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Abstract General linear methods are multistage multivalue methods. This large fam-
ily of numerical methods for ordinary differential equations, includes Runge–Kutta
and linear multistep methods as special cases. G-symplectic general linear methods
are multivalue methods which preserve a generalization of quadratic invariants. If Q

is an invariant quadratic form then symplectic Runge–Kutta methods preserve this
invariant. In the case of a G-symplectic general linear method, there exists a non-
singular symmetric r × r matrix G such that G⊗Q is an invariant quadratic form for
this method. Although the numerical results can be corrupted by parasitic behaviour,
it is possible to overcome the effect of parasitic growth by imposing additional
constraints on the method. For G-symmetric methods satisfying these additional
conditions, numerical experiments give excellent results. A new concept known
as “cohesiveness” is introduced in an attempt to explain this favourable numerical
behaviour. It is shown that the deviation from perfect cohesiveness grows slowly as
steps of the method are carried out.

Keywords Symplectic method · G-symplectic method · Parasitic growth ·
Underlying one-step method · Internal starting method · Cohesiveness

1 Introduction

Symplectic Runge–Kutta methods not only preserve symplectic behaviour for Hamil-
tonian problems but also preserve quadratic invariants for a variety of problems.
Although general linear methods with more than a single input and output value
cannot match this behaviour, they can imitate this performance to a certain extent.
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Specifically, the so-called G-symplectic methods which have zero parasitic growth
factors, typically perform very well, using a variety of test problems. The purpose of
this paper is to explain why this happens.

Symplectic Runge–Kutta methods were introduced by Sanz-Serna in [10] and are
also the subject of a review paper [11] and a monograph [12]. Although G-symplectic
methods were introduced in [2] and [3], it was not until [4] and [6] that methods were
developed to overcome the deleterious effects of parasitism.

In Section 2 of the present paper, we will review the essential properties of general
linear methods with special reference to G-symplectic methods. An example method,
referred to as 4123A, is introduced to illustrate the computational and analytical con-
structs associated with this type of method. In Section 3 we will outline the behaviour
of G-symplectic methods with zero parasitic growth factors, which have motivated
the idea of cohesiveness that we would like to understand. In Section 4 the analytical
tools, related to algebraic and B-series analysis, will be reviewed along with the ideas
of the underlying one-step method. This leads to the formal definition of cohesive-
ness order. In Section 4.4 the main result will be presented; this establishes the slow
growth of the deviation from cohesiveness. In Section 4.5 the analysis will be carried
out in detail in the case of method 4123A. Finally in Section 5 the slow growth of
deviation from cohesiveness is verified numerically.

2 Symplectic and G-symplectic methods

2.1 Standard problem

Let X = R
N . We will consider numerical methods for a standard problem

y′(x) = f (y(x)), f : X → X; y(x0) = y0 ∈ X. (1)

It will be assumed that this problem has the property

[f (Y ), QY ] := [f (Y ), Y ]Q = 0,

with the consequence that for y, satisfying (1), [y(x), y(x)]Q is constant.
We will study methods such that numerical approximations to y(x) respect this

invariance.

2.2 Symplectic Runge–Kutta methods

A Runge–Kutta method with tableau

is symplectic (or canonical) if

M := diag(b)A + AT diag(b) − bbT = 0.
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If the sequence of approximations generated by a canonical Runge–Kutta method is
y0, y1, y2, . . . , then [yn, yn]Q is also invariant. This follows from

Theorem 1 (Basic identity: Runge–Kutta case) Denote the stage values in step
number n of a Runge–Kutta by Y and the stage derivatives by F . Then

s∑

i,j=1

mij [hFi, hFj ]Q = 2
s∑

i=1

bi[hFi, Yi]Q + [yn−1, yn−1]Q − [yn, yn]Q. (2)

Proof The right-hand side of (2) is equal to

s∑

i=1

bi[hFi, Yi − yn−1]Q +
s∑

j=1

bj [Yj − yn−1, hFj ]Q − [yn − yn−1, yn − yn−1]Q

=
s∑

i,j=1

(biaij + bjaji − bibj )[hFi, hFj ]Q.

