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Abstract In this paper we propose and analyze three parallel hybrid extragradi-
ent methods for finding a common element of the set of solutions of equilibrium
problems involving pseudomonotone bifunctions and the set of fixed points of non-
expansive mappings in a real Hilbert space. Based on parallel computation we can
reduce the overall computational effort under widely used conditions on the bifunc-
tions and the nonexpansive mappings. A simple numerical example is given to
illustrate the proposed parallel algorithms.
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1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H . The equilibrium
problem for a bifunction f : C × C → � ∪ {+∞}, satisfying condition f (x, x) = 0
for every x ∈ C, is stated as follows:

Find x∗ ∈ C such that f (x∗, y) ≥ 0 ∀y ∈ C. (1)

The set of solutions of (1) is denoted by EP(f ). Problem (1) includes, as special
cases, many mathematical models, such as, optimization problems, saddle point prob-
lems, Nash equilibrium point problems, fixed point problems, convex differentiable
optimization problems, variational inequalities, complementarity problems, etc., see
[5, 15]. In recent years, many methods have been proposed for solving equilibrium
problems, for instance, see [8, 12, 20, 21, 23] and the references therein.

A mapping T : C → C is said to be nonexpansive if ||T (x) − T (y)|| ≤ ||x − y||
for all x, y ∈ C. The set of fixed points of T is denoted by F(T ) .

Finding common elements of the solution set of an equilibrium problem and the
fixed point set of a nonexpansive mapping is a task arising frequently in various areas
of mathematical sciences, engineering, and economy. For example, we consider the
following extension of a Nash-Cournot oligopolistic equilibrium model [9].

Assume that there are n companies that produce a commodity. Let x denote the
vector whose entry xj stands for the quantity of the commodity producing by com-
pany j . We suppose that the price pi(s) is a decreasing affine function of s with
s = ∑n

j=1 xj , i.e., pi(s) = αi − βis, where αi > 0, βi > 0. Then the profit made by
company j is given by fj (x) = pj (s)xj − cj (xj ), where cj (xj ) is the tax for gener-
ating xj . Suppose that Kj is the strategy set of company j , Then the strategy set of
the model is K := K1 × ×... × Kn. Actually, each company seeks to maximize its
profit by choosing the corresponding production level under the presumption that the
production of the other companies is a parametric input. A commonly used approach
to this model is based upon the famous Nash equilibrium concept.

We recall that a point x∗ ∈ K = K1 × K2 × · · · × Kn is an equilibrium point of
the model if

fj (x
∗) ≥ fj (x

∗[xj ]) ∀xj ∈ Kj , ∀j = 1, 2, . . . , n,

where the vector x∗[xj ] stands for the vector obtained from x∗ by replacing x∗
j with

xj . By taking

f (x, y) := ψ(x, y) − ψ(x, x)

with

ψ(x, y) := −
n∑

j=1

fj (x[yj ]), (2)

the problem of finding a Nash equilibrium point of the model can be formulated as

x∗ ∈ K : f (x∗, x) ≥ 0 ∀x ∈ K. (EP )
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In practice each company has to pay a fee gj (xj ) depending on its production level
xj .
The problem now is to find an equilibrium point with minimum fee. We suppose
that both tax and fee functions are convex for every j . The convexity assumption
means that the tax and fee for producing a unit are increasing as the quantity of the
production gets larger. The convex assumption on cj implies that the bifunction f is
monotone on K , while the convex assumption on gj ensures that the solution-set of
the convex problem

min

⎧
⎨

⎩
g(x) =

n∑

j−1

gj (xj ) : x ∈ K

⎫
⎬

⎭

coincides with fixed point-set of the nonexpansive proximal operator P := (I +
c∂g)−1 with c > 0 [19].

Thus the problem of finding an equilibrium point with minimal cost is actually of
the same kind as the problem studied in this paper.

Gradient based methods dealing with equilibrium problems as well as iteration
methods for nonexpansive and pseudocontractive mappings have been studied by
several authors ( see, [6, 24–28] and the references therein).

For finding a common element of the set of solutions of monotone equilibrium
problem (1) and the set of fixed points of a nonexpansive mapping T in Hilbert
spaces, Tada and Takahashi [22] proposed the following hybrid method:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C0 = Q0 = C,

zn ∈ C such that f (zn, y) + 1
λn

〈y − zn, zn − xn〉 ≥ 0, ∀y ∈ C,

wn = αnxn + (1 − αn)T (zn),

Cn = {v ∈ C : ||wn − v|| ≤ ||xn − v||},
Qn = {v ∈ C : 〈x0 − xn, v − xn〉 ≤ 0},
xn+1 = PCn∩Qn(x0).

