∑
k=1

an−k

∥∥∥Hxδtu
k− 1

2

∥∥∥2 + μd
∥∥un

∥∥2∗ (1 ≤ n ≤ N).

Then

Fn ≤ Fn−1 + 4τμ2

β2an−1 + 4μβ1

(
‖q‖2∞

∥∥∥un− 1
2

∥∥∥2 +
∥∥∥Hxgn− 1

2

∥∥∥2
)

+ 2τβ2an−1‖Hxψ∗‖2

or equivalently,

Fn ≤ F 0 +
n∑

k=1

4τμ2

β2ak−1 + 4μβ1

(
‖q‖2∞

∥∥∥uk− 1
2

∥∥∥2 +
∥∥∥Hxgk− 1

2

∥∥∥2
)

+ 2τβ2n
2−α‖Hxψ∗‖2.(4.10)

Since ak−1 ≥ (2 − α)k1−α ≥ (2 − α)n1−α for k ≤ n and μ = τα−1�(3 − α), we
obtain

β2ak−1 + 4μβ1 ≥ μ
(
β2 + 4β1T

α−1�(2 − α)
)

T α−1�(2 − α)
= μ

C
, τn2−α ≤ μT 2−α

�(3 − α)
.

Applying these two inequalities to (4.10) leads to

Fn ≤ F 0 + 4τμC‖q‖2∞
n∑

k=1

∥∥∥uk− 1
2

∥∥∥2 + 4τμC

n∑
k=1

∥∥∥Hxgk− 1
2

∥∥∥2 + 2μβ2T
2−α

�(3 − α)
‖Hxψ∗‖2. (4.11)

Furthermore, by the relation ‖uk− 1
2 ‖2 ≤ 1

2 (‖uk‖2 + ‖uk−1‖2), we have

Fn ≤ F 0 + 2τμC‖q‖2∞
(∥∥∥u0

∥∥∥2 + 2
n−1∑
k=1

∥∥∥uk
∥∥∥2 + ∥∥un

∥∥2
)

+ 4τμC

n∑
k=1

∥∥∥Hxg
k− 1

2

∥∥∥2 + 2μβ2T
2−α

�(3 − α)
‖Hxψ

∗‖2.
(4.12)
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In view of the definitions of Fn and F 0, it follows that

d
∥∥un

∥∥2∗ − 2τC‖q‖2∞
∥∥un

∥∥2 ≤ d

∥∥∥u0
∥∥∥2∗ + 2τC‖q‖2∞

∥∥∥u0
∥∥∥2

+ 4τC‖q‖2∞
n−1∑
k=1

∥∥∥uk
∥∥∥2 + 4τC

n∑
k=1

∥∥∥Hxg
k− 1

2

∥∥∥2 + 2β2T
2−α

�(3 − α)
‖Hxψ

∗‖2.
(4.13)

An application of Lemma 4.1 gives(
d − 3τC‖q‖2∞L2

8

)∥∥un
∥∥2∗ ≤ d

∥∥∥u0
∥∥∥2∗ + 2τC‖q‖2∞

∥∥∥u0
∥∥∥2

+ 3τC‖q‖2∞L2

4

n−1∑
k=1

∥∥∥uk
∥∥∥2∗ + 4τC

n∑
k=1

∥∥∥Hxg
k− 1

2

∥∥∥2 + 2β2T
2−α

�(3 − α)
‖Hxψ

∗‖2.
(4.14)

When τ‖q‖2∞ ≤ 4d
3CL2 , we have

∥∥un
∥∥2∗ ≤ G0 + 3τC‖q‖2∞L2

2d

n−1∑
k=1

∥∥∥uk
∥∥∥2∗ + 8τC

d

n∑
k=1

∥∥∥Hxg
k− 1

2

∥∥∥2 . (4.15)

The estimate (4.4) follows from Lemma 4.3 (Discrete Gronwall lemma) immediately.

Theorem 4.1 shows that the compact finite difference scheme (2.17) is almost
unconditionally stable to the initial values ϕ∗, ψ∗ and the forcing term g, or more
precisely, it is stable under the mild condition τ‖q‖2∞ ≤ 4d

3CL2 for the general q(x).

For the special case when q(x) ≡ q is independent of x and q < 16d
3L2 , this mild

condition is no longer required to obtain the unconditional stability of the compact
finite difference scheme (2.17). Specifically, we have the following result.