2.3 General linear methods

Because general linear methods are multivalue, we need a notation for the collection
of quantities imported at the start of step number n and for the quantities exported
at the end of this step. These will be denoted by y[n−1] and y[n] respectively, each
made up from r subvectors in X denoted as y

[n−1]
i and y

[n]
i , where i = 1, 2, . . . , r .

As for a Runge–Kutta method, the stages will be denoted by Yi , i = 1, 2, . . . , s,
which together comprise the vector Y . Similarly, F will denote the vector of stage
derivatives made up from subvectors Fi = f (Yi), i = 1, 2, . . . , s. These quantities
are interconnected using four matrices A, U, B, V which together constitute the (s +
r) × (s + r) partitioned matrix

[
A U

B V

]
.

The connections between y[n−1], Y , F and y[n] can now be written

Yi = h

s∑

j=1

aijFj +
r∑

j=1

uij y
[n−1]
j , i = 1, 2, . . . , s,

y
[n]
i = h

s∑

j=1

bijFj +
r∑

j=1

vij y
[n−1]
j i = 1, 2, . . . , r. (3)

or, in compact form,

Y = (A ⊗ IN)F + (U ⊗ IN)y[n−1], (4)

y[n] = (B ⊗ IN)F + (V ⊗ IN)y[n−1]. (5)
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It will be assumed throughout this paper that the implicit equation system (4) is
well posed. This can be assured by requiring f to satisfy a local Lipschitz condi-
tion and assuming that h is sufficiently small. Under this assumption, the Yi can be
defined by functional iteration. In addition to Fi = f (Yi) evaluated at each stage, we
will make use of J

[n]
i , equal to the Jacobian of f evaluated at Yi found in step num-

ber n. The Jacobian will also be assumed to satisfy a local Lipschitz condition with
constant L so that ‖J [n]

i − J
[n]
j ‖ ≤ L‖Yi − Yj‖. It follows that

‖J [n]
i − J

[n]
j ‖ = O(h). (6)

Furthermore, because two successive steps can be written as a single step of the
composed method

we can also assume that
‖J [n+1]

i − J
[n]
j ‖ = O(h). (7)

2.4 Starting and finishing methods

Even though the process of computing y[n] from input values y[n−1] is completely
specified by the four matrices (A, U, B, V ), the sequence y[0], y[1], . . . has to be
initiated somehow. Given the initial value y0 in (1), the r components y

[0]
i need to

be computed. This can be done by introducing a Runge–Kutta method with multiple
outputs or, what is equivalent, a collection of r Runge–Kutta methods.

Write this starting process in the form of a mapping Sh : X → Xr so that

y[0] = Shy0.

For many methods, a suitable starting method will have one component equal to the
identity mapping id. In this case it will be possible to use this component of y[n] to
give an approximation to y(xn).

However, in other cases we will need to introduce a “finishing process”
Fh : Xr → X with the property that Fh ◦ Sh = id and use the approximation

y(xn) ≈ Fhy
[n]

to obtain usable numerical results.

2.5 G-symplectic processes

The following condition is a generalization of the canonical property for Runge–
Kutta methods

Definition 1 Let M denote the matrix

M =
[

DA + ATD − B∗GB DU − B∗GV

U∗D − V ∗GB G − V ∗GV

]
, (8)
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where D is a real diagonal matrix and G is a non-singular Hermitian matrix. A
general linear method (A, U, B, V ) is G-symplectic if M = 0.

Note that A is necessarily a real matrix and hence AT is an appropriate notation
for the transpose of A in (8). On the other hand, as we will see in Section 2.6, the
coefficient matrices U , B and V can possibly have non-real elements, depending on
the choice of basis, and the notations B∗, U∗ and V ∗ are appropriate.

Our aim is to study the behaviour of quantities like
[
y

[n]
i , y

[n]
j

]

Q
:=

〈
y

[n]
i , Qy

[n]
j

〉
,

whereQ is anN×N symmetric matrix. Note that the notation [·, ·]Q is adopted rather
than 〈·, ·〉Q because Q need not have any positivity property and hence a notation
suggesting inner-products would be misleading.

Given the r × r Hermitian matrix G, it is more useful to consider

[
y[n], y[n]]

G⊗Q
:=

r∑

i,j=1

gij

[
y

[n]
i , y

[n]
j

]

Q
.

