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Abstract Multiple orthogonal polynomials satisfy a number of recurrence relations,
in particular there is a (r + 2)-term recurrence relation connecting the type II mul-
tiple orthogonal polynomials near the diagonal (the so-called step-line recurrence
relation) and there is a system of r recurrence relations connecting the nearest neigh-
bors (the so-called nearest neighbor recurrence relations). In this paper we deal with
two problems. First we show how one can obtain the nearest neighbor recurrence
coefficients (and in particular the recurrence coefficients of the orthogonal polyno-
mials for each of the defining measures) from the step-line recurrence coefficients.
Secondly we show how one can compute the step-line recurrence coefficients from
the recurrence coefficients of the orthogonal polynomials of each of the measures
defining the multiple orthogonality.
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1 Introduction

Multiple orthogonal polynomials are polynomials of one variable that satisfy orthog-
onality conditions with respect to r > 1 positive measures. In this paper we will only
consider positive measures on the real line. Let �n = (n1, . . . , nr ) ∈ N

r be a multi-
index and |�n| = n1 + · · · + nr its length and let μ1, . . . , μr be r positive measures
on the real line. There are two types of multiple orthogonal polynomials [10, Chapter
23], [1, 2, 20]. Type I multiple orthogonal polynomials are such that (A�n,1, . . . , A�n,r )

is a vector of r polynomials, with degA�n,j ≤ nj − 1, satisfying

∫
xk

r∑
j=1

A�n,j (x) dμj (x) = 0, 0 ≤ k ≤ |�n| − 2, (1.1)

with normalization ∫
x|�n|−1

r∑
j=1

A�n,j (x) dμj (x) = 1.

Type II multiple orthogonal polynomials are monic polynomials P�n of degree |�n| for
which ∫

xkP�n(x) dμj (x) = 0, 0 ≤ k ≤ nj − 1 (1.2)

holds for 1 ≤ j ≤ r . The existence (and unicity) is not guaranteed, but
if the type I and type II multiple polynomials exist with the above normaliza-
tion, then they are unique and then the multi-index �n is said to be a normal
index. The measures (μ1, . . . , μr) are a normal system if all the multi-indices are
normal.

Multiple orthogonal polynomials satisfy a number of recurrence relations. Let
prn(x) = P(n,n,...,n)(x), prn+1(x) = P(n+1,n,n,...,n)(x), and in general prn+j (x) =
P(n+1,...,n+1,n...,n)(x) for 0 ≤ j ≤ r , where (n + 1, . . . , n + 1, n . . . , n) has j times
the component n + 1 and r − j times the component n, i.e.,

(n + 1, . . . , n + 1, n . . . , n) = (n, n, . . . , n) +
j∑

i=1

�ei,

where �ei are the standard unit vectors in N
r . Then the step-line polynomials pm(x)

satisfy the following (r + 2)-term recurrence relation

xpm(x) = pm+1(x) +
r∑

j=0

βm,jpm−j (x), (1.3)

where βm,j are real recurrence coefficients and p0 = 1 and p−j = 0 for 1 ≤ j ≤ r .
This recurrence relation corresponds to the well known three term recurrence relation
for orthogonal polynomials when r = 1. These step-line polynomials (the type II
multiple orthogonal polynomials near the diagonal) are also known as d-orthogonal
polynomials (with d = r) and the orthogonality in (1.2) becomes
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∫
pm(x)xk dμj (x) = 0, 0 ≤ k ≤ �(m − j)/r�.

See, e.g., [4, 8, 12]. This recurrence relation only connects multiple orthogonal
polynomials near the diagonal (n, n, . . . , n). All multiple orthogonal polynomials (of
a normal system) are related by a system of r recurrence relations relating P�n with
its nearest neighbors P�n+�ek

and P�n−�ej
. The system of nearest neighbor recurrence

relations is given by (see [18])

xP�n(x) = P�n+�ek
(x) + b�n,kP�n(x) +

r∑
j=1

a�n,jP�n−�ej
(x), 1 ≤ k ≤ r. (1.4)

In this paper we deal with two problems. For the first problem we assume that the
recurrence coefficients βm,j , m ∈ N, 0 ≤ j ≤ r , in the step-line recurrence relation
(1.3) are given, and the goal is to find all the nearest neighbor recurrence coefficients
a�n,j , b�n,j with �n ∈ N

r and 1 ≤ j ≤ r . In particular this would give all the recur-
rence coefficients of the (monic) orthogonal polynomials for each of the measures
μj : ∫

Pn(x; μj )Pm(x; μj ) dμj (x) = γ −2
n (μj )δm,n,

which satisfy the three term recurrence relation

xPn(x; μj ) = Pn+1(x; μj ) + bn(μj )Pn(x; μj ) + a2n(μj )Pn−1(x; μj ).

Indeed, one has
bn(μj ) = bn�ej ,j , a2n(μj ) = an�ej ,j .

In Section 2 we will show, for r = 2, how one first can obtain the recurrence relation
for the r shifted step-line polynomials, i.e., the multiple orthogonal polynomials with
a multi-index k�ej + �n, with k ∈ N and 1 ≤ j ≤ r fixed and �n a multi-index on
the step-line. Then, in a second step, we show how to obtain the nearest neighbor
recurrence coefficients from the shifted step-line recurrence coefficients. We explain
the procedure for r = 2 so that the reasoning is easy to follow and not obscured by
the notation.

The second problem is the inverse of the first problem: we assume that the recur-
rence coefficients an+1(μj ), bn(μj ) of the orthogonal polynomials of each of the
measures μj , 1 ≤ j ≤ r , are given, and we show how one can compute all the near-
est neighbor recurrence coefficients and the step-line recurrence coefficients from
this input. In Section 3 we will explain the case r = 2 in detail. We will also show
how to find the nearest neighbor recurrence coefficients from the marginal recurrence
coefficients for general r .