Theorem 4.2 Let un = (un
0, u

n
1, . . . , u

n
M) be the solution of the compact finite dif-

ference scheme (2.17) with un
0 = un

M = 0. Assume that q(x) ≡ q is independent of x
and that q < 16d

3L2 . Then we have that for 1 ≤ n ≤ N ,

∥∥un
∥∥2∗ ≤ 1

C1

(
d

∥∥ϕ∗∥∥2∗ − q
∥∥Hxϕ∗∥∥2 + 2τC

n∑
k=1

∥∥∥Hxgk− 1
2

∥∥∥2 + 2β2T
2−α

�(3 − α)
‖Hxψ∗‖2

)
,(4.16)

where C is the constant in (4.5) and

C1 = 16d − 3qL2

16
. (4.17)

Proof The proof follows from the similar argument as that in the proof of
Theorem 4.1. When q(x) ≡ q is independent of x, we have

μ
(
Hx(qun− 1

2 ),Hxδtu
n− 1

2

)
= μq

2τ

(∥∥Hxu
n
∥∥2 −

∥∥∥Hxu
n−1

∥∥∥2
)

. (4.18)
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By the Cauchy-Schwarz inequality,

β2an−1

(
Hxψ

∗,Hxδtu
n− 1

2

)
≤ β2an−1

(
‖Hxψ

∗‖2 + 1

4

∥∥∥Hxδtu
n− 1

2

∥∥∥2
)

,

μ
(
Hxg

n− 1
2 ,Hxδtu

n− 1
2

)

≤ μ2

β2an−1 + 4μβ1

∥∥∥Hxg
n− 1

2

∥∥∥2 + 1

4
(β2an−1 + 4μβ1)

∥∥∥Hxδtu
n− 1

2

∥∥∥2 .

(4.19)

Using (4.6) (with q(x) ≡ q), (4.7), (4.18) and (4.19), we obtain

β2τ

n∑
k=1

an−k

∥∥∥Hxδtu
k− 1

2

∥∥∥2 + μd
∥∥un

∥∥2∗ − μq
∥∥Hxu

n
∥∥2

≤ β2τ

n−1∑
k=1

an−k−1

∥∥∥Hxδtu
k− 1

2

∥∥∥2 + μd

∥∥∥un−1
∥∥∥2∗ − μq

∥∥∥Hxu
n−1

∥∥∥2

+ 2τμ2

β2an−1 + 4μβ1

∥∥∥Hxg
n− 1

2

∥∥∥2 + 2τβ2an−1‖Hxψ
∗‖2.

This implies that

β2τ

n∑
k=1

an−k

∥∥∥Hxδtu
k− 1

2

∥∥∥2 + μd
∥∥un

∥∥2∗ − μq
∥∥Hxun

∥∥2

≤ μd

∥∥∥u0
∥∥∥2∗ − μq

∥∥∥Hxu0
∥∥∥2 +

n∑
k=1

2τμ2

β2ak−1 + 4μβ1

∥∥∥Hxgk− 1
2

∥∥∥2 + 2τβ2n
2−α‖Hxψ∗‖2.

(4.20)

Since

β2ak−1 + 4μβ1 ≥ μ
(
β2 + 4β1T

α−1�(2 − α)
)

T α−1�(2 − α)
= μ

C
, τn2−α ≤ μT 2−α

�(3 − α)
,

we have from (4.20) that

d
∥∥un

∥∥2∗ − q
∥∥Hxun

∥∥2 ≤ d

∥∥∥u0
∥∥∥2∗ − q

∥∥∥Hxu0
∥∥∥2 + 2τC

n∑
k=1

∥∥∥Hxgk− 1
2

∥∥∥2 + 2β2T
2−α

�(3 − α)
‖Hxψ∗‖2.

An application of Lemma 4.1 shows that the estimate (4.16) holds.

Remark 4.1 The condition q < 16d
3L2 is automatically satisfied if q ≤ 0. The latter

is certainly satisfied if the convection coefficient p(x) in the original equation (1.1)
is independent of x, i.e., p(x) ≡ p. This implies that for the fractional convection-
diffusion-wave equation (1.1) with constant coefficients, the corresponding compact
finite difference scheme (2.17) is unconditionally stable.
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We now consider the convergence of the compact finite difference scheme (2.17).
Let en

i = Un
i − un

i . From (2.15) and (2.17), we get the following error equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β2Hx

(
δt e

n− 1
2

i −
n−1∑
k=1

(an−k−1 − an−k)δt e
k− 1

2
i

)
+ μβ1Hxδt e

n− 1
2

i

= μ

(
dδ2xe

n− 1
2

i + Hx

(
qie

n− 1
2

i

)
+ (Rxt )

n− 1
2

i

)
, 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,

en
0 = en

M = 0, 1 ≤ n ≤ N,

e0i = 0, 0 ≤ i ≤ M.