Given the real s × s diagonal matrix D, we also need a similar quadratic form on Xs

denoted by [·, ·]D⊗Q. Finally, using the (s + r) × (s + r) matrix M , define

[v, v]M⊗Q :=
s+r∑

i,j=1

mij [vi, vj ]Q.

Theorem 2 (Basic identity: general linear case) Let

v =
[

hF

y[0]
]

,

then

[v, v]M⊗Q = [hF, Y ]D⊗Q + [Y, hF ]D⊗Q +
[
y[0], y[0]]

G⊗Q
−

[
y[1], y[1]]

G⊗Q
.

Proof This follows from the decomposition of M:

M =
[

D

0

] [
A U

] +
[

AT

U∗
] [

D 0
] +

[
0 0
0 G

]
−

[
B∗
V ∗

]
G

[
B V

]
.

If M = 0 and the term [hF, Y ]D⊗Q is zero then it follows from the basic identity
that

[
y[1], y[1]]

G⊗Q
= [

y[0], y[0]]
G⊗Q

and in general that

[
y[n], y[n]]

G⊗Q
=

[
y[n−1], y[n−1]]

G⊗Q
.
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2.6 Partitioned diagonal form

In this paper we consider only general linear methods with the property that V has r

distinct eigenvalues.
If T is a non-singular r × r matrix, then a change of basis

2y[n−1] → (T ∗ ⊗IN)y[n−1] =: ỹ[n−1],
y[n] → (T ∗ ⊗ IN)y[n] =: ỹ[n]

enables (4) and (5) to be written in the transformed form

Y = (A ⊗ IN)F + (Ũ ⊗ IN)ỹ[n−1], (9)

ỹ[n] = (B̃ ⊗ IN)F + (Ṽ ⊗ IN)ỹ[n−1], (10)

where the transformed coefficient matrices are
[

A Ũ

B̃ Ṽ

]
=

[
A UT

T ∗B T ∗V T

]
.

The G-stability condition (8) transforms to M̃ = 0, where

M̃ =
[

Is 0
0 T ∗

]
M

[
Is 0
0 T

]
=

[
DA + ATD − B̃∗G̃B̃ DŨ − B̃∗G̃Ṽ

Ũ∗D − Ṽ ∗G̃B̃ G̃ − Ṽ ∗G̃Ṽ

]
,

with G̃ = T ∗ GT .
Because V has r distinct eigenvalues, it is always possible to choose T so that

Ṽ is diagonal. For the method to be consistent [3], one of the eigenvalues of Ṽ

must equal 1 and we will conventionally choose T so that this appears as the first
diagonal element of Ṽ . Also by consistency we can scale the coefficients so that
eT

1Ũ = 1. If T is chosen to achieve these aims, we will refer to the transformed
method with coefficient matrices (A, Ũ , B̃, Ṽ ) as being in “diagonal form”. Write
V = diag(1, z2, z3, . . . , zr ).

For the remainder of the paper we will assume that the method (A, U, B, V )

is already in diagonal form and, accordingly, we will no longer use the notation
(A, Ũ , B̃, Ṽ ).

From the condition G = V ∗GV we deduce

gij (1 − zizj ) = 0, i, j = 1, 2, . . . , r

and it follows that |zi | = 1, i = 1, 2, . . . , s and that G is a diagonal matrix. Without
loss of generality, write g11 = 1

We will partition the method into its principal component and its non-principal
components as follows:

V = diag(1, V̂ ), U = [
1, Û

]
,

B =
[

bT

B̂

]
, D = diag(b), G = diag(1, Ĝ).

with V̂ and Ĝ diagonal matrices and all eigenvalues of V distinct and on the unit
circle. Our next aim is to partition the method into its principal component and its
non-principal components.
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Write pT and qT as linear mappings:

pT : Rr → R, pT

⎡

⎢⎢⎣

x1
x2
...

xr

⎤

⎥⎥⎦ → x1,

qT : Rr → R
r−1, qT

⎡

⎢⎢⎣

x1
x2
...

xr

⎤

⎥⎥⎦ →
⎡

⎢⎣
x2
...

xr

⎤

⎥⎦ .