In order to find the recurrence coefficients βm,j ,m ∈ N, 0 ≤ j ≤ r in the step-line
recurrence relation, one may use either the Jacobi-Perron algorithm or the vector QD-
algorithm. The Jacobi-Perron algorithm generates a vector continued fraction and
was introduced by Jacobi in 1868 [11] and studied in detail by Perron in 1907 [14].
A modern version of the Jacobi-Perron algorithm and its relevance for simultaneous
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rational approximation of functions can be found in [13]. Vector continued fractions
and the Jacobi-Perron algorithm are quite popular in number theory to produce simul-
taneous Diophantine approximations to several real numbers, see the monographs
of Schweiger [16, 17]. Another way to obtain the step-line recurrence coefficients
from the moments of the measures μ1, . . . , μr is to use a generalization of the QD-
algorithm proposed by Van Iseghem [22]. The classical QD-algorithm of Rutishauser
[15] can be used to find the recurrence coefficients an+1(μj ), bn(μj ) of the orthog-
onal polynomials of each of the measures μj , but one can also use the (modified)
Chebyshev algorithm as described in [9, §2.1.7]. In this paper we assume that the
step-line recurrence coefficients are given (for the first problem) or we assume that
the recurrence coefficients an+1(μj ), bn(μj ) are given for every measure μj with
1 ≤ j ≤ r (for the second problem).

2 The recurrence coefficients along the step-line

In this section we only consider multiple orthogonal polynomials with r = 2. Hence
the (monic) type II multiple orthogonal polynomials Pn,m depend on a multi-index
(n, m) ∈ N

2. Let p2n(x) = Pn,n(x) and p2n+1(x) = Pn+1,n(x), then the recurrence
relation along the step-line is

xpn(x) = pn+1(x) + βnpn(x) + γnpn−1(x) + δnpn−2(x). (2.1)

It is important to note that the step-line recurrence coefficients (βn)n≥0, (γn)n≥1 and
(δn)n≥2 do not determine the measures μ1 and μ2 in a unique way, even if we nor-
malize the measures to be probability measures. The first measure is determined
uniquely as a probability measure, but for the second measure one can use any convex
combination λμ1 + (1 − λ)μ2 because

λ

∫
pn(x)xk dμ1(x) + (1 − λ)

∫
pn(x)xkdμ2(x) = 0, k ≤ �n

2
� − 1,

since the first of these integrals vanishes for k ≤ �n−1
2 � and �n

2 � − 1 ≤ �n−1
2 �, see

[6, Remark 2.2]. This degree of freedom will be reflected when we want to compute
the recurrence coefficients of the orthogonal polynomials pn(x; μ1) and pn(x; μ2).

The nearest neighbor recurrence relations are

xPn,m(x) = Pn+1,m(x) + cn,mPn,m(x) + an,mPn−1,m(x) + bn,mPn,m−1(x),(2.2)
xPn,m(x) = Pn,m+1(x) + dn,mPn,m(x) + an,mPn−1,m(x) + bn,mPn,m−1(x).(2.3)

As a consequence one has

Pn+1,m(x) − Pn,m+1(x) = κn,mPn,m(x), (2.4)

where κn,m = dn,m − cn,m.
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2.1 From step-line to shifted step-line

We introduce for j ≥ 0 the polynomials

p
(j,0)
2n+j (x) = Pn+j,n(x), p

(j,0)
2n+j+1(x) = Pn+j+1,n(x), (2.5)

and for k ≥ 0

p
(0,k)
2n+k(x) = Pn,n+k(x), p

(0,k)
2n+k+1(x) = Pn+1,n+k(x). (2.6)

The polynomials p
(j,0)
n are the multiple orthogonal polynomials on a shifted step-line

with a shift j in the direction of �e1 = (1, 0). The polynomials p
(0,k)
n are those on the

shifted step-line with a shift k in the direction of �e2 = (0, 1) (Fig. 1). These shifted
step-line polynomials again satisfy a four term recurrence relation, which we denote
by

xp
(j,0)
n (x) = p

(j,0)
n+1 (x) + β

(j,0)
n p

(j,0)
n (x) + γ

(j,0)
n p

(j,0)
n−1 (x) + δ

(j,0)
n p

(j,0)
n−2 (x), (2.7)

with initial conditions γ
(j,0)
j = δ

(j,0)
j = δ

(j,0)
j+1 = 0 and in a similar way

xp(0,k)
n (x) = p

(0,k)
n+1 (x) + β(0,k)

n p(0,k)
n (x) + γ (0,k)

n p
(0,k)
n−1 (x) + δ(0,k)

n p
(0,k)
n−2 (x), (2.8)

with initial conditions γ
(0,k+1)
k = δ

(0,k+1)
k = δ

(0,k+1)
k+1 = 0. With this notation we

have β
(0,0)
n = βn, γ

(0,0)
n = γn, and δ

(0,0)
n = δn. We introduce two more sequences

(c
(j,0)
n )n≥0 and (c

(0,k)
n )n≥0 by

Pn+j+1,n(x) − Pn+j,n+1(x) = c
(j,0)
n Pn+j,n(x), (2.9)

Fig. 1 Step-line and shifted step-lines
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and

Pn+1,n+k(x) − Pn,n+k+1(x) = c(0,k)
n Pn,n+k(x), (2.10)

so that (2.4) gives

c
(j,0)
n = κn+j,n = dn+j,n − cn+j,n, c(0,k)

n = κn,n+k = dn,n+k − cn,n+k. (2.11)

Our first result shows how one can obtain the recurrence coefficients
(β

(j,0)
n , γ

(j,0)
n , δ

(j,0)
n ) from the recurrence coefficients along the step-line.

Theorem 2.1 One has for all j ≥ 1

β
(j,0)
2n+j = β

(j−1,0)
2n+j − c

(j,0)
n , n ≥ 0,

γ
(j,0)
2n+j = γ

(j−1,0)
2n+j , n ≥ 1, (2.12)

δ
(j,0)
2n+j = δ

(j−1,0)
2n+j − c

(j,0)
n−1 γ

(j−1,0)
2n+j , n ≥ 1.

and

β
(j,0)
2n+j+1 = β

(j−1,0)
2n+j+1 + c

(j,0)
n , n ≥ 0,

γ
(j,0)
2n+j+1 = γ

(j−1,0)
2n+j+1 + c

(j,0)
n (β

(j−1,0)
2n+j − β

(j,0)
2n+j+1), n ≥ 0, (2.13)

δ
(j,0)
2n+j+1 = δ

(j−1,0)
2n+j+1 + c

(j,0)
n γ

(j−1,0)
2n+j , n ≥ 0,

where (c
(j,0)
n )n≥0 is the solution of the Riccati type difference equation

c
(j,0)
n = c

(j,0)
n−1 δ

(j−1,0)
2n+j+1

δ
(j−1,0)
2n+j − c

(j,0)
n−1 γ

(j−1,0)
2n+j

, (2.14)

with initial condition

c
(j,0)
0 = − δ

(j−1,0)
j+1

γ
(j−1,0)
j

. (2.15)

Proof Take the recurrence relation (2.7) with n replaced by 2n + j

xp
(j,0)
2n+j (x) = p

(j,0)
2n+j+1(x)+β

(j,0)
2n+jp

(j,0)
2n+j (x)+γ

(j,0)
2n+jp

(j,0)
2n+j−1(x)+δ

(j,0)
2n+jp

(j,0)
2n+j−2(x),

use (2.5) to find

xPn+j,n(x) = Pn+j+1,n(x) + β
(j,0)
2n+jPn+j,n(x) + γ

(j,0)
2n+jPn+j,n−1(x) + δ

(j,0)
2n+jPn+j−1,n−1(x).