(4.21)

Let C, C∗ and C1 be the constants in (4.5), (3.3) and (4.17). Using these constants,
we define

C2 =
(
8T LC∗2C

d
exp

(
3T C‖q‖2∞L2

2d

)) 1
2

, C3 =
(
2T LCC∗2

C1

) 1
2

. (4.22)

Based on the error equation (4.21), we have the following convergence results.

Theorem 4.3 Let Un
i denote the value of the solution u(x, t) of (2.1) at the mesh

point (xi, tn) and let un = (un
0, u

n
1, . . . , u

n
M) be the solution of the compact finite

difference scheme (2.17). Assume that the condition in Theorem 3.1 is satisfied. Then
when τ‖q‖2∞ ≤ 4d

3CL2 , we have

∥∥Un − un
∥∥∗ ≤ C2

(
β2τ

3−α + β1τ
2 + h4

)
, 1 ≤ n ≤ N. (4.23)

Proof It follows from (4.21) and Theorem 4.1 that

∥∥en
∥∥2∗ ≤ 8τC

d
exp

(
3T C‖q‖2∞L2

2d

) n∑
k=1

∥∥∥(Rxt )
k− 1

2

∥∥∥2 .

Applying Theorem 3.1, we get

∥∥en
∥∥2∗ ≤ C2

2

(
β2τ

3−α + β1τ
2 + h4

)2
.

The estimate (4.23) is proved.

Theorem 4.4 Let Un
i denote the value of the solution u(x, t) of (2.1) at the mesh

point (xi, tn) and let un = (un
0, u

n
1, . . . , u

n
M) be the solution of the compact finite

difference scheme (2.17). Assume that q(x) ≡ q is independent of x and q < 16d
3L2 .

Also assume that the condition in Theorem 3.1 is satisfied. Then we have

∥∥Un − un
∥∥∗ ≤ C3

(
β2τ

3−α + β1τ
2 + h4

)
, 1 ≤ n ≤ N. (4.24)

Proof The proof follows from (4.21) and Theorems 3.1 and 4.2.
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Combining Lemma 4.1 with Theorems 3.1 and 4.2, we get immediately the fol-
lowing two theorems concerning with the error estimates in the discrete H 1, L2 and
L∞ norms.

Theorem 4.5 Assume that the condition in Theorem 4.3 is satisfied. Then

‖Un − un‖1 ≤ C2

√
3(8 + L2)

4

(
β2τ

3−α + β1τ
2 + h4

)
, 1 ≤ n ≤ N,

‖Un − un‖ ≤ C2L
√
3

4

(
β2τ

3−α + β1τ
2 + h4

)
, 1 ≤ n ≤ N,

‖Un − un‖∞ ≤ C2
√
6L

4

(
β2τ

3−α + β1τ
2 + h4

)
, 1 ≤ n ≤ N.

(4.25)

Theorem 4.6 Assume that the condition in Theorem 4.4 is satisfied. Then

‖Un − un‖1 ≤ C3

√
3(8 + L2)

4

(
β2τ

3−α + β1τ
2 + h4

)
, 1 ≤ n ≤ N,

‖Un − un‖ ≤ C3L
√
3

4

(
β2τ

3−α + β1τ
2 + h4

)
, 1 ≤ n ≤ N,

‖Un − un‖∞ ≤ C3
√
6L

4

(
β2τ

3−α + β1τ
2 + h4

)
, 1 ≤ n ≤ N.

(4.26)

Remark 4.2 In Theorem 4.5, the optimal error estimates (i.e., the error estimate with
the same order as the truncation error) of the compact finite difference scheme (2.17)
in the discreteL2,H 1 andL∞ norms are obtained under the mild condition τ‖q‖2∞ ≤
4d

3CL2 for the general q(x). Theorem 4.6 shows that this mild condition is no longer
required to obtain the same optimal error estimates if q(x) ≡ q is independent of x

and q < 16d
3L2 . In particular, this is the case for the fractional convection-diffusion-

wave equation (1.1) with constant coefficients.

Remark 4.3 The constraint condition q < 16d
3L2 in Theorems 4.2 and 4.3 is easily

verifiable for practical problems. If it does not hold we have the estimates (4.4) and
(4.23) instead of the estimates (4.16) and (4.24), respectively, for the sufficiently
small τ . When C1 is very small, the estimates (4.16), (4.24) and (4.26) are poor. In
this case, it is better to use the estimates (4.4), (4.23) and (4.25) for the sufficiently
small τ . The restriction condition on τ in Theorems 4.1, 4.3 and 4.5 is only for the
analysis of the stability and convergence of the compact finite difference scheme
(2.17) with the general q(x). One of the numerical experiments in the next section
shows that it is only a sufficient condition. Improvement of this condition can be
interesting both theoretically and computationally.