According to the above algorithm, at each step for determining the intermediate
approximation zn we need to solve a strongly monotone regularized equilibrium
problem

Find zn ∈ C, such that f (zn, y) + 1

λn

〈y − zn, zn − xn〉 ≥ 0, ∀y ∈ C. (3)

If the bifunction f is only pseudomonotone, then subproblem (3) is not necessarily
strongly monotone, even not pseudomonotone, hence the existing algorithms using
the monotonicity of the subproblem, cannot be applied. To overcome this difficulty,
Anh [1] proposed the following hybrid extragradient method for finding a common
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element of the set of fixed points of a nonexpansive mapping T and the set of
solutions of an equilibrium problem involving a pseudomonotone bifunction f .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C, C0 = Q0 = C,

yn = argmin
{
λnf (xn, y) + 1

2 ||xn − y||2 : y ∈ C
}

,

tn = argmin
{
λnf (yn, y) + 1

2 ||xn − y||2 : y ∈ C
}

,

zn = αnxn + (1 − αn)T (tn),

Cn = {v ∈ C : ||zn − v|| ≤ ||xn − v||},
Qn = {v ∈ C : 〈x0 − xn, v − xn〉 ≤ 0},
xn+1 = PCn∩Qn(x0).

Under certain assumptions, the strong convergence of the sequences {xn}, {yn}, {zn}
to x† := PEP(f )∩F(T )x0 has been established.
Very recently, Anh and Chung [2] have proposed the following parallel hybrid
method for finding a common fixed point of a finite family of relatively nonexpansive
mappings {Ti}Ni=1.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C, C0 = Q0 = C,

yi
n = J−1 (αnJxn + (1 − αn)JTi(xn)) , i = 1, . . . , N,

in = argmax1≤i≤N

{∥
∥yi

n − xn

∥
∥
}
, ȳn := y

in
n ,

Cn = {v ∈ C : φ(v, ȳn) ≤ φ(v, xn)} ,

Qn = {v ∈ C : 〈Jx0 − Jxn, xn − v〉 ≥ 0} ,

xn+1 = PCn

⋂
Qn

x0, n ≥ 0,

(4)

where J is the normalized duality mapping and φ(x, y) is the Lyapunov func-
tional. This algorithm was extended, modified and generelized by Anh and Hieu
[3] for a finite family of asymptotically quasi φ-nonexpansive mappings in Banach
spaces.

According to algorithm (4), the intermediate approximations yi
n can be found in

parallel. Then the farthest element from xn among all yi
n, i = 1, . . . , N, denoted by

ȳn, is chosen. Using the element ȳn, the authors constructed two convex closed sub-
setsCn andQn containing the set of common fixed points F and seperating the initial
approximation x0 from F . The next approximation xn+1 is defined as the projection
of x0 onto the intersection Cn

⋂
Qn.

The purpose of this paper is to propose three parallel hybrid extragradient algo-
rithms for finding a common element of the set of solutions of a finite family of
equilibrium problems for pseudomonotone bifunctions {fi}Ni=1 and the set of fixed

points of a finite family of nonexpansive mappings
{
Sj

}M

j=1 in Hilbert spaces. We
combine the extragradient method for dealing with pseudomonotone equilibrium
problems (see, [1, 18]), and Mann’s or Halpern’s iterative algorithms for finding
fixed points of nonexpansive mappings [11, 13], with parallel splitting-up techniques
[2, 3], as well as hybrid methods (see, [1–3, 12, 17, 20, 21]) to obtain the strong
convergence of iterative processes.

The paper is organized as follows: In Section 2, we recall some definitions and
preliminary results. Section 3 deals with novel parallel hybrid algorithms and their
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convergence analysis. Finally, in Section 4, we illustrate the propesed parallel hybrid
methods by considering a simple numerical experiment.

2 Preliminaries

In this section, we recall some definitions and results that will be used in the sequel.
Let C be a nonempty closed convex subset of a Hilbert spaceH with an inner product
〈., .〉 and the induced norm ||.||. Let T : C → C be a nonexpansive mapping with the
set of fixed points F(T ).

We begin with the following properties of nonexpansive mappings.

Lemma 1 [10] Assume that T : C → C is a nonexpansive mapping. If T has a fixed
point, then

(i) F(T ) is a closed convex subset of H .
(ii) I − T is demiclosed, i.e., whenever {xn} is a sequence in C weakly converging

to some x ∈ C and the sequence {(I − T )xn} strongly converges to some y, it
follows that (I − T )x = y.

Since C is a nonempty closed and convex subset of H , for every x ∈ H , there
exists a unique element PCx, defined by

PCx = argmin {‖y − x‖ : y ∈ C} .

The mapping PC : H → C is called the metric (orthogonal) projection of H onto
C. It is also known that PC is firmly nonexpansive, or 1-inverse strongly monotone
(1-ism), i.e.,

〈PCx − PCy, x − y〉 ≥ ‖PCx − PCy‖2 .

Besides, we have

‖x − PCy‖2 + ‖PCy − y‖2 ≤ ‖x − y‖2 . (5)

Moreover, z = PCx if and only if

〈x − z, z − y〉 ≥ 0, ∀y ∈ C. (6)

A function f : C × C → � ∪ {+∞}, where C ⊂ H is a closed convex subset,
such that f (x, x) = 0 for all x ∈ C is called a bifunction. Throughout this paper we
consider bifunctions with the following properties:

A1. f is pseudomonotone, i.e., for all x, y ∈ C,

f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0;
A2. f is Lipschitz-type continuous, i.e., there exist two positive constants c1, c2

such that

f (x, y) + f (y, z) ≥ f (x, z) − c1||x − y||2 − c2||y − z||2, ∀x, y, z ∈ C;
A3. f is weakly continuous on C × C;
A4. f (x, .) is convex and subdifferentiable on C for every fixed x ∈ C.
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A bifunction f is called monotone on C if for all x, y ∈ C, f (x, y)+f (y, x) ≤ 0.
It is obvious that any monotone bifunction is a pseudomonotone one, but not vice
versa. Recall that a mapping A : C → H is pseudomonotone if and only if the
bifunction f (x, y) = 〈A(x), y − x〉 is pseudomonotone on C.