As matrices, we recognise pT and qT as the first and remaining rows of the r × r

identity matrix. We note the obvious identity

ppT + qqT = I.

These operators will be used to construct various submatrices:

Up = 1, Uq = Û , pTB = bT, qTB = B̂,

pTV p = 1, qTV q = V̂ , pTV q = 0, qTV p = 0T,

pTGp = 1, qTGq = Ĝ, pTGq = 0, qTGp = 0T.

The inverse operation of breaking a vector into p and q components will be written
as [·, ·]. For example, y[n] = [pTy[n], qTy[n]], where for convenience we will write
p, q, pT and qT interchangeably with p⊗IN , q⊗IN , pT ⊗IN and qT ⊗IN , respectively.

2.7 Parasitic growth factors

It was shown in [6] that parasitism can occur if the diagonal elements of qTBUq are
non-zero. When parasitism occurs the growth factors are (qTV q)−1qTBUq. It was
shown in [6], how to overcome parasitism either through cancellation over successive
steps or by the construction of methods in which the growth factors are identically
zero.

In this paper, it will be assumed that we are dealing only with methods constructed
in this way.

2.8 An example method

The following method, referred to in [5] as method 4123A, is defined by the matrices

(11)
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The notation pprs = 4123 means that the order is p = 4, the “stage order” is p = 1,
r = 2 and s = 3. The method 4123A is one of a family of similar methods derived
in [5].

With inputs y
[n−1]
1 , y

[n−1]
2 to step number n, the first two stages are calculated

from

Y1 = y
[n−1]
1 + y

[n−1]
2 , F1 = f (Y1), (12)

Y2 = 2
3hF1 + y

[n−1]
1 − y

[n−1]
2 , F2 = f (Y2), (13)

where the coefficients are taken from the first two rows of A and U . To find Y3 and
F3, it is necessary to solve the equations

Y3 − 1
2hF3 = 2

5hF1 − 3
10hF1 + y

[n−1]
1 − 1

5y
[n−1]
2 , F3 = hf (Y3), (14)

using the same solution techniques as for one of the stages of a diagonally-implicit
Runge–Kutta method. Finally the output at the end of the step is given by

y
[n]
1 = 1

3hF1 − 3
8hF2 + 25

24hF3 + y
[n−1]
1 , (15)

y
[n]
2 = 1

3hF1 + 3
8hF2 − 5

24hF3 − y
[n−1]
2 . (16)

Using D = diag( 13 , − 3
8 ,

25
24 ) and G = diag(1, −1), it is found that M given by (8)

vanishes, showing that 4123A is G-symplectic. Evaluate the matrix product

BU =
[
1 1

2
1
2 0

]
,

to show that the parasitic growth factor -eT

2BUe2 for this sample method is zero.
A full discussion of starting methods will be presented in Section 4 but, as an

introduction, we will look at the consequences of using starting values

y
[0]
1 = y0, y

[0]
2 = θhf (y0) = θhy′(x0), (17)

where θ is a constant to be determined. If such a simple starting method is to be used,
it should at least be possible after a single step to obtain results consistent with the
flow of the problem. That is, we would hope to obtain, after a single step

y
[1]
1 = y0 + hy′(x0) + O(h2), y

[1]
2 = θhf (y0) + O(h2), (18)

The stage values, found from (12), (13), (14) are each equal to y(x0) + O(h) and
the corresponding stage derivatives, F1, F2, F3, are each equal to y′(x0) + O(h).
Substitute into (15) and (16) and we find

y(x0) + hy′(x0) =
(
1
3 − 3

8 + 25
24

)
hy′(x0) + y(x0) + O(h2), (19)

θhy′(x0) =
(
1
3 + 3

8 − 5
24

)
hy′(x0) − θhy′(x0) + O(h2). (20)

It can be verified that (19) is always satisfied and that (20) is satisfied when θ = 1
4 .