Remark 4.4 When d is a small positive parameter, say 0 < d � 1, the problem
(2.1) is singularly perturbed and characterized by its boundary layers where the solu-
tion varies rapidly (see [33] for classical singularly perturbed problems). The error
estimates (4.23) and (4.25) are not applicable to such problems since C2 becomes
large. Due to the boundary layer behavior, it is difficult to solve efficiently singularly
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perturbed problems by most numerical methods using a uniform mesh (see [33]).
A possible alternative approach is to use piecewise uniform meshes, i.e., Shishkin
type meshes (see [33]). How to construct an efficient numerical method for solving
fractional singularly perturbed problems will be our next consideration.

Remark 4.5 We now give a simple comment on the convergence order of the com-
pact finite difference scheme (2.17). Since 3 − α < 2, we see from (4.25) and (4.26)
that the temporal convergence order of the compact finite difference scheme (2.17) is
3−α if β2 �= 0; otherwise, it attains 2. This implies that the compact finite difference
scheme (2.17) converges with the convergence order O(τ 3−α + h4) for the frac-
tional convection-diffusion-wave equation (1.1), and its convergence order increases
to O(τ 2 + h4) when the equation (1.1) is reduced to a classical convection-diffusion
equation of integer order (i.e., β2 = 0). It is very interesting to develop a compact
finite difference scheme of orderO(τ 2 + h4) for the fractional convection-diffusion-
wave equation (1.1) (i.e., the case for β2 �= 0) and establish the corresponding error
estimates. This will be a subject of our future investigations.

Once we have the error estimate between the solution Un
i of the transformed prob-

lem (2.1) and the solution un
i of the compact finite difference scheme (2.17), it is very

straightforward to obtain the error estimate between the solutions of the original prob-
lem (1.1)–(1.3) and the compact finite difference scheme (2.17). Let V n

i = v(xi, tn)

be the value of the solution v(x, t) of the original problem (1.1)–(1.3) at the mesh
point (xi, tn), and let vn

i = un
i /ki , where ki = k(xi). Since V n

i = Un
i /ki , we have

from (4.25) or (4.26) that

‖V n − vn‖ν ≤ C4

(
β2τ

3−α + β1τ
2 + h4

)
, 1 ≤ n ≤ N, (4.27)

where the norm ‖ · ‖ν stands for any of the norms ‖ · ‖1, ‖ · ‖ and ‖ · ‖∞, and C4 is
a positive constant independent of the step sizes τ and h and the time level n. The
estimate (4.27) will be used in our numerical experiments in the next section.

5 Applications and numerical results

In this section, we give some applications of the proposed compact finite difference
method for three model problems. Our first example is a time fractional convection-
diffusion-wave problem with damping, where the convection coefficient is spatially
variable and the exact analytical solution v(x, t) is explicitly known. This analyti-
cal solution is mainly used to compare with the computed solution vn

i = un
i /ki to

check the accuracy of the compact finite difference method, where ki = k(xi) and un
i

is the solution of the compact finite difference scheme (2.17). The second example
is also a time fractional convection-diffusion-wave problem with damping, but the
convection coefficient is a constant. We use this example to make some numerical
comparisons of the compact finite difference scheme (2.17) with the finite differ-
ence scheme (28) given in [27] to demonstrate the high efficiency of the compact
finite difference scheme (2.17). In the final example, we consider a time fractional
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convection-diffusion-wave problem with a large L compared with d. By means of
this example, we show that the restriction condition on τ in Theorems 4.2, 4.3 and
4.5 is only a sufficient condition for the stability and convergence of the compact
finite difference scheme (2.17) with the general q(x).

To check the accuracy of the computed solution vn
i , we compute L2, H 1 and L∞

norm errors:

e2(τ, h) = max
0≤n≤N

‖V n − vn‖, eν(τ, h) = max
0≤n≤N

‖V n − vn‖ν (ν = 1, ∞),(5.1)

where V n
i = v(xi, tn). The temporal and spatial convergence orders are computed,

respectively, by

ordertν(τ, h) = log2

(
eν(2τ, h)

eν(τ, h)

)
, ordersν(τ, h) = log2

(
eν(τ, 2h)

eν(τ, h)

)
,

ν = 1, 2, ∞. (5.2)

Table 1 The temporal errors and convergence orders of the compact finite difference scheme (2.17) for

Example 5.1 (h ≈ τ
3−α
4 )

α τ e1(τ, h) ordert1(τ, h) e2(τ, h) ordert2(τ, h) e∞(τ, h) ordert∞(τ, h)