(2.16)
Now use (2.9) to replace Pn+j+1,n(x) and (by changing n to n − 1) Pn+j,n−1(x), to
find

xPn+j,n(x) = Pn+j,n+1(x) +
(
β

(j,0)
2n+j + c

(j,0)
n

)
Pn+j,n(x) + γ

(j,0)
2n+jPn+j−1,n(x)

+
(
δ
(j,0)
2n+j + c

(j,0)
n−1 γ

(j,0)
2n+j

)
Pn+j−1,n−1(x). (2.17)
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On the other hand, we take the recurrence relation (2.7) for j − 1

xp
(j−1,0)
n (x) = p

(j−1,0)
n+1 (x)+β

(j−1,0)
n p

(j−1,0)
n (x)+γ

(j−1,0)
n p

(j−1,0)
n−1 (x)+δ

(j−1,0)
n p

(j−1,0)
n−2 (x),

replace n by 2n + j and use (2.5) to find

xPn+j,n(x) = Pn+j,n+1(x) + β
(j−1,0)
2n+j Pn+j,n(x) + γ

(j−1,0)
2n+j Pn+j−1,n(x)

+ δ
(j−1,0)
2n+j Pn+j−1,n−1(x). (2.18)

Comparing (2.17) and (2.18) gives

(
β

(j,0)
2n+j + c

(j,0)
n

)
Pn+j,n(x) + γ

(j,0)
2n+jPn+j−1,n(x) +

(
δ
(j,0)
2n+j + c

(j,0)
n−1 γ

(j,0)
2n+j

)
Pn+j−1,n−1(x)

= β
(j−1,0)
2n+j Pn+j,n(x) + γ

(j−1,0)
2n+j Pn+j−1,n(x) + δ

(j−1,0)
2n+j Pn+j−1,n−1(x).

The polynomials Pn+j,n, Pn+j−1,n, Pn+j−1,n−1 are linearly independent (since
they have degrees 2n + j, 2n + j − 1 and 2n + j − 2), hence one finds

β
(j,0)
2n+j + c

(j,0)
n = β

(j−1,0)
2n+j ,

γ
(j,0)
2n+j = γ

(j−1,0)
2n+j ,

δ
(j,0)
2n+j + c

(j,0)
n−1 γ

(j,0)
2n+j = δ

(j−1,0)
2n+j ,

which gives the required relations (2.12).
In a similar way we start with the recurrence relation (2.7) with n replaced by

2n + j + 1

xp
(j,0)
2n+j+1(x) = p

(j,0)
2n+j+2(x)+β

(j,0)
2n+j+1p

(j,0)
2n+j+1(x)+γ

(j,0)
2n+j+1p

(j,0)
2n+j (x)+δ

(j,0)
2n+j+1p

(j,0)
2n+j−1(x),

and use (2.5) to find

xPn+j+1,n(x) = Pn+j+1,n+1(x)+β
(j,0)
2n+j+1Pn+j+1,n(x)+γ

(j,0)
2n+j+1Pn+j,n(x)+δ

(j,0)
2n+j+1Pn+j,n−1(x).

Use (2.9) to replace Pn+j+1,n(x) and Pn+j,n−1(x), to find

xPn+j,n+1(x) + c
(j,0)
n xPn+j,n(x) = Pn+j+1,n+1(x) + β

(j,0)
2n+j+1Pn+j,n+1(x)

+
(
γ

(j,0)
2n+j+1 + c

(j,0)
n β

(j,0)
2n+j+1

)
Pn+j,n(x)

+ δ
(j,0)
2n+j+1Pn+j−1,n(x) + c

(j,0)
n−1 δ

(j,0)
2n+j+1Pn+j−1,n−1(x).
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Use (2.18) to replace xPn+j,n(x) to find

xPn+j,n+1(x) = Pn+j+1,n+1(x) +
(
β

(j,0)
2n+j+1 − c

(j,0)
n

)
Pn+j,n+1(x)

+
(
γ

(j,0)
2n+j+1 + c

(j,0)
n β

(j,0)
2n+j+1 − c

(j,0)
n β

(j−1,0)
2n+j

)
Pn+j,n(x)

+
(
δ
(j,0)
2n+j+1 − c

(j,0)
n γ

(j−1,0)
2n+j

)
Pn+j−1,n(x)

+
(
c
(j,0)
n−1 δ

(j,0)
2n+j+1 − c

(j,0)
n δ

(j−1,0)
2n+j

)
Pn+j−1,n−1(x). (2.19)

On the other hand, we take the recurrence relation (2.7) for j − 1 with n replaced by
2n + j + 1 and use (2.5) to find

xPn+j,n+1(x) = Pn+j+1,n+1(x) + β
(j−1,0)
2n+j+1Pn+j,n+1(x)

+ γ
(j−1,0)
2n+j+1Pn+j,n(x) + δ

(j−1,0)
2n+j+1Pn+j−1,n(x). (2.20)

Comparing (2.19) and (2.20) then gives

(
β

(j,0)
2n+j+1 − c

(j,0)
n

)
Pn+j,n+1(x) +

(
γ

(j,0)
2n+j+1 + c

(j,0)
n β

(j,0)
2n+j+1 − c

(j,0)
n β

(j−1,0)
2n+j

)
Pn+j,n(x)

+
(
δ
(j,0)
2n+j+1 − c

(j,0)
n γ

(j−1,0)
2n+j

)
Pn+j−1,n(x) +

(
c
(j,0)
n−1 δ

(j,0)
2n+j+1 − c

(j,0)
n δ

(j−1,0)
2n+j

)
Pn+j−1,n−1(x)

= β
(j−1,0)
2n+j+1Pn+j,n+1(x) + γ

(j−1,0)
2n+j+1Pn+j,n(x) + δ

(j−1,0)
2n+j+1Pn+j−1,n(x).