We will see in Section 4, that we need more sophisticated starting values for y
[0]
1 and

y
[0]
2 than y0 and 1

4hf (y0) respectively, but we know at least that we should use

y
[0]
2 = 1

4hy′(x0) + O(h2). (21)



Numer Algor (2015) 70:607–624 615

3 Experimental behaviour of G-symplectic methods

Because we are dealing only with methods in partitioned diagonal form, the
preconsistency vector will be p = e1

For problems possessing quadratic invariants, the G-symplectic conditions imply
that a quadratic combination of the r quantities y

[n]
1 , y[n]

2 , . . . , y[n]
r , is conserved. But

this is not the same as conserving the principal component even though experimental
evidence supports the belief that the principal component is approximately conserved.

What we might have expected is that the r quantities wander away from their exact
values with no special relationship to each other. But they seem to stay together better
than this. The aim now is to express these intuitive ideas more precisely.

Let Sh denote the starting method then the global truncation error can be written
as

Shy(xn) − y[n]

We would expect each of the r components of this error to grow like

nhp+1 = (xn − x0)h
p,

But it looks as though

δn = (qTSh ◦ (pTSh)
−1)pTy[n] − qTy[n] (22)

grows more slowly. We will write

Rh := qTSh ◦ (pTSh)
−1.

The relationship between various components in (22) is illustrated in Fig. 1.
The advantages of the slow growth of (22) will be illustrated in the case of the

method 4123A, where p = e1, q = e2 and where
[
y[n], y[n]]

G⊗Q] =
[
y

[n]
1 , y

[n]
1

]

Q
−

[
y

[n]
2 , y

[n]
2

]

Q
. (23)

Assume the starting method satisfies (21). Then for n = 0, (23) is approximately
equal to

[y(x0), y(x0)]Q − 1
16h

2[y′(x0), y′(x0)]Q (24)

Fig. 1 The development of (22) from the starting process to the completion of n steps
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and, for h small, the first term would be expected to be dominant. After n steps have
been carried out, the value of (24) will be replaced by

[y(xn), y(xn)]Q − 1
16h

2[y′(xn), y
′(xn)]Q, (25)

approximately. Even though y
[n]
1 may have drifted away from y(xn), because of the

normal growth of truncation errors, the slow growth of (22), suggests that (25) is still
valid as long as y(xn) and y′(xn) are replaced by the local values of these functions.

Why (22) grows slowly, is the question addressed in this paper.

4 Analysis of methods

4.1 Order conditions and the underlying one-step method

The conditions for order p are that, given a suitable starting method Sh,

Mh ◦ Sh = Sh ◦ Eh + O(hp+1), (26)

where Mh is the action of the general linear method and Eh is the action of the
exact solution. These relations can be represented in Fig. 2. To convert this abstract
diagram into a practical scheme for analysing order properties we make use of the
algebraic theory introduced in [1] and reformulated under the name of B-series in
[7]. There are alternative normalisations in the literature but in this paper we will use
the conventions established in [2] and [3].

A B-series is a Taylor expansion of the form

B(a, y0) = a(∅)y0 +
∑

t∈T

h|t |a(t)

σ (t)
F (t)(y0), (27)

where T is the set of all rooted trees and ∅ is the empty tree.
The notation is explained in [2] and [3] and examples for trees up to order 4, are

shown in Fig. 3. In this table f, f′, f′′ . . . denote f (y0), f ′(y0), f ′′(y0), . . . . The
function |t | is “the order of t”, σ(t) is the symmetry of t and F(t)y0 is the elementary

Fig. 2 Conditions for order p
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Fig. 3 Examples of tree functions up to order 4

differential evaluated at y0. Sample values of E(t) and D(t) are also shown in Fig. 3.
The significance of these are given by the formulae

B(E, y(x0)) = y(x0 + h),

B(D, y0) = hf (y0)

Using the composition rule for B-series, the order conditions can be found from

y[0] = B(ξ, y0),

η = A(ηD) + Uξ,

Eξ = B(ηD) + V ξ, (28)

where (28) must hold for all trees such that |t | ≤ p.
The underlying one-step method, introduced by Stoffer [13], following the work

of Kirchgraber [8], is an idealised method Êh which enables (26) to be replaced by

Mh ◦ Ŝh = Ŝh ◦ Êh, (29)

where Sh is replaced by an idealised starting method Ŝh. The modified order diagram
is given in Fig. 4.