5/4 1/5 2.283320e-02 1.723803e-02 1.405934e-02

1/10 5.968381e-03 1.935722 4.916522e-03 1.809885 4.123869e-03 1.769458

1/20 1.588305e-03 1.909851 1.407565e-03 1.804437 1.179934e-03 1.805292

1/40 4.346612e-04 1.869525 4.042584e-04 1.799852 3.387652e-04 1.800349

1/80 1.215439e-04 1.838414 1.167808e-04 1.791474 9.806325e-05 1.788501

1/160 3.456831e-05 1.813956 3.376449e-05 1.790225 2.836018e-05 1.789846

1/320 9.951144e-06 1.796516 9.827237e-06 1.780649 8.248315e-06 1.781695

3/2 1/5 5.094328e-02 3.597288e-02 2.794232e-02

1/10 1.581324e-02 1.687759 1.252104e-02 1.522556 1.036601e-02 1.430590

1/20 5.108329e-03 1.630209 4.332446e-03 1.531100 3.520139e-03 1.558157

1/40 1.672943e-03 1.610463 1.505348e-03 1.525085 1.246582e-03 1.497655

1/80 5.603527e-04 1.577981 5.250619e-04 1.519538 4.349827e-04 1.518948

1/160 1.912122e-04 1.551161 1.836975e-04 1.515156 1.519755e-04 1.517119

1/320 6.605296e-05 1.533479 6.440742e-05 1.512033 5.322062e-05 1.513782

7/4 1/5 1.093827e-01 7.705109e-02 5.964775e-02

1/10 4.372347e-02 1.322904 3.287706e-02 1.228734 2.584664e-02 1.206491

1/20 1.691744e-02 1.369897 1.390575e-02 1.241400 1.140806e-02 1.179923

1/40 6.884574e-03 1.297072 5.833749e-03 1.253187 4.699823e-03 1.279375

1/80 2.726847e-03 1.336133 2.452493e-03 1.250174 2.011458e-03 1.224365

1/160 1.107637e-03 1.299749 1.029614e-03 1.252146 8.415658e-04 1.257094

1/320 4.538547e-04 1.287183 4.324834e-04 1.251386 3.534918e-04 1.251399
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Example 5.1 We first consider a time fractional convection-diffusion-wave problem
with damping. This problem is governed by the equation (1.1) in the domain (0, π)×
(0, 1] with β2 = β1 = d = 1 and

p(x) = − sin x, f (x, t) = t2
(
3 + t + 6t1−α

�(4 − α)

)
cos x + t3 sin2 x. (5.3)

The boundary and initial conditions are given by (1.2) and (1.3) with

φ0(t) = t3, φL(t) = −t3, ϕ(x) = ψ(x) ≡ 0. (5.4)

It is easy to check that v(x, t) = t3 cos x is the solution of this problem and the
function q(x) in the problem (2.1) is given by q(x) = − 1

4

(
2 cos x + sin2 x

)
.

We first test the temporal error and the temporal convergence order of the compact
finite difference scheme (2.17) for different α. In this test, we let the spatial step

h ≈ τ
3−α
4 (M = πτ− 3−α

4 �). Table 1 gives the errors eν(τ, h)(ν = 1, 2, ∞) and the
temporal convergence orders ordertν(τ, h)(ν = 1, 2, ∞) of the computed solution vn

i

for α = 5/4, 3/2, 7/4 and different time step τ . As expected from our theoretical
analysis, the computed solution vn

i has the temporal accuracy of order (3 − α).
We next compute the spatial error and the spatial convergence order. Table 2

presents the errors eν(τ, h)(ν = 1, 2, ∞) and the spatial convergence orders
ordersν(τ, h)(ν = 1, 2, ∞) of the computed solution vn

i for α = 5/4, 3/2, 7/4 and

different spatial step h, where the time step τ ≈ h
4

3−α (N = h− 4
3−α �). The data in

this table demonstrate that the compact finite difference scheme (2.17) generates the
fourth-order spatial accuracy. This coincides well with the analysis.

Table 2 The spatial errors and convergence orders of the compact finite difference scheme (2.17) for

Example 5.1 (τ ≈ h
4

3−α )

α h e1(τ, h) orders1(τ, h) e2(τ, h) orders2(τ, h) e∞(τ, h) orders∞(τ, h)