The four polynomials Pn+j,n+1, Pn+j,n, Pn+j−1,n, Pn+j−1,n−1 are linearly indepen-
dent, hence one finds

β
(j,0)
2n+j+1 − c

(j,0)
n = β

(j−1,0)
2n+j+1,

γ
(j,0)
2n+j+1 + c

(j,0)
n β

(j,0)
2n+j+1 − c

(j,0)
n β

(j−1,0)
2n+j = γ

(j−1,0)
2n+j+1,

δ
(j,0)
2n+j+1 − c

(j,0)
n γ

(j−1,0)
2n+j = δ

(j−1,0)
2n+j+1,

c
(j,0)
n−1 δ

(j,0)
2n+j+1 − c

(j,0)
n δ

(j−1,0)
2n+j = 0. (2.21)

The first three relations give (2.13) and the last equation gives (2.14) if we replace
δ
(j,0)
2n+j+1 by the third equation in (2.13). For n = 0 the relation (2.19) becomes

xPj,1(x) = Pj+1,1(x) +
(
β

(j,0)
j+1 − c

(j,0)
0

)
Pj,1(x)

+
(
γ

(j,0)
j+1 + c

(j,0)
0 β

(j,0)
j+1 − c

(j,0)
0 β

(j−1,0)
j

)
Pj,0(x)

− c
(j,0)
0 γ

(j−1,0)
j Pj−1,0(x),

and if we compare the coefficient of Pj−1,0(x) with the corresponding coefficient in
(2.20) when n = 0, then
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−c
(j,0)
0 γ

(j−1,0)
j = δ

(j−1,0)
j+1 ,

which gives (2.15).

The Riccati equation (2.14) can be solved explicitly if all the step-line coefficients
at shift j − 1 are known. The substitution c

(j,0)
n = 1/d(j,0)

n gives

d
(j,0)
n = d

(j,0)
n−1 δ

(j−1,0)
2n+j − γ

(j−1,0)
2n+j

δ
(j−1,0)
2n+j+1

,

which is a first order linear recurrence relation. Its solution is

d
(j,0)
n =

⎛
⎝ n∑

i=1

γ
(j−1,0)
2i+j

δ
(j−1,0)
2i+j+1

i∏
k=1

δ
(j−1,0)
2k+j+1

δ
(j−1,0)
2k+j

+ d
(j,0)
0

⎞
⎠ n∏

k=1

δ
(j−1,0)
2k+j

δ
(j−1,0)
2k+j+1

. (2.22)

However, this is only useful if one has explicit expressions for the step-line
coefficients.

An algorithm for computing the recurrence coefficients for the shifted step-line
is as follows. Assume that all the recurrence coefficients β

(j−1,0)
n , γ

(j−1,0)
n , δ

(j−1,0)
n

are known, then one first computes the auxiliary sequence (c
(j,0)
n )n≥0 recursively

by using (2.14). Once this is done, one uses the relations (2.12) and (2.13) to
get the recurrence coefficients for the shifted step-line with shift j . The fol-
lowing Maple procedure computes (β

(j,0)
n )j≤n≤2N−j+1, (γ

(j,0)
n )j+1≤n≤2N−j+1 and

(δ
(j,0)
n )j+2≤n≤2N−j+1 for 1 ≤ j ≤ J .
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Remark 1 Observe that (2.14) and the third equation in (2.12) give

c
(j,0)
n = c

(j,0)
n−1

δ
(j−1,0)
2n+j+1

δ
(j,0)
2n+j

,

and (2.21) gives

c
(j,0)
n = c

(j,0)
n−1

δ
(j,0)
2n+j+1

δ
(j−1,0)
2n+j

.

Comparing both expressions gives

δ
(j,0)
2n+j+1 = δ

(j−1,0)
2n+j+1δ

(j−1,0)
2n+j

δ
(j,0)
2n+j

.

Hence one may therefore replace lines 16–24 in the Maple procedure by

The formulas in Theorem 2.1 and the computations in the algorithm hold provided
δ
(j,0)
2n+j �= 0. If δ

(j,0)
2n+j = 0 then we cannot compute c

(j,0)
n and this quantity is needed in

most of the other formulas for the j -shifted step-line. The condition δ
(j,0)
2n+j �= 0 for all

j ≥ 1 and n ≥ 1 is a sufficient condition that implies that all the required recurrence
coefficients can be computed and hence implies that the multi-indices (n + k, n) are
normal.

There is a similar result for the recurrence coefficients (β
(0,k)
n , γ

(0,k)
n , δ

(0,k)
n ).

Theorem 2.2 One has for all k ≥ 0

β
(0,k+1)
2n+k = β

(0,k)
2n+k + c(0,k)

n , n ≥ 0,

γ
(0,k+1)
2n+k = γ

(0,k)
2n+k, n ≥ 1,

δ
(0,k+1)
2n+k = δ

(0,k)
2n+k + c

(0,k)
n−1 γ

(0,k)
2n+k, n ≥ 1.

and

β
(0,k+1)
2n+k+1 = β

(0,k)
2n+k+1 − c(0,k)

n , n ≥ 0,

γ
(0,k+1)
2n+k+1 = γ

(0,k)
2n+k+1 − c(0,k)

n (β
(0,k)
2n+k − β

(0,k+1)
2n+k+1), n ≥ 0,

δ
(0,k+1)
2n+k+1 = δ

(0,k)
2n+k+1 − c(0,k)

n γ
(0,k)
2n+k, n ≥ 1,
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where (c
(0,k)
n )n≥0 is the solution of the Riccati type difference equation

c(0,k)
n = c

(0,k)
n−1 δ

(0,k)
2n+k+1

δ
(0,k)
2n+k + c

(0,k)
n−1 γ

(0,k)
2n+k

, (2.23)

with initial condition

c
(0,k)
0 = δ

(0,k)
k+1

γ
(0,k)
k

, k ≥ 1, (2.24)

and for k = 0 the c
(0,0)
0 is a free parameter.

Proof The proof is very similar to the proof of Theorem 2.1, but one uses the
recurrence relation (2.8) and the relations (2.6) and (2.10).

An important difference is that one also needs c
(0,0)
0 which one can find by taking

n = 0 and k = 0 in the relation for β
(0,k+1)
2n+k , giving

c
(0,0)
0 = β

(0,1)
0 − β

(0,0)
0 .