The following statements will be needed in the next section.

Lemma 2 [4] If the bifunction f satisfies Assumptions A1 − A4, then the solution
set EP(f ) is weakly closed and convex.

Lemma 3 [7] Let C be a convex subset of a real Hilbert space H and g : C → � be
a convex and subdifferentiable function on C. Then, x∗ is a solution to the following
convex problem

min {g(x) : x ∈ C}
if and only if 0 ∈ ∂g(x∗) + NC(x∗), where ∂g(.) denotes the subdifferential of g

and NC(x∗) is the normal cone of C at x∗.

Lemma 4 [17] Let X be a uniformly convex Banach space, r be a positive number
and Br(0) ⊂ X be a closed ball with center at origin and the radius r . Then, for any
given subset {x1, x2, . . . , xN } ⊂ Br(0) and for any positive numbers λ1, λ2, . . . , λN

with
∑N

i=1 λi = 1, there exists a continuous, strictly increasing, and convex function
g : [0, 2r) → [0, ∞) with g(0) = 0 such that, for any i, j ∈ {1, 2, . . . , N} with
i < j ,

∥
∥
∥
∥
∥

N∑

k=1

λkxk

∥
∥
∥
∥
∥

2

≤
N∑

k=1

λk ‖xk‖2 − λiλjg(||xi − xj ||).

3 Main results

In this section, we propose three novel parallel hybrid extragradient algorithms
for finding a common element of the set of solutions of equilibrium problems for
pseudomonotone bifunctions {fi}Ni=1 and the set of fixed points of nonexpansive

mappings
{
Sj

}M

j=1 in a real Hilbert space H .
In what follows, we assume that the solution set

F =
(
∩N

i=1EP(fi)
) ⋂ (

∩M
j=1F(Sj )

)

is nonempty and each bifunction fi (i = 1, . . . , N) satisfies all the conditions A1 −
A4.

Observe that we can choose the same Lipschitz coefficients {c1, c2} for all bifunc-
tions fi, i = 1, . . . , N . Indeed, condition A2 implies that fi(x, z) − fi(x, y) −
fi(y, z) ≤ c1,i ||x − y||2 + c2,i ||y − z||2 ≤ c1||x − y||2 + c2||y − z||2, where c1 =
max

{
c1,i : i = 1, . . . , N

}
and c2 = max

{
c2,i : i = 1, . . . , N

}
. Hence, fi(x, y) +

fi(y, z) ≥ fi(x, z) − c1||x − y||2 − c2||y − z||2.
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Further, since F �= ∅, by Lemmas 1, 2, the sets F(Sj ) j = 1, . . . ,M and
EP(fi) i = 1, . . . , N are nonempty, closed and convex, hence the solution set F is
a nonempty closed and convex subset of C. Thus, given any fixed element x0 ∈ C

there exists a unique element x† := PF (x0).

Algorithm 1 (Parallel Hybrid Mann-extragradient method)

Initialization. x0 ∈ C, 0 < ρ < min
(

1
2c1

, 1
2c2

)
, n := 0 and the sequence {αk} ⊂

(0, 1) satisfies the condition lim supk→∞ αk < 1.
Step 1. Solve N strongly convex programs in parallel

yi
n = argmin{ρfi(xn, y) + 1

2
||xn − y||2 : y ∈ C} i = 1, . . . , N.

Step 2. Solve N strongly convex programs in parallel

zi
n = argmin{ρfi(y

i
n, y) + 1

2
||xn − y||2 : y ∈ C} i = 1, . . . , N.

Step 3. Find among zi
n, i = 1, . . . , N, the farthest element from xn, i.e.,

in = argmax{||zi
n − xn|| : i = 1, . . . , N}, z̄n := zin

n .

Step 4. Find intermediate approximations u
j
n in parallel

u
j
n = αnxn + (1 − αn)Sj z̄n, j = 1, . . . , M.

Step 5. Find among u
j
n, j = 1, . . . , M, the farthest element from xn, i.e.,

jn = argmax{||uj
n − xn|| : j = 1, . . . , M}, ūn := u

jn
n .

Step 6. Construct two closed convex subsets of C

Cn = {v ∈ C : ||ūn − v|| ≤ ||xn − v||},
Qn = {v ∈ C : 〈x0 − xn, v − xn〉 ≤ 0}.

Step 7. The next approximation xn+1 is defined as the projection of x0 onto Cn ∩Qn,
i.e.,

xn+1 = PCn∩Qn(x0).

Step 8. If xn+1 = xn then stop. Otherwise, set n := n + 1 and go to Step 1.

For establishing the strong convergence of Algorithm 1, we need the following
results.