Fig. 4 Underlying one-step method
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The B-series equivalent of this diagram becomes

y[0] = B(̂ξ, y0),

η = A(ηD) + Uξ̂, (30)

Ê̂ξ = B(ηD) + V ξ̂, (31)

where (31) now holds for all rooted trees. Formal series can be found recursively for
Ê and for the modified ξ̂ .

4.2 Cohesiveness and deviation

Let R̂h = (qTŜh) ◦ (pTŜh)
−1. Define the “deviation operator” Δh by the formula

Δh = qT − R̂hp
T,

so that the deviation in step number n is given by

δn = Δhy
[n].

Theorem 3 If δn−1 = 0, then δn = 0.

Proof Let y0, y1, . . . denote the sequence of approximations generated by the
underlying one step method so that Ŝhyn = y[n].

Hence,

(qTŜh) ◦ (pTŜh)
−1pTy[n] = (qTŜSh) ◦ (pTŜh)

−1pTŜhyn = qTŜhyn,

so that δn = 0.

In practice, δ0 will depend on the starting method Sh, used to determine y[0]. For
acceptable accuracy, Sh should be chosen to be an order p approximation to Ŝh but,
we can construct starting methods satisfying the following definition for any q ≥ p.

Definition 2 A starting method Sh has cohesiveness order q if

Rh = R̂h + O(hq+1) (32)

or equivalently if
ξ(t) = ξ̂ (t), |t | ≤ q.

for an arbitrary high integer q. We will show how to do this in Section 4.3.

This will be followed by Section 4.4, where we show that the growth of deviation
takes place at a moderate rate.

4.3 Construction of starters with high cohesiveness order

Write the composition rule for two B-series, B(α, y0) = y0 + O(h) and B(β, y0) =
β(∅)y0 + O(h) in the form

(αβ)(t) = β(∅)α(t) + β(t) +
∑

u<t

C(t, u, α)β(u),
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where u < t means that u is a proper sub-tree of t and shares the same root.
We now consider the mapping R̂h = (qTŜ) ◦ (pTŜ)−1 with B-series defined by
ζ̂ = (pT̂ξ)−1(qT̂ξ).

Theorem 4 ζ̂ is defined by the equations

η(∅) = 1, (33)

η(t) = A(ηD)(t) + (Uq)̂ζ (t), |t | ≥ 1, (34)

ζ̂ (t) = (I − qTV q)−1(qTB(ηD)(t) −
∑

u<t

C
(
t, u, bT(ηD)

)̂
ζ (u)

)
, (35)

Proof In (30), (31), substitute (pT̂ξ)η in place of η and break (31) into p and q
components. The results are

(pT̂ξ)η = A(pT̂ξ)ηD + Uξ̂ = A(pT̂ξ)ηD + 1pT̂ξ + UqpT̂ξζ, (36)

ÊpT̂ξ = pTB(pT̂ξ)ηD + pTV ξ̂ = pTB(pT̂ξ)ηD + pT̂ξ . (37)

ÊqT̂ξ = qTB(pT̂ξ)ηD + qTV ξ̂ = qTB(pT̂ξ)ηD + (qTV q)̂ξζ. (38)

Multiply each of (36), (37), (38) by (pT̂ξ)−1 and write Ẽ = (pT̂ξ)−1Ẽ(pT̂ξ). These
give the results

η = A(ηD) + 1 + Uqζ, (39)

Ẽ = pTB(ηD) + 1, (40)

Ẽζ = qTB(ηD) + qTV qζ. (41)

The (39) is equivalent to (33) and (34). Substitute Ẽ given by (40) into (41) and the
result is

(pTB(ηD) + 1)ζ = qTB(ηD) + qTV qζ.

Use the product rule on the left-hand side and (35) follows.

In a practical starting methodRh is an approximation to R̃h and in the correspond-
ing B-series, ζ is an approximation to ζ̂ . Suppose the order of this approximation
is q. The difficulty of constructing a suitable multi-output Runge–Kutta method Rh

increases sharply as q increases and we will discuss an algorithm for enhancing this
order iteratively. This iterative scheme is reminiscent of the algorithm presented in
[9].