Here β
(0,0)
0 = β0 is known as the first of the step-line recurrence coefficients, but

β
(0,1)
0 can not be obtained in terms of the step-line recurrence coefficients. Recall

that the step-line recurrence coefficients do not determine the measures μ1 and
μ2 but only determine μ1 and for the second measure any convex combination of
μ1 and μ2 is possible. This degree of freedom is reflected in c

(0,0)
0 being a free

parameter.
Again, the Ricatti equation (2.23) can be solved explicitly. The substitution

c
(0,k)
n = 1/d(0,k)

n gives

d(0,k)
n = d

(0,k)
n−1 δ

(0,k)
2n+k + γ

(0,k)
2n+k

δ
(0,k)
2n+k+1

,

and this first order linear recurrence has the following expression as solution

d(0,k)
n =

(
n∑

i=1

γ
(0,k)
2i+k

δ
(0,k)
2i+k+1

i∏
l=1

δ
(0,k)
2l+k+1

δ
(0,k)
2l+k

+ d
(0,k)
0

)
n∏

l=1

δ
(0,k)
2l+k

δ
(0,k)
2l+k+1

. (2.25)

The following Maple procedure computes (β
(0,k+1)
n )k≤n≤2N−k+1,

(γ
(0,k+1)
n )k+1≤n≤2N−k+1 and (δ

(0,k+1)
n )k+2≤n≤2N−k+1 for 0 ≤ k ≤ K . It requires

as extra input the first two moments of the measure μ2, i.e., m(1, 2) = m1(μ2) and
m(0, 2) = m0(μ2).
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Remark 2 One has

c(0,k)
n = c

(0,k)
n−1

δ
(0,k)
2n+k+1

δ
(0,k+1)
2n+k

,

and in a way similar as before one has

δ
(0,k+1)
2n+k+1 = δ

(0,k)
2n+k+1δ

(0,k)
2n+k

δ
(0,k+1)
2n+k

.

Hence one can replace the lines 16–24 in the above procedure by
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A sufficient condition for normality of the multi-indices (n, n + k) is now that
δ
(0,k+1)
2n+k �= 0 for all n ≥ 1 and k ≥ 0.

2.2 From shifted step-line to nearest neighbor recurrence coefficients

Our next step is to find the nearest neighbor recurrence coefficients
an,m, bn,m, cn,m, dn,m in (2.2)–(2.3) from the recurrence coefficients on the shifted
step-lines.

Theorem 2.3 The coefficients of the nearest neighbor recurrence relations (2.2)–
(2.3) are for n ≥ 0 and j ≥ 1 given by

cn+j,n = β
(j,0)
2n+j ,

dn+j,n = cn+j,n + c
(j,0)
n ,

an+j,n = −δ
(j−1,0)
2n+j+1

c
(j,0)
n

,

bn+j,n = γ
(j,0)
2n+j − an+j,n.

and for n ≥ 1 and k ≥ 0

cn,n+k = β
(0,k)
2n+k,

dn,n+k = cn,n+k + c(0,k)
n ,

an,n+k = −δ
(0,k)
2n+k

c
(0,k)
n−1

,

bn,n+k = γ
(0,k)
2n+k − an,n+k.

The initial coefficients are a0,0 = b0,0 = 0, c0,0 = β0 and d0,0 is a free parameter.

Note that if b0(μ1) = m1(μ1)/m0(μ1) and b0(μ2) = m1(μ2)/m0(μ2) are the
first recurrence coefficients of the orthogonal polynomials for μ1 and μ2 respec-
tively, then c0,0 = b0(μ1) and d0,0 = b0(μ2). Hence the particular choice d0,0 =
m1(μ2)/m0(μ2) gives the nearest neighbor recurrence coefficients of the multiple
orthogonal polynomials for the measures μ1 and μ2. Another choice of d0,0 still
gives μ1 as the first measure, but a linear combination of μ1 and μ2 for the second
measure.

Proof We start from (2.16) and replace the polynomial Pn+j−1,n−1 by using (2.9)
to find

xPn+j,n(x) = Pn+j+1,n(x) + β
(j,0)
2n+jPn+j,n(x) + γ

(j,0)
2n+jPn+j,n−1(x)

+ δ
(j,0)
2n+j

c
(j,0)
n−1

(
Pn+j,n−1(x) − Pn+j−1,n(x)

)
.
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Now we compare this with the recurrence relation (2.2) with n replaced by n+ j and
m = n, then

cn+j,n = β
(j,0)
2n+j ,

bn+j,n = γ
(j,0)
2n+j + δ

(j,0)
2n+j

c
(j,0)
n−1

,

an+j,n = −δ
(j,0)
2n+j

c
(j,0)
n−1

.

Use the last equation in (2.21) to obtain

an+j,n = −δ
(j−1,0)
2n+j+1

c
(j,0)
n

,

so that the formula is valid for all n ≥ 0. For dn+j,n we use the relation (2.11) to find

dn+j,n = cn+j,n + c
(j,0)
n .

This gives the first part of the theorem.
For the second part of the theorem we use (2.8) with n replaced by 2n + k and by

(2.6) this gives

xPn,n+k(x) = Pn+1,n+k(x) + β
(0,k)
2n+kPn,n+k(x) + γ

(0,k)
2n+kPn,n+k−1(x)

+δ
(0,k)
2n+kPn−1,n+k−1(x). (2.26)

Replace the polynomial Pn−1,n+k−1 by using (2.10) (but with n replaced by n − 1)
to find

xPn,n+k(x) = Pn+1,n+k(x) + β
(0,k)
2n+kPn,n+k(x) + γ

(0,k)
2n+kPn,n+k−1(x)

+ δ
(0,k)
2n+k

c
(0,k)
n−1

(
Pn,n+k−1(x) − Pn−1,n+k(x)

)
.

Comparing with (2.2) with m = n + k then gives

cn,n+k = β
(0,k)
2n+k,

an,n+k = −δ
(0,k)
2n+k

c
(0,k)
n−1

,

bn,n+k = γ
(0,k)
2n+k + δ

(0,k)
2n+k

c
(0,k)
n−1

.
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For dn,n+k we use (2.11) to find

dn,n+k = cn,n+k + c(0,k)
n .

This gives the second part of the theorem.