Lemma 5 [1, 18] Suppose that x∗ ∈ EP(fi), and xn, y
i
n, z

i
n, i = 1, . . . , N, are

defined as in Step 1 and Step 2 of Algorithm 1. Then

||zi
n − x∗||2 ≤ ||xn − x∗||2 − (1− 2ρc1)||yi

n − xn||2 − (1− 2ρc2)||yi
n − zi

n||2. (7)

Lemma 6 If Algorithm 1 reaches a step n ≥ 0, then F ⊂ Cn ∩ Qn and xn+1 is
well-defined.
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Proof As mentioned above, the solution set F is closed and convex. Further, by def-
initions, Cn and Qn are the intersections of halfspaces with the closed convex subset
C, hence they are closed and convex.

Next, we verify that F ⊂ Cn

⋂
Qn for all n ≥ 0. For every x∗ ∈ F , by the

convexity of ||.||2, the nonexpansiveness of Sj , and Lemma 5, we have

||ūn − x∗||2 = ||αnxn + (1 − αn)Sjn z̄n − x∗||2
≤ αn||xn − x∗||2 + (1 − αn)||Sjn z̄n − x∗||2
≤ αn||xn − x∗||2 + (1 − αn)||z̄n − x∗||2
≤ αn||xn − x∗||2 + (1 − αn)||xn − x∗||2
≤ ||xn − x∗||2. (8)

Therefore, ||ūn − x∗|| ≤ ||xn − x∗|| or x∗ ∈ Cn. Hence F ⊂ Cn for all n ≥ 0.
Now we show that F ⊂ Cn

⋂
Qn by induction. Indeed, we have F ⊂ C0 as above.

Besides, F ⊂ C = Q0, hence F ⊂ C0
⋂

Q0. Assume that F ⊂ Cn−1
⋂

Qn−1 for
some n ≥ 1. From xn = PCn−1

⋂
Qn−1x0 and (6), we get

〈xn − z, x0 − xn〉 ≥ 0, ∀z ∈ Cn−1

⋂
Qn−1.

Since F ⊂ Cn−1
⋂

Qn−1, 〈xn − z, x0 − xn〉 ≥ 0 for all z ∈ F . This together with
the definition of Qn implies that F ⊂ Qn. Hence F ⊂ Cn

⋂
Qn for all n ≥ 1. Since

F and Cn ∩Qn are nonempty closed convex subsets, PF x0 and xn+1 := PCn∩Qn(x0)

are well-defined.

Lemma 7 If Algorithm 1 finishes at a finite iteration n < ∞, then xn is a common
element of two sets ∩N

i=1EP(fi) and ∩M
j=1F(Sj ), i.e., xn ∈ F .

Proof If xn+1 = xn then xn = xn+1 = PCn∩Qn(x0) ∈ Cn. By the definition of Cn,
||ūn − xn|| ≤ ||xn − xn|| = 0, hence ūn = xn. From the definition of jn, we obtain

u
j
n = xn, ∀j = 1, . . . ,M.

This together with the relations u
j
n = αnxn + (1 − αn)Sj z̄n and 0 < αn < 1 implies

that xn = Sj z̄n. Let x∗ ∈ F . By Lemma 5 and the nonexpansiveness of Sj , we get

||xn − x∗||2 = ||Sj z̄n − x∗||2
≤ ||z̄n − x∗||2
≤ ||xn − x∗||2 − (1 − 2ρc1)||yin

n − xn||2 − (1 − 2ρc2)||yin
n − z̄n||2.

Therefore

(1 − 2ρc1)||yin
n − xn||2 + (1 − 2ρc2)||yin

n − z̄n||2 ≤ 0.

Since 0 < ρ < min
{

1
2c1

, 1
2c2

}
, from the last inequality we obtain xn = y

in
n = z̄n.

Therefore xn = Sj z̄n = Sjxn or xn ∈ F(Sj ) for all j = 1, . . . ,M . Moreover, from
the relation xn = z̄n and the definition of in, we also get xn = zi

n for all i = 1, . . . , N .
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This together with the inequality (7) implies that xn = yi
n for all i = 1, . . . , N . Thus,

xn = argmin

{

ρfi(xn, y) + 1

2
||xn − y||2 : y ∈ C

}

.

By [14, Proposition 2.1], from the last relation we conclude that xn ∈ EP(fi) for all
i = 1, . . . , N, hence xn ∈ F . Lemma 7 is proved.

Lemma 8 Let {xn} ,
{
yi
n

}
,
{
zi
n

}
,
{
u

j
n

}
be (infinite) sequences generated by Algo-

rithm 1. Then, there hold the relations

lim
n→∞ ||xn+1 − xn|| = lim

n→∞ ||xn − u
j
n|| = lim

n→∞ ||xn − zi
n|| = lim

n→∞ ||xn − yi
n|| = 0,

and limn→∞ ||xn − Sjxn|| = 0.

Proof From the definition of Qn and (6), we see that xn = PQnx0. Therefore, for
every u ∈ F ⊂ Qn, we get

‖xn − x0‖2 ≤ ‖u − x0‖2 − ‖u − xn‖2 ≤ ‖u − x0‖2 . (9)

This implies that the sequence {xn} is bounded. From (8), the sequence {ūn}, and
hence, the sequence

{
u

j
n

}
are also bounded.