Theorem 5 If Rh has cohesiveness order q, then the following internal starting
method has cohesiveness order q + 1:

y0 → Rhy0 + (I − qTV q)−1(qT − Rhp
T)Mh[y0,Rhy0]. (42)
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Proof Write (qT − Rhp
T)Mh[y0,Rhy0], to within O(hq+3), as the sum of three

terms as follows:

(qT − Rhp
T)Mh[y0,Rhy0] =

(qT − R̂hp
T)Mh[y0, R̂hy0] (43)

+qT(Mh[y0,Rhy0] − Mh[y0, R̂hy0]) (44)

+(R̂hp
T − Rhp

T)Mh[y0, R̂hy0] (45)

The first term (43) is zero; whereas (44) equals qTV q(Rhy0 − R̂hy0)+O(hq+3) and
(45) equals R̂hy0 − Rhy0) + O(hq+3). Combining the terms to within O(hq+3) we
evaluate the right-hand side of (42):

Rhy0+(I −qTV q)−1(qT−Rhp
T)Mh[y0,Rhy0] = Rhy0+(R̂hy0−Rhy0) = R̂hy0.

4.4 Slow growth of Δhy
[n]

Our aim now will be to understand how a small perturbation in Δhy
[0] will affect

later values.

Theorem 6 Let (A, U, B, V ) be a G-symplectic method in partitioned diagonal form
such that the eigenvalues of V are distinct and such that the diagonal elements of
qTBUq are zero. Let

Mk = (
qTV q ⊗ I + h(qTB ⊗ I )diag(I ⊗ J

[k]
1 )(Uq ⊗ I )

)

= qTV q ⊗ I + h(qTBUq ⊗ J
[k]
1 ),

then

‖MnMn−1 · · · M2M1‖ = 1 + O(h + nh2).

Proof For convenience we will write δ = Δhy
[k−1] and we will calculate the Fréchet

derivative of Δhy
[k] with respect to δ.

First,
Y → Y + (Uq ⊗ I )δ + O(‖δ‖2),

and second

hF → hF + hdiag(J [k]
1 , J k

2 , . . . , J [k]
s )(Uq ⊗ I )δ + O(‖δ‖2).

This leads to

Δhy
[n] → (

qTV q ⊗ I + h(qTB ⊗ I )diag(J [k]
1 , J k

2 , . . . , J [k]
s )(Uq ⊗ I )

)
δ + O(‖δ‖2),

so that the Fréchet derivative of δn with respect to δn−1 is

M̃k := qTV q ⊗ I + h(qTB ⊗ I )diag(J [k]
1 , J

[k]
2 , . . . , J [k]

s )(Uq ⊗ I ).

It follows from (6) that M̃k = Mk + O(h2).
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Define the (r − 1) × (r − 1) matrix K by the formula

eT

iKej =

⎧
⎪⎨

⎪⎩

1

zj+1 − zi+1
eT

i+1BUej+1, i �= j,

0, i = j,

so that

qTBUq = KqTV q − qTV qK

and

Mk = qTV q ⊗ I + h(KqTV q − qTV qK) ⊗ J
[k]
1 .

Define the matrices

Nk = (I ⊗ I + hK ⊗ J
[k]
1 )−1Mk(I ⊗ I + hK ⊗ J

[k]
1 ), k = 1, 2, . . . , n,

Pk = (I ⊗ I + hK ⊗ J
[k]
1 )−1(I ⊗ I + hK ⊗ J

[k−1]
1 ), k = 2, 3, . . . , n.

Hence, we can write

MnMn−1 · · · M2M1

= (I ⊗ I + hK ⊗ J
[n]
1 )NnPnNn−1Pn−1 · · · P2N1(I ⊗ I + hK ⊗ J

[1]
1 )−1.

Calculate the norms of the factors

‖I ⊗ I + hK ⊗ J
[n]
1 ‖ = 1 + O(h),

‖Nk‖ = ‖V ⊗ I + O(h2)‖
= 1 + O(h2),

‖Pk‖ = ‖I ⊗ I + hK ⊗
(
J

[k]
1 − J

[k−1]
1

)
‖ + O(h2)

= 1 + O(h2),

‖(I ⊗ I + hK ⊗ J
[1]
1 ‖)−1 = 1 + O(h).

Hence, we have

‖MnMn−1 · · · M2M1‖ = 1 + O(h + nh2).