5/4 π/4 2.007541e-01 1.174402e-01 1.027557e-01

π/8 8.506234e-03 4.560765 6.749575e-03 4.120986 5.694532e-03 4.173497

π/16 4.123673e-04 4.366519 3.835459e-04 4.137325 3.218611e-04 4.145067

π/32 2.286029e-05 4.173014 2.242060e-05 4.096503 1.878749e-05 4.098594

π/64 1.345212e-06 4.086939 1.338572e-06 4.066058 1.125026e-06 4.061741

3/2 π/4 2.640985e-01 1.537707e-01 1.324759e-01

π/8 1.218615e-02 4.437762 9.660234e-03 3.992579 8.049062e-03 4.040765

π/16 6.008165e-04 4.342174 5.586492e-04 4.112043 4.615859e-04 4.124150

π/32 3.478119e-05 4.110545 3.411072e-05 4.033645 2.818061e-05 4.033824

π/64 2.121467e-06 4.035173 2.110982e-06 4.014239 1.748542e-06 4.010479

7/4 π/4 4.285346e-01 2.509337e-01 2.197285e-01

π/8 1.769530e-02 4.597974 1.399165e-02 4.164668 1.145233e-02 4.262010

π/16 9.361196e-04 4.240529 8.701531e-04 4.007153 7.110124e-04 4.009622

π/32 5.534022e-05 4.080293 5.426965e-05 4.003052 4.434236e-05 4.003117

π/64 3.405653e-06 4.022325 3.388762e-06 4.001315 2.778334e-06 3.996394
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Example 5.2 In order to make some numerical comparisons of the compact finite
difference scheme (2.17) with the finite difference scheme (28) given in [27], we
consider the problem given by Example 7 in [27]. This problem is governed by the
equation (1.1) with the boundary and initial conditions (1.2) and (1.3) in the domain
(0, 1) × (0, 1], where β2 = β1 = d = 1 and

p(x) = 1, f (x, t) = 3t2
(
1 + 2t1−α

�(4 − α)

)
ex, φ0(t) = t3,

φL(t) = t3e, ϕ(x) = ψ(x) ≡ 0. (5.5)

Its exact analytical solution is known and is given by v(x, t) = t3ex . For this
example, the function q(x) in the problem (2.1) is given by q(x) = − 1

4 for all
x ∈ [0, 1].

We now use the compact finite difference scheme (2.17) in this paper and the finite
difference scheme (28) in [27] to solve the above problem numerically. For compari-
son, Table 3 lists the error e∞(τ, h) and the temporal convergence order ordert∞(τ, h)

of these two schemes for α = 5/4, 3/2, 7/4 and different time step τ , while the error

Table 3 Comparisons of temporal accuracy between the scheme (2.17) and the scheme (28) in [27] for
Example 5.2

Scheme (2.17) (h ≈ τ
3−α
4 ) Scheme (28) in [27] (h = τ )

α τ e∞(τ, h) ordert∞(τ, h) e∞(τ, h) ordert∞(τ, h)

5/4 1/5 1.516569e-02 2.020968e-01

1/10 4.293385e-03 1.820623 1.077003e-01 0.908025

1/20 1.234304e-03 1.798418 5.546180e-02 0.957456

1/40 3.543907e-04 1.800285 2.810787e-02 0.980520

1/80 1.050106e-04 1.754806 1.414635e-02 0.990545

1/160 3.038161e-05 1.789265 7.091633e-03 0.996240

1/320 8.800219e-06 1.787587 3.549604e-03 0.998460

3/2 1/5 3.345199e-02 2.312428e-01

1/10 1.126876e-02 1.569763 1.221406e-01 0.920865

1/20 3.916418e-03 1.524722 6.231016e-02 0.971004

1/40 1.354654e-03 1.531610 3.132050e-02 0.992360

1/80 4.716027e-04 1.522281 1.565125e-02 1.000829

1/160 1.691014e-04 1.479683 7.801491e-03 1.004456

1/320 5.919440e-05 1.514356 3.887714e-03 1.004828

7/4 1/5 7.705232e-02 2.818246e-01

1/10 3.182338e-02 1.275751 1.505801e-01 0.904267

1/20 1.333995e-02 1.254333 7.698121e-02 0.967953

1/40 5.702752e-03 1.226023 3.856938e-02 0.997050

1/80 2.390355e-03 1.254433 1.910700e-02 1.013355

1/160 1.022237e-03 1.225496 9.432427e-03 1.018400

1/320 4.307661e-04 1.246753 4.652838e-03 1.019518
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e∞(τ, h) and the spatial convergence order orders∞(τ, h) for α = 5/4, 3/2, 7/4 and
different spatial step h are given in Table 4. It is seen from Table 3 that the compact
finite difference scheme (2.17) given here is more accurate than the finite difference
scheme (28) in [27] for the same time step τ . We also see from Table 4 that the com-
pact finite difference scheme (2.17) in this paper possesses the fourth-order spatial
accuracy, whereas the finite difference scheme (28) in [27] has only the first-order
spatial accuracy.