Observing that xn+1 = PCn

⋂
Qn

x0 ∈ Qn, xn = PQnx0, from (5) we have

‖xn − x0‖2 ≤ ‖xn+1 − x0‖2 − ‖xn+1 − xn‖2 ≤ ‖xn+1 − x0‖2 . (10)

Thus, the sequence {‖xn − x0‖} is nondecreasing, hence there exists the limit of the
sequence {‖xn − x0‖}. From (10) we obtain

‖xn+1 − xn‖2 ≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2 .

Letting n → ∞, we find

lim
n→∞ ‖xn+1 − xn‖ = 0. (11)

Since xn+1 ∈ Cn, ||ūn − xn+1|| ≤ ‖xn+1 − xn‖. Thus ||ūn − xn|| ≤ ||ūn − xn+1|| +
||xn+1 − xn|| ≤ 2||xn+1 − xn||. The last inequality together with (11) implies that
||ūn − xn|| → 0 as n → ∞. From the definition of jn, we conclude that

lim
n→∞

∥
∥
∥u

j
n − xn

∥
∥
∥ = 0 (12)

for all j = 1, . . . , M . Moreover, Lemma 5 shows that for any fixed x∗ ∈ F, we have

||uj
n − x∗||2 = ||αnxn + (1 − αn)Sj z̄n − x∗||2

≤ αn||xn − x∗||2 + (1 − αn)||Sj z̄n − x∗||2
≤ αn||xn − x∗||2 + (1 − αn)||z̄n − x∗||2
≤ ||xn − x∗||2
−(1 − αn)||

(
(1 − 2ρc1)||yin

n − xn||2 + (1 − 2ρc2)||yin
n − z̄n||2

)
.
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Therefore

(1 − αn)(1 − 2ρc1)||yin
n − xn||2 + (1 − 2ρc2)||yin

n − z̄n||2
≤ ||xn − x∗||2 − ||uj

n − x∗||2
=

(
||xn − x∗|| − ||uj

n − x∗||
) (

||xn − x∗|| + ||uj
n − x∗||

)

≤ ||xn − u
j
n||

(
||xn − x∗|| + ||uj

n − x∗||
)

. (13)

Using the last inequality together with (12) and taking into account the boundedness

of two sequences
{
u

j
n

}
, {xn} as well as the condition lim supn→∞ αn < 1, we come

to the relations

lim
n→∞

∥
∥
∥yin

n − xn

∥
∥
∥ = lim

n→∞
∥
∥
∥yin

n − z̄n

∥
∥
∥ = 0 (14)

for all i = 1, . . . , N . From ||z̄n −xn|| ≤ ||z̄n −y
in
n ||+||yin

n −xn|| and (14), we obtain
limn→∞ ‖z̄n − xn‖ = 0. By the definition of in, we get

lim
n→∞

∥
∥
∥zi

n − xn

∥
∥
∥ = 0 (15)

for all i = 1, . . . , N . From Lemma 5 and (15), arguing similarly to (13) we obtain

lim
n→∞

∥
∥
∥yi

n − xn

∥
∥
∥ = 0 (16)

for all i = 1, . . . , N . On the other hand, since u
j
n = αnxn + (1 − αn)Sj z̄n, we have

||uj
n − xn|| = (1 − αn)||Sj z̄n − xn||

= (1 − αn)||(Sjxn − xn) + (Sj z̄n − Sjxn)||
≥ (1 − αn)

(||Sjxn − xn|| − ||Sj z̄n − Sjxn||
)

≥ (1 − αn)
(||Sjxn − xn|| − ||z̄n − xn||

)
.

Therefore

||Sjxn − xn|| ≤ ||z̄n − xn|| + 1

1 − αn

||uj
n − xn||.

The last inequality together with (12), (15) and the condition
lim supn→∞ αn < 1 implies that

lim
n→∞

∥
∥Sjxn − xn

∥
∥ = 0, (17)

for all j = 1, . . . , M . The proof of Lemma 8 is complete.

Lemma 9 Let {xn} be the sequence generated by Algorithm 1. Suppose that x̄ is a

weak limit point of {xn}. Then x̄ ∈ F =
(⋂N

i=1 EP(fi)
) ⋂ (⋂M

j=1 F(Sj )
)
, i.e., x̄
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is a common element of the set of solutions of equilibrium problems for bifunctions
{fi}Ni=1 and the set of fixed points of nonexpansive mappings

{
Sj

}M

j=1.

Proof From Lemma 8 we see that {xn} is bounded. Then there exists a subse-
quence of {xn} converging weakly to x̄. For the sake of simplicity, we denote the
weakly convergent subsequence again by {xn} , i.e., xn ⇀ x̄. From (17) and the
demiclosedness of I −Sj , we have x̄ ∈ F(Sj ). Hence, x̄ ∈ ⋂M

j=1 F(Sj ). Noting that

yi
n = argmin{ρfi(xn, y) + 1

2
||xn − y||2 : y ∈ C},

by Lemma 3, we obtain

0 ∈ ∂2

{

ρfi(xn, y) + 1

2
||xn − y||2

}(
yi
n

)
+ NC

(
yi
n

)
.