This slow rate of growth is a partial explanation of the excellent behaviour of G-
symplectic methods which have zero parasitism growth factors. It is proposed to
combine this result with the use of an internal starting method with order q ≥ p so
that the cohesiveness after n steps is preserved to within (1+ O(h + nh2))O(hq+1).
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4.5 Analysis of method 4123A

We will apply the results in this section to 4123A given by (11). We will number
trees up to order 5 as follows.

For a B-series coefficient α we will write αi = α(ti ). It was shown in [5] that the
method (11) has order 4 relative to the starting value given by

[
pTξ0 pTξ1 pTξ2 pTξ3 pTξ4

] = [
1 0 − 1

32 − 7
4320

149
8640

]
, (46)

[
qTξ0 qTξ1 qTξ2 qTξ3 qTξ4 qTξ5 qTξ6 qTξ7 qTξ8

]

= [
0 1

4 − 1
16 − 49

960 − 13
384

2543
57600

193
7680

619
34560

163
69120

]
.

Using the algorithm described in Theorem 4, ζ can be evaluated to arbitrary
accuracy. Up to order 5 the result is

[
ζ0 ζ1 ζ2 · · · ζ17

]

= [
0 1

4 − 1
16 − 49

960 − 5
192

2543
57600

89
3840

211
11520 − 1

256
212879
3456000

6937
230400

1037
46080

35
3072

287
15360

13003
691200

389
46080

277
46080

11
3072

]
.

The starting method can be broken into two operations; first the computation of pTy[0]
using a Runge–Kutta method characterised by (46) and secondly the computation of
qTy[0] by applying a method approximating ζ , applied to pTy[0].

A possible tableau for the computation of pTy[0] is

(47)

and this will be adopted in the simulations carried out in Section 5.
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For the second component of the starting method, and for calculating the deviation
function, we will make use of some of the following approximations to R̂h:

R4
h A fourth order approximation to ζ , based on a four stage Runge–Kutta tableau:

where the zero in the last row signifies that the approximation is y0 → h
∑

j biFi

rather than y0 → y0 + h
∑

j biFi as in a standard Runge–Kutta method.

R5
h A refinement to order 5 based on carrying out an iteration of (42) in Theorem 5
to R4

h.
R6

h A refinement to order 6 based on carrying out an iteration of (42) in Theorem 5
to R5

h.
R7

h A refinement to order 7 based on carrying out an iteration of (42) in Theorem 5
to R6

h.

5 Numerical simulations

Using method 4123A, a numerical solution was carried out for the Hénon–Heiles
problem, defined from the Hamiltonian

1
2

(
p2
1 + p2

2 + q2
1 + q2

2

)
+ q2

1q2 − q3
2/3,

with initial values q1 = q2 = p2 = 0, p1 = √
0.3185. Figure 5 shows the dete-

rioration of cohesiveness as 106 steps are taken with h = 0.01. Results are given
for three cases: q = 4, 5, 6. The value of pTy[0] was calculated as described in

Fig. 5 Maximum deviation after n steps with h = 0.01 using starting methods of order q = 4, 5, 6
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Section 4.5 using the tableau (47). Furthermore the second input was found from
qTy[0] = Rq

hp
Ty[0]. To calculate the deviation from cohesiveness the formula

Δhy
[n] = qTy[n] − R̂hp

Ty[n]

would have to be evaluated. However, this is impossible because there is no algo-
rithm know for R̂h and in the calculations this is replaced by Rq+1

h . In additional

experiments not reported here, the use of Rq+2
h and even Rq+3

h were also used but
this made almost no difference. In the figure the highest observed value of ‖Δhy

[k]‖
for k = 1, 2, . . . , n was plotted, with dots indicating where a jump has occurred.

For q = 4 and q = 5, the absence of significant growth in the deviation from
cohesiveness is supportive of the theory in Section 4.4. No detailed explanation is
offered for the relatively disappointing result for q = 6 but it is likely that round-off
errors have played a part in the growth of deviation after such a large number of steps.

6 Conclusions

Cohesiveness was defined to describe the holding together of the multiple values
generated as output from a step. Under appropriate assumptions the deviation from
cohesiveness was shown to grow very slowly. This was confirmed by experiments.
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