Example 5.3 In this example, we consider the equation (1.1) in the domain (0, 100)×
(0, 1] with β2 = β1 = d = 1 and

p(x) = cos(πx), f (x, t) =
(
�(2 + α)t + (1 + α)tα + π (π − sin(πx)) t1+α

)
cos(πx). (5.6)

The boundary and initial functions in (1.2) and (1.3) are chosen as

φ0(t) = φL(t) = t1+α, ϕ(x) = ψ(x) ≡ 0. (5.7)

This choice implies that v(x, t) = t1+α cos(πx) is the solution of this prob-
lem. Clearly, the function q(x) in the problem (2.1) is given by q(x) =
− 1

4

(
2π sin(πx) + cos2(πx)

)
for this example.

We use the compact finite difference scheme (2.17) to solve the above problem
numerically. In Table 5, we give the errors eν(τ, h)(ν = 1, 2, ∞) and the tempo-
ral convergence orders ordertν(τ, h)(ν = 1, 2, ∞) of the computed solution vn

i for

Table 4 Comparisons of spatial accuracy between the scheme (2.17) and the scheme (28) in [27] for
Example 5.2

Scheme (2.17) (τ ≈ h
4

3−α ) Scheme (28) in [27] (τ = h)

α h e∞(τ, h) orders∞(τ, h) e∞(τ, h) orders∞(τ, h)

5/4 1/4 9.036314e-04 2.376788e-01

1/8 5.362622e-05 4.074724 1.318263e-01 0.850375

1/16 3.212236e-06 4.061289 6.869237e-02 0.940416

1/32 1.939886e-07 4.049534 3.503624e-02 0.971302

1/64 1.184304e-08 4.033861 1.765607e-02 0.988684

3/2 1/4 1.338402e-03 2.728267e-01

1/8 8.224847e-05 4.024379 1.498762e-01 0.864213

1/16 5.120146e-06 4.005732 7.746116e-02 0.952227

1/32 3.183150e-07 4.007658 3.913657e-02 0.984956

1/64 1.984025e-08 4.003953 1.957343e-02 0.999621

7/4 1/4 2.233499e-03 3.310531e-01

1/8 1.403319e-04 3.992391 1.841092e-01 0.846501

1/16 8.872201e-06 3.983407 9.586803e-02 0.941440

1/32 5.547141e-07 3.999476 4.824655e-02 0.990624

1/64 4.210986e-08 3.719515 2.397248e-02 1.009047
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Table 5 The temporal errors and convergence orders of the compact finite difference scheme (2.17) for

Example 5.3 (h ≈ τ
3−α
4 )

α τ e1(τ, h) ordert1(τ, h) e2(τ, h) ordert2(τ, h) e∞(τ, h) ordert∞(τ, h)

5/4 1/5 6.457124e-01 3.039362e-01 5.971827e-02

1/10 1.530110e-01 2.077257 7.698809e-02 1.981061 1.505691e-02 1.987747

1/20 3.598995e-02 2.087969 2.094876e-02 1.877770 3.899111e-03 1.949208

1/40 8.717690e-03 2.045576 5.917826e-03 1.823726 1.104963e-03 1.819148

1/80 2.221518e-03 1.972400 1.718122e-03 1.784235 3.321866e-04 1.733932

1/160 5.919316e-04 1.908043 5.044765e-04 1.767974 9.775818e-05 1.764704

1/320 1.639968e-04 1.851763 1.491637e-04 1.757890 2.852672e-05 1.776903

3/2 1/5 9.913292e-01 4.719551e-01 9.160780e-02

1/10 2.934076e-01 1.756458 1.417491e-01 1.735310 2.751957e-02 1.735013

1/20 8.536135e-02 1.781251 4.559106e-02 1.636516 8.567927e-03 1.683440

1/40 2.505832e-02 1.768293 1.524824e-02 1.580108 3.049177e-03 1.490526

1/80 7.487514e-03 1.742731 5.184603e-03 1.556337 1.027281e-03 1.569589

1/160 2.334556e-03 1.681339 1.803769e-03 1.523219 3.607112e-04 1.509915

1/320 7.491559e-04 1.639810 6.305137e-04 1.516415 1.203559e-04 1.583538

7/4 1/5 1.455163e+00 7.112095e-01 1.345126e-01

1/10 5.667429e-01 1.360415 2.743758e-01 1.374121 5.281255e-02 1.348788

1/20 2.060476e-01 1.459717 1.054713e-01 1.379303 2.114363e-02 1.320658

1/40 7.475571e-02 1.462722 4.206027e-02 1.326321 7.944462e-03 1.412201

1/80 2.695190e-02 1.471797 1.693169e-02 1.312732 3.477183e-03 1.192030

1/160 9.964135e-03 1.435571 6.952426e-03 1.284138 1.337687e-03 1.378178

1/320 3.764678e-03 1.404218 2.880018e-03 1.271439 5.498090e-04 1.282738

α = 5/4, 3/2, 7/4 and different time step τ , where the spatial step h ≈ τ
3−α
4 (M =