Therefore, there exist w ∈ ∂2fi

(
xn, y

i
n

)
and w̄ ∈ NC

(
yi
n

)
such that

ρw + xn − yi
n + w̄ = 0. (18)

Since w̄ ∈ NC(yi
n),

〈
w̄, y − yi

n

〉 ≤ 0 for all y ∈ C. This together with (18) implies
that

ρ
〈
w, y − yi

n

〉
≥

〈
yi
n − xn, y − yi

n

〉
(19)

for all y ∈ C. Since w ∈ ∂2fi

(
xn, y

i
n

)
,

fi(xn, y) − fi(xn, y
i
n) ≥

〈
w, y − yi

n

〉
, ∀y ∈ C. (20)

From (19) and (20), we get

ρ
(
fi(xn, y) − fi

(
xn, y

i
n

))
≥

〈
yi
n − xn, y − yi

n

〉
, ∀y ∈ C. (21)

Since xn ⇀ x̄ and ||xn − yi
n|| → 0 as n → ∞, we find yi

n ⇀ x̄. Letting n →
∞ in (21) and using assumption A3, we conclude that fi(x̄, y) ≥ 0 for all y ∈
C (i=1,. . . ,N). Thus, x̄ ∈ ⋂N

i=1 EP(fi), hence x̄ ∈ F . The proof of Lemma 9 is
complete.

Theorem 1 Let C be a nonempty closed convex subset of a real Hilbert space H .
Suppose that {fi}Ni=1 is a finite family of bifunctions satisfying conditions A1-A4 and{
Sj

}M

j=1 is a finite family of nonexpansive mappings onC. Moreover, suppose that the
solution set F is nonempty. Then, the (infinite) sequence {xn} generated by Algorithm
1 converges strongly to x† = PF x0.
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Proof It is directly followed from Lemma 6 that the sets F,Cn, Qn are closed convex
subsets of C and F ⊂ Cn

⋂
Qn for all n ≥ 0. Moreover, from Lemma 8 we see

that the sequence {xn} is bounded. Suppose that x̄ is any weak limit point of {xn}
and xnj

⇀ x̄. By Lemma 9, x̄ ∈ F . We now show that the sequence {xn} converges
strongly to x† := PF x0. Indeed, from x† ∈ F and (9), we obtain

||xnj
− x0|| ≤ ||x† − x0||.

The last inequality together with xnj
⇀ x̄ and the weak lower semicontinuity of the

norm ||.|| implies that

||x̄ − x0|| ≤ lim inf
j→∞ ||xnj

− x0|| ≤ lim sup
j→∞

||xnj
− x0|| ≤ ||x† − x0||.

By the definition of x†, x̄ = x† and limj→∞ ||xnj
− x0|| = ||x† − x0||. Since

xnj
− x0 ⇀ x̄ − x0 = x† − x0, the Kadec-Klee property of the Hilbert space H

ensures that xnj
− x0 → x† − x0, hence xnj

→ x† as j → ∞. Since x̄ = x† is any
weak limit point of {xn}, the sequence {xn} converges strongly to x† := PF x0. The
proof of Theorem 1 is complete.

Corollary 1 Let C be a nonempty closed convex subset of a real Hilbert space H .
Suppose that {fi}Ni=1 is a finite family of bifunctions satisfying conditions A1 − A4,

and the set F = ⋂N
i=1 EP(fi) is nonempty. Let {xn} be the sequence generated in

the following manner:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C0 := C, Q0 := C,

yi
n = argmin{ρfi(xn, y) + 1

2 ||xn − y||2 : y ∈ C} i = 1, . . . , N,

zi
n = argmin{ρfi(y

i
n, y) + 1

2 ||xn − y||2 : y ∈ C} i = 1, . . . , N,

in = argmax{||zi
n − xn|| : i = 1, . . . , N}, z̄n := z

in
n ,

Cn = {v ∈ C : ||z̄n − v|| ≤ ||xn − v||},
Qn = {v ∈ C : 〈x0 − xn, v − xn〉 ≤ 0},
xn+1 = PCn

⋂
Qn

x0, n ≥ 0,

where 0 < ρ < min
(

1
2c1

, 1
2c2

)
. Then the sequence {xn} converges strongly to x† =

PF x0.

Corollary 2 Let C be a nonempty closed convex subset of a real Hilbert space H .
Suppose that {Ai}Ni=1 is a finite family of pseudomonotone and L-Lipschitz contin-

uous mappings from C to H such that F = ⋂N
i=1 V I (Ai, C) is nonempty, where
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V I (Ai, C) = {x∗ ∈ C : 〈A(x∗), y − x∗〉 ≥ 0, ∀y ∈ C}. Let {xn} be the sequence
generated in the following manner:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C0 := C, Q0 := C,

yi
n = PC (xn − ρAi(xn)) i = 1, . . . , N,

zi
n = PC

(
xn − ρAi(y

i
n)

)
i = 1, . . . , N,

in = argmax{||zi
n − xn|| : i = 1, . . . , N}, z̄n := z

in
n ,

Cn = {v ∈ C : ||z̄n − v|| ≤ ||xn − v||},
Qn = {v ∈ C : 〈x0 − xn, v − xn〉 ≤ 0},
xn+1 = PCn

⋂
Qn

x0, n ≥ 0,

where 0 < ρ < 1
L
. Then the sequence {xn} converges strongly to x† = PF x0.