In Maple one can compute the nearest neighbor recurrence coefficients using the
following procedure:

2.3 The recurrence coefficients of the marginal measures

Now that we know the nearest neighbor recurrence coefficients, we can find the
recurrence coefficients of the orthogonal polynomials Pn(x; μ1) for the measure
μ1 and Pn(x; μ2) for the measure μ2. The recurrence relations for these monic
orthogonal polynomials are

xPn(x; μi) = Pn+1(x; μi) + bn(μi)Pn(x; μi) + a2n(μi)Pn−1(x; μi).

Observe that Pn(x; μ1) = Pn,0(x) and Pm(x; μ2) = P0,m(x), so if we compare with
the nearest neighbor recurrence relations (2.2) and (2.3) we find

bj (μ1) = cj,0, a2j (μ1) = aj,0,

and

bk(μ2) = d0,k, a2k (μ2) = b0,k.

If we use Theorem 2.3 then this gives

bj (μ1) = β
(j,0)
j , a2j (μ1) = γ

(j−1,0)
j , (2.27)
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where we used (2.15) to simplify the expression for aj,0. The recurrence coefficients
for μ2 can be obtained more easily from (2.26) with n = 0, which gives

xP0,k(x) = P1,k(x) + β
(0,k)
k P0,k(x) + γ

(0,k)
k P0,k−1(x),

and if we replace P1,k by using (2.10) with n = 0, then

xP0,k(x) = P0,k+1(x) +
(
c
(0,k)
0 + β

(0,k)
k

)
P0,k(x) + γ

(0,k)
k P0,k−1(x),

so that
bk(μ2) = β

(0,k)
k + c

(0,k)
0 , a2k (μ2) = γ

(0,k)
k . (2.28)

Observe that these results allow us to find the recurrence coefficients of the orthog-
onal polynomials for the measures μ1 and μ2 if the recurrence coefficients of the
step-line multiple orthogonal polynomials are known. There are examples of mul-
tiple orthogonal polynomials for which the recurrence coefficients of the marginal
orthogonal polynomials are not known. Such a situation occurs for instance in the
case of multiple orthogonal polynomials associated to the modified Bessel functions
of the first and second kind. In 1990 A.P. Prudnikov posed an open problem to find
the orthogonal polynomials for the modified Bessel functions of the second kind
Kν(2

√
x) on [0, ∞) (see [19, Problem 9 on pp. 239–241]). It turned out that in this

case it is more natural to consider multiple orthogonal polynomials for a pair of mod-
ified Bessel functions of the second kind Kν(2

√
x), Kν+1(2

√
x). This was shown by

Van Assche and Yakubovich in [21] (see also [3]) and later for the modified Bessel
functions of the first kind by Coussement and Van Assche in [5] (see also [7]). Our
algorithm allows us to find the recurrence coefficients of those polynomials, even
though we are not able to find explicit expressions for them. If we start from the
step-line recurrence coefficients given in [21, Thm. 4]

βn = (n + α + 1)(3n + α + 2ν) − (α + 1)(ν − 1),

γn = n(n + α)(n + α + ν)(3n + 2α + ν),

δn = n(n − 1)(n + α)(n + α − 1)(n + α + ν)(n + α + ν − 1),

for the multiple orthogonal polynomials with

dμ1(x) = xα+ν/2Kν(2
√

x), dμ2(x) = xα+(ν+1)/2Kν+1(2
√

x),

and put α = 0 and ν = 0, then Table 1 gives the results of our algorithm for the
recurrence coefficients (an, bn) of the weight K0(2

√
x).

Note that the values for the coefficients an presented in Table 1 are the same as
the ones that were computed in [19] using the moments.

3 From marginal to nearest neighbor

In the previous section we started from the step-line recurrence coefficients and we
showed how to find the nearest neighbor recurrence coefficients and in particular the
recurrence coefficients of the orthogonal polynomials for the marginal measures μ1
andμ2. In this section we will investigate the inverse problem: suppose the recurrence
coefficients (a2n+1(μi), bn(μi))n≥0 are given for i ∈ {1, 2}. How can one find all
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Table 1 Recurrence coefficients of orthogonal polynomials for K0(2
√

x)

n an bn

0 – 1

1 1.7320508075688772935 9.6666666666666666667

2 8.5374989832437982487 28.186991869918699187

3 20.265386777687130909 56.571895845674401834

4 36.925214834648582674 94.823932737801348717

5 58.518554562959399225 142.94410230778264607

6 85.045955898223602580 200.93289913274452209

7 116.50767686120789662 268.79060407933245800

8 152.90385976282648737 346.51739199614374938

9 194.23459164836084172 434.11337913848760712

10 240.49992974325090503 531.57864673346522330

the nearest neighbor recurrence coefficients (an,m, bn,m, cn,m, dn,m) and the step-line
recurrence coefficients (βn, γn, δn)?

3.1 The nearest neighbor recurrence coefficients

The nearest neighbor recurrence coefficients satisfy a system of non-linear partial
difference equations, as was noted in [18]. We will briefly show how to find these
partial difference equations. The nearest neighbor recurrence relations (2.2) and (2.3)
can be written in a matrix form as

Yn+1,m = R1(n, m)Yn,m, Yn,m+1 = R2(n, m)Yn,m,

where

Yn,m =
⎛
⎝ Pn,m(x)

Pn−1,m(x)

Pn,m−1(x)

⎞
⎠

and R1 and R2 are the two transfer matrices

R1(n, m) =
⎛
⎝x − cn,m −an,m −bn,m

1 0 0
1 0 dn,m−1 − cn,m−1

⎞
⎠ ,

and

R2(n, m) =
⎛
⎝x − dn,m −an,m −bn,m

1 cn−1,m − dn−1,m 0
1 0 0

⎞
⎠ .

Now there are two ways of finding Yn+1,m+1 from Yn,m using these transfer matrices:
one way is to first compute Yn+1,m and then to increase m by one, which gives

Yn+1,m+1 = R2(n + 1, m)R1(n, m)Yn,m.
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Another way is to first compute Yn,m+1 and then to increase n by one, giving

Yn+1,m+1 = R1(n, m + 1)R2(n, m)Yn,m.

Comparing both expressions gives the matrix relation

R2(n + 1, m)R1(n, m) = R1(n, m + 1)R2(n, m).