100τ− 3−α
4 �). It is seen that the computed solution vn

i has the temporal accuracy of
order (3− α). The numerical results in Table 6 give the errors eν(τ, h)(ν = 1, 2, ∞)

and the spatial convergence orders ordersν(τ, h)(ν = 1, 2, ∞) of the computed solu-
tion vn

i for α = 5/4, 3/2, 7/4 and different spatial step h, where the time step

τ ≈ h
4

3−α (N = h− 4
3−α �). These results show that the compact finite difference

scheme (2.17) generates the fourth-order spatial accuracy.
Since L = 100, d = 1 and ‖q‖∞ = π

2 , the restriction condition on τ in
Theorems 4.1, 4.3 and 4.5 for the present problem is reduced to

τ ≤ 1

1875π2

(
1

�(2 − α)
+ 4

)
. (5.8)

Clearly, this condition is not satisfied for all τ in Table 5 and some τ in Table 6. How-
ever, the corresponding numerical results in Tables 5 and 6 show that the compact
finite difference scheme (2.17) is still stable and convergent. This implies that the
restriction condition on τ in Theorems 4.1, 4.3 and 4.5 is only a sufficient condition
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Table 6 The spatial errors and convergence orders of the compact finite difference scheme (2.17) for

Example 5.3 (τ ≈ h
4

3−α )

α h e1(τ, h) orders1(τ, h) e2(τ, h) orders2(τ, h) e∞(τ, h) orders∞(τ, h)

5/4 1/4 2.581770e-02 1.562794e-02 3.033780e-03

1/8 1.095566e-03 4.558612 8.960001e-04 4.124485 1.738498e-04 4.125203

1/16 5.860527e-05 4.224502 5.518185e-05 4.021233 1.070731e-05 4.021174

1/32 3.480066e-06 4.073844 3.425251e-06 4.009912 6.646437e-07 4.009871

1/64 2.145757e-07 4.019556 2.137134e-07 4.002460 4.146840e-08 4.002497

3/2 1/4 2.588127e-02 1.576009e-02 3.147355e-03

1/8 1.077679e-03 4.585909 8.847259e-04 4.154901 1.769587e-04 4.152655

1/16 5.776769e-05 4.221521 5.446596e-05 4.021804 1.089538e-05 4.021624

1/32 3.441059e-06 4.069338 3.388135e-06 4.006791 6.778281e-07 4.006653

1/64 2.123499e-07 4.018338 2.115175e-07 4.001643 4.231266e-08 4.001758

7/4 1/4 2.553825e-02 1.613469e-02 3.323958e-03

1/8 1.125783e-03 4.503659 9.448085e-04 4.094000 1.941036e-04 4.098004

1/16 6.120311e-05 4.201180 5.815404e-05 4.022071 1.193691e-05 4.023325

1/32 3.669129e-06 4.060096 3.620378e-06 4.005667 7.430968e-07 4.005736

for the stability and convergence of the compact finite difference scheme (2.17) with
the general q(x).

6 Concluding remarks

We have presented and analyzed a high-order compact finite difference method for
a class of time fractional convection-diffusion-wave equations. The convection coef-
ficients may be spatially variable, and the time fractional derivative is in the Caputo
sense with the order α (1 < α < 2). The class of the equations under consideration
includes several important fractional differential equations such as time fractional
convection-diffusion-wave/diffusion-wave equations with or without damping. It
also includes classical convection-diffusion equations of integer order with spatially
variable convection coefficients as its special case. We have proved that the pro-
posed compact finite difference method is uniquely solvable, stable and convergent,
and provided the optimal error estimates in the discrete H 1, L2 and L∞ norms. The
error estimates show that the method has the fourth-order spatial accuracy and the
(3 − α)-order temporal accuracy (or the second-order temporal accuracy for classi-
cal convection-diffusion equations of integer order). Numerical results confirm our
theoretical analysis and show the efficiency of the proposed method.

In this paper, we use an indirect approach so that the scheme derived in this
way has a very simple and practical form for the problems with spatially variable
convection coefficients. The related theoretical analysis is also quite transparent.
There are several ways in which our method can be extended. For example, the
proposed method may be extended to the multi-dimensional problems under some
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suitable assumptions and to the equation (1.1) with a linear zero-order damping
term p1(x)v(x, t) being added. However, since our method requires an exponential
transformation to eliminate the convection term, the method for the present form
may not be suitable for the convection-dominated problems, namely the problems of
|p(x)| � d. Whether it can be extended to solve the convection-dominated problems
efficiently will be an interesting subject.
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