Proof Let fi(x, y) = 〈Ai(x), y − x〉 for all x, y ∈ C and i = 1, . . . , N .
Since Ai is L-Lipschitz continuous, for all x, y, z ∈ C

fi(x, y) + fi(y, z) − fi(x, z) = 〈Ai(x), y − x〉 + 〈Ai(y), z − y〉 − 〈Ai(x), z − x〉
= − 〈Ai(y) − Ai(x), y − z〉
≥ −||Ai(y) − Ai(x)|||y − z||
≥ −L||y − x||||y − z||
≥ −L

2
||y − x||2 − L

2
||y − z||2.

Therefore fi is Lipschitz-type continuous with c1 = c2 = L
2 . Moreover, the pseu-

domonotonicity of Ai ensures the pseudomonotonicity of fi . Conditions A3, A4 are
satisfied automatically. According to Algorithm 1, we have

yi
n = argmin{ρ 〈Ai(xn), y − xn〉 + 1

2
||xn − y||2 : y ∈ C},

zi
n = argmin{ρ

〈
Ai(y

i
n), y − yi

n

〉
+ 1

2
||xn − y||2 : y ∈ C}.

Or

yi
n = argmin

{
1

2
||y − (xn − ρAi(xn))||2 : y ∈ C

}

= PC(xn − ρAi(xn)),

zi
n = argmin

{
1

2
||y −

(
xn − ρAi

(
yi
n

))
||2 : y ∈ C

}

= PC

(
xn − ρAi

(
yi
n

))
.

Application of Theorem 1 with the above mentioned fi(x, y), (i = 1, . . . , N) and
Sj = I, (j = 1, . . . , M) leads to the desired result.

Remark 1 Putting N = 1 in Corollary 2, we obtain the corresponding result of
Nadezhkina and Takahashi [16, Theorem 4.1].
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Now, replacing Mann’s iteration in Step 4 of Algorithm 1 by Halpern’s one, we
come to the following algorithm.

Algorithm 2 (Parallel hybrid Halpern-extragradient method)

Initialization. x0 ∈ C, 0 < ρ < min
(

1
2c1

, 1
2c2

)
, n := 0 and the sequence {αk} ⊂

(0, 1) satisfies the condition limk→∞ αk = 0.
Step 1. Solve N strongly convex programs in parallel

yi
n = argmin{ρfi(xn, y) + 1

2
||xn − y||2 : y ∈ C} i = 1, . . . , N.

Step 2. Solve N strongly convex programs in parallel

zi
n = argmin{ρfi(y

i
n, y) + 1

2
||xn − y||2 : y ∈ C} i = 1, . . . , N.

Step 3. Find among zi
n, i = 1, . . . , N, the farthest element from xn, i.e.,

in = argmax{||zi
n − xn|| : i = 1, . . . , N}, z̄n := zin

n .

Step 4. Find intermediate approximations u
j
n in parallel

u
j
n = αnx0 + (1 − αn)Sj z̄n, j = 1, . . . , M.

Step 5. Find among u
j
n, j = 1, . . . , M, the farthest element from xn, i.e.,

jn = argmax{||uj
n − xn|| : j = 1, . . . , M}, ūn := u

jn
n .

Step 6. Construct two closed convex subsets of C

Cn = {v ∈ C : ||ūn − v||2 ≤ αn||x0 − v||2 + (1 − αn)||xn − v||2},
Qn = {v ∈ C : 〈x0 − xn, v − xn〉 ≤ 0}.

Step 7. The next approximation xn+1 is defined as the projection of x0 onto Cn ∩Qn,
i.e.,

xn+1 = PCn∩Qn(x0).

Step 8. Put n := n + 1 and go to Step 1.

Remark 2 For Algorithm 2, the claim that xn is a common solution of the equlibrium
and fixed point problems, if xn+1 = xn, in general is not true. So in practice, we
need to use some ”stopping rule” like if n > nmax for some chosen sufficiently large
number nmax, then stop.

Theorem 2 Let C be a nonempty closed convex subset of a real Hilbert space H .
Suppose that {fi}Ni=1 is a finite family of bifunctions satisfying conditions A1 − A4,

and
{
Sj

}M

j=1 is a finite family of nonexpansive mappings on C. Moreover, sup-
pose that the solution set F is nonempty. Then, the sequence {xn} generated by the
Algorithm 2 converges strongly to x† = PF x0.
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Proof Arguing similarly as in the proof of Lemma 6 and Theorem 1, we conclude
that F,Cn, Qn are closed and convex. Besides, F ⊂ Cn∩Qn for all n ≥ 0. Moreover,
the sequence {xn} is bounded and

lim
n→∞ ||xn+1 − xn|| = 0. (22)

Since xn+1 ∈ Cn+1,

||ūn − xn+1||2 ≤ αn||x0 − xn+1||2 + (1 − αn)||xn − xn+1||2.

Letting n → ∞, from (22), limn→∞ αn = 0 and the boundedness of {xn}, we
obtain

lim
n→∞ ||ūn − xn+1|| = 0.