If one computes the entries of this matrix identity, then one finds the following partial
difference relations (see also [18, Thm. 3.1]):

dn+1,m − dn,m = cn,m+1 − cn,m, (3.1)

an+1,m + bn+1,m − (an,m+1 + bn,m+1) = det

(
dn+1,m dn,m

cn,m+1 cn,m

)
, (3.2)

an,m+1

an,m

= cn,m − dn,m

cn−1,m − dn−1,m
, (3.3)

bn+1,m

bn,m

= cn,m − dn,m

cn,m−1 − dn,m−1
. (3.4)

We will show that these partial difference equations with boundary conditions

an,0 = a2n(μ1), bn,0 = 0, cn,0 = bn(μ1), n ≥ 0, (3.5)

and

a0,m = 0, b0,m = a2m(μ2), d0,m = bm(μ2), m ≥ 0, (3.6)

where a2n(μi), bn(μi) are the recurrence coefficients of the monic orthogonal poly-
nomials for the measure μi (i = 1, 2) (with a20(μ1) = a20(μ2) = 0), can be
solved recursively to find the nearest neighbor recurrence coefficients for the multiple
orthogonal polynomials with the measures (μ1, μ2).

Theorem 3.1 Suppose (a2n(μi))n≥1 and (bn(μi))n≥0 are the recurrence coefficients
of the monic orthogonal polynomials Pn(x; μi) for the measure μi , i.e.,

xPn(x; μi) = Pn+1(x; μi) + bn(μi)Pn(x; μi) + a2n(μi)Pn−1(x; μi), n ≥ 0,

with P0(x; μi) = 1 and P−1(x; μi) = 0. Then the nearest neighbor recurrence coef-
ficients for the type II multiple orthogonal polynomials can be computed recursively
by (3.1)–(3.4), using the boundary conditions (3.5)–(3.6), provided cn,m �= dn,m for
all n,m ≥ 0.

Proof We use induction on k, where k = n+m is the length of the multi-index (n, m)

and show how to compute an,m, bn,m, cn,m, dn,m when the recurrence coefficients
are known for multi-indices of length less than k. For k = 0 we have that a0,0 =
b0,0 = 0 (these appear as coefficients of P−1,0 and P0,−1 and hence are not needed)
and c0,0 = b0(μ1), d0,0 = b0(μ2). Hence the case k = 0 is settled. For k = 1 we
already have a1,0 = a21(μ1), c1,0 = b1(μ1), b0,1 = a21(μ2), d0,1 = b1(μ2), and we
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also defined a0,1 = b1,0 = 0 (these appear as coefficients for P−1,1 and P1,−1 and
are not needed). This leaves only to determine c0,1 and d1,0. If we use (3.1) and (3.2)
for n = m = 0, then this gives the system of equations

d1,0 − c0,1 = d0,0 − c0,0,

d1,0c0,0 − c0,1d0,0 = a1,0 + b1,0 − a0,1 − b0,1.

This is a linear system of two equations for c0,1 and d1,0. The determinant of
the system is d0,0 − c0,0 and hence this system has a unique solution whenever
b0(μ1) �= b0(μ2).

Suppose next that we know all the nearest neighbor recurrence coefficients for
multi-indices (n, m) of length ≤ k (Fig. 2). From (3.3) we then find

an,m+1 = an,m

cn,m − dn,m

cn−1,m − dn−1,m
,

and from (3.4) we find

bn+1,m = bn,m

cn,m − dn,m

cn,m−1 − dn,m−1
.

If we replace n by 	 and m by k − 	, then this gives

a	,k−	+1 = a	,k−	

c	,k−	 − d	,k−	

c	−1,k−	 − d	−1,k−	

, 1 ≤ 	 ≤ k. (3.7)

For 	 = 0 and 	 = k + 1 we use the boundary conditions

a0,k+1 = 0, ak+1,0 = a2k+1(μ1).

In a similar way

b	+1,k−	 = b	,k−	

c	,k−	 − d	,k−	

c	,k−	−1 − d	,k−	−1
, 0 ≤ 	 ≤ k − 1. (3.8)

Fig. 2 Moving along the lines m + n = k
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For 	 = −1 and 	 = k we use the boundary conditions

b0,k+1 = a2k+1(μ2), bk+1,0 = 0.

The expressions on the right of (3.7)–(3.8) contain coefficients of multi-indices of
length k and k − 1 and hence they are known. If we use (3.1) and (3.2), then

dn+1,m − cn,m+1 = dn,m − cn,m,

dn+1,mcn,m − cn,m+1dn,m = an+1,m + bn+1,m − an,m+1 − bn,m+1,

which is a linear system for cn,m+1 and dn+1,m with determinant dn,m − cn,m. This
system has a unique solution whenever cn,m �= dn,m. This solution is

cn,m+1 = cn,m + an+1,m + bn+1,m − an,m+1 − bn,m+1

cn,m − dn,m

,

and

dn+1,m = dn,m + an+1,m + bn+1,m − an,m+1 − bn,m+1

cn,m − dn,m

.

Replacing n by 	 and m by k − 	 then gives

c	,k−	+1 = c	,k−	 + a	+1,k−	 + b	+1,k−	 − a	,k−	+1 − b	,k−	+1

c	,k−	 − d	,k−	

, 0 ≤ 	 ≤ k,

(3.9)
and for 	 = k + 1 we use the boundary condition

ck+1,0 = bk+1(μ1).

Similarly we have

d	+1,k−	 = d	,k−	 + a	+1,k−	 + b	+1,k−	 − a	,k−	+1 − b	,k−	+1

c	,k−	 − d	,k−	

, 0 ≤ 	 ≤ k,

(3.10)
and for 	 = −1 we use the boundary condition

d0,k+1 = bk+1(μ2).

We can implement this in Maple using the following procedure which computes
an,m, bn,m, cn,m, dn,m for n+m ≤ N +M . It requires the input a1(n) = a2n(μ1) and
b1(n) = bn(μ1) for the first measure μ1 and a2(n) = a2n(μ2) and b2(n) = bn(μ2)

for the second measure μ2, for 0 ≤ n ≤ N +M , where we set a20(μ1) = 0 = a20(μ2).
In particular it gives the coefficients cN,M, dN,M, aN,M, bN,M which will be given in
the output explicitly.
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3.2 The step-line recurrence coefficients

Next we will show how to compute the recurrence coefficients in the step-line
recurrence (2.1) if one knows the nearest neighbor recurrence coefficients.

Theorem 3.2 Suppose that the nearest neighbor recurrence coefficients are given.
Then the step-line recurrence coefficients in (2.1) are given by

β2n = cn,n, n ≥ 0,

γ2n = an,n + bn,n, n ≥ 1,

δ2n = an,n(cn−1,n−1 − dn−1,n−1), n ≥ 1,

and

β2n+1 = dn+1,n, n ≥ 0,

γ2n+1 = an+1,n + bn+1,n, n ≥ 0,

δ2n+1 = bn+1,n(dn,n−1 − cn,n−1), n ≥ 1.

Proof From the nearest neighbor recurrence relation (2.2) we find

xPn,n(x) = Pn+1,n(x) + cn,nPn,n(x) + an,nPn−1,n(x) + bn,nPn,n−1(x).
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Use (2.4) to replace Pn−1,n to find

xPn,n(x) = Pn+1,n(x) + cn,nPn,n(x) + (an,n + bn,n)Pn,n−1(x)

+an,n(cn−1,n−1 − dn−1,n−1)Pn−1,n−1(x).

If we compare this with (2.1) with n replaced by 2n, then we find the relations for the
even recurrence coefficients. The proof for the odd recurrence coefficients is similar:
use (2.3) to find

xPn+1,n(x) = Pn+1,n+1(x)+dn+1,nPn+1,n(x)+an+1,nPn,n(x)+bn+1,nPn+1,n−1(x),

and replace Pn+1,n−1 using (2.4), giving

xPn+1,n(x) = Pn+1,n+1(x) + dn+1,nPn+1,n(x) + (an+1,n + bn+1,n)Pn,n(x)

+bn+1,n(dn,n−1 − cn,n−1)Pn,n−1(x).

Comparing with the recurrence relation (2.1) with n replaced by 2n + 1 gives the
required result.

3.3 The nearest neighbor coefficients for general r

For general r there are more partial difference equations for the nearest neighbor
recurrence coefficients. The nearest neighbor recurrence relations (1.4) can be written
as

Y�n+�ek
= Rk(�n)Y�n, 1 ≤ k ≤ r,

where

Y�n =

⎛
⎜⎜⎜⎝

P�n(x)

P�n−�e1(x)
...

P�n−�er
(x)

⎞
⎟⎟⎟⎠

and Rk(�n) are (r + 1) × (r + 1) transfer matrices given by

Rk(�n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x − b�n,k −a�n,1 · · · −a�n,k · · · −a�n,r

1 b�n−�e1,1 − b�n−�e1,k · · · 0 · · · 0
...

. . .
...

1 0 · · · 0 · · · 0
...

. . .
...

1 0 · · · 0 · · · b�n−�er ,r − b�n−�er ,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Expressing that Y�n+�ei+�ej
can be computed in two ways when i �= j is done by

Ri(�n + �ej )Rj (�n) = Rj (�n + �ei)Ri(�n),
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and this gives the following partial difference relations [18, Thm. 3.2]: for all 1 ≤
i �= j ≤ r one has

b�n+�ei ,j − b�n,j = b�n+�ej ,i − b�n,i , (3.11)
r∑

k=1

a�n+�ej ,k −
r∑

k=1

a�n+�ei ,k = det

(
b�n+�ej ,i b�n,i

b�n+�ei ,j b�n,j

)
, (3.12)

a�n+�ej ,i

a�n,i

= b�n,j − b�n,i

b�n−�ei ,j − b�n−�ei ,i

. (3.13)

Theorem 3.3 Suppose the recurrence coefficients (a2n(μi))n≥1 and (bn(μi))n≥0 of
the monic orthogonal polynomials for the measure μi are known (1 ≤ i ≤ r). Then
the nearest neighbor recurrence coefficients a�n,j , b�n,j (1 ≤ j ≤ r) can be computed
from (3.11)–(3.13) and the boundary conditions

an�ej ,j = a2n(μj ), bn�ej ,j = bn(μj ), n ≥ 0, 1 ≤ j ≤ r,

where a20(μj ) = 0, and

an�ei ,j = 0, n ≥ 0, i �= j,

provided that b�n,i �= b�n,j for all multi-indices �n ∈ N
r and 1 ≤ i �= j ≤ r .

Proof We use induction on the length N = |�n| of the multi-index �n. For |�n| = 0 we
see that a�0,j = 0 and b�0,j = b0(μj ) for 1 ≤ j ≤ r . If |�n| = 1 then �n = �ei for some

i with 1 ≤ i ≤ r . Therefore a�n,j = a�ei ,j = 0 whenever i �= j and a�ei ,i = a21(μi).
Furthermore b�n,i = b�ei ,i = b1(μi). Using (3.11) we also find

b�ei ,j = b�ej ,i + b0(μj ) − b0(μi),

and (3.12) gives

b�ej ,ib0(μj ) − b�ei ,j b0(μi) =
r∑

k=1

a�ej ,k −
r∑

k=1

a�ei ,k.

Solving this linear system gives for i �= j

b�ej ,i = b0(μi) +
∑r

k=1 a�ej ,k − ∑r
k=1 a�ei ,k

b0(μj ) − b0(μi)
,

provided b0(μi) �= b0(μj ). Hence all the nearest neighbor recurrence coefficients
are known for |�n| = 1.

Suppose that we know all the nearest neighbor recurrence coefficients with multi-
indices of length ≤ N . Let �m be a multi-index of length N + 1. In order to compute
a �m,i we choose a j �= i such that mi ≥ 1 and write �m = �n + �ej , where �n is a
multi-index of length N . Then from (3.13) we find that

a �m,i = a�n+�ej ,i = a�n,i

b�n,j − b�n,i

b�n−�ei ,j − b�n−�ei ,i

. (3.14)

The coefficients on the right hand side have a multi-indices of length N or N −1 and
hence (3.14) allows us to compute a �m,i when mi = ni ≥ 1. If mi = 0 then a �m,i is the
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coefficient of the polynomial P �m−�ei
which is 0, hence we don’t need this coefficient

and we can set it equal to 0. If mj = 0 for all j �= i then �m = (N + 1)�ei and we have
a(N+1)�ei ,i = a2N+1(μi).

If i �= j then the (3.11) and (3.12) are a linear system for the two unknowns
b�n+�ei ,j and b�n+�ej ,i . The solution is

b�n+�ej ,i = b�n,i +
∑r

k=1 a�n+�ej ,k − ∑r
k=1 a�n+�ei ,k

b�n,j − b�n,i

, (3.15)

provided that b�n,j �= b�n,i . Hence if there exists j �= i with mj ≥ 1, then �m = �n+ �ej ,
and we can compute b �m,i from (3.15). If mj = 0 for all j �= i then �m = (N + 1)�ei

and b(N+1)�ei ,i = bN+1(μi).
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