Proving similarly to (12) and (13), we get

lim
n→∞ ||uj

n − xn|| = 0, j = 1, . . . ,M,

and

(1 − αn)(1 − 2ρc1)||yin
n − xn||2 + (1 − 2ρc2)||yin

n − z̄n||2
≤ αn(||x0 − x∗||2 − ||xn − x∗||2)
+||xn − u

j
n||

(
||xn − x∗|| + ||uj

n − x∗||
)

(23)

for each x∗ ∈ F . Letting n → ∞ in (23), one has

lim
n→∞ ||yin

n − xn|| = lim
n→∞ ||z̄n − xn|| = 0, j = 1, . . . , N,

Repeating the proof of (15) and (16), we get

lim
n→∞ ||yi

n − xn|| = lim
n→∞ ||zi

n − xn|| = 0, i = 1, . . . , N.

Using u
j
n = αnx0 + (1 − αn)Sj z̄n, by a straightforward computation, we obtain

||Sjxn − xn|| ≤ ||z̄n − xn|| + 1

1 − αn

||uj
n − xn|| + αn

1 − αn

||x0 − xn||,

which implies that limn→∞ ||Sjxn − xn|| = 0. The rest of the proof of Theorem 2 is
similar to the arguments in the proofs of Lemma 9 and Theorem 1.

Next replacing Steps 4 and 5 in Algorithm 1, consisting of a Mann’s iteration and
a parallel splitting-up step, by an iteration step involving a convex combination of the
identity mapping I and the mappings Sj , j = 1, . . . , N , we come to the following
algorithm.
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Algorithm 3 (Parallel hybrid iteration-extragradient method)

Initialization. x0 ∈ C, 0 < ρ < min
(

1
2c1

, 1
2c2

)
, n := 0 and the positive sequences

{
αk,l

}∞
k=1 (l = 0, . . . , M) satisfy the conditions: 0 ≤ αk,j ≤ 1,

∑M
j=0 αk,j = 1,

lim infk→∞ αk,0αk,l > 0 for all l = 1, . . . , M .
Step 1. Solve N strongly convex programs in parallel

yi
n = argmin{ρfi(xn, y) + 1

2
||xn − y||2 : y ∈ C} i = 1, . . . , N.

Step 2. Solve N strongly convex programs in parallel

zi
n = argmin{ρfi(y

i
n, y) + 1

2
||xn − y||2 : y ∈ C} i = 1, . . . , N.

Step 3. Find among zi
n, i = 1, . . . , N, the farthest element from xn, i.e.,

in = argmax{||zi
n − xn|| : i = 1, . . . , N}, z̄n := zin

n .

Step 4. Compute in parallel uj
n := Sj z̄n; j = 1, . . . , M, and put

un = αn,0xn +
M∑

j=1

αn,ju
j
n.

Step 5. Construct two closed convex subsets of C

Cn = {v ∈ C : ||un − v|| ≤ ||xn − v||},
Qn = {v ∈ C : 〈x0 − xn, v − xn〉 ≤ 0}.

Step 6. The next approximation xn+1 is determined as the projection of x0 onto
Cn ∩ Qn, i.e.,

xn+1 = PCn∩Qn(x0).

Step 7. If xn+1 = xn then stop. Otherwise, set n := n + 1 and go to Step 1.

Remark 3 Arguing similarly as in the proof of Lemma 7, we can prove that if Algo-
rithm 3 finishes at a finite iteration n < ∞, then xn ∈ F , i.e., xn is a common
element of the set of solutions of equilibrium problems and the set of fixed points of
nonexpansive mappings.

Theorem 3 Let C be a nonempty closed convex subset of a real Hilbert space H .
Suppose that {fi}Ni=1 is a finite family of bifunctions satisfying conditions A1 − A4,

and
{
Sj

}M

j=1 is a finite family of nonexpansive mappings on C. Moreover, suppose
that the solution set F is nonempty. Then, the (infinite) sequence {xn} generated by
the Algorithm 3 converges strongly to x† = PF x0.

Proof Arguing similarly as in the proof of Theorem 1, we can conclude that
F,Cn, Qn are closed convex subsets of C. Besides, F ⊂ Cn

⋂
Qn and

lim
n→∞ ||xn+1 − xn|| = lim

n→∞ ||yi
n − xn|| = lim

n→∞ ||zi
n − xn|| = lim

n→∞ ||un − xn|| = 0

(24)
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for all i = 1, . . . , N . For every x∗ ∈ F , by Lemmas 4 and 5, we have

||un − x∗||2 = ||αn,0xn +
M∑

j=1

αn,j Sj z̄n − x∗||2

= ||αn,0(xn − x∗) +
M∑

j=1

αn,j (Sj z̄n − x∗)||2

≤ αn,0||xn − x∗||2 +
M∑

j=1

αn,j ||Sj z̄n − x∗||2−αn,0αn,lg(||Slz̄n − xn||)

≤ αn,0||xn − x∗||2 +
M∑

j=1

αn,j ||z̄n − x∗||2 − αn,0αn,lg(||Slz̄n − xn||)

≤ αn,0||xn − x∗||2 +
M∑

j=1

αn,j ||xn − x∗||2 − αn,0αn,lg(||Slz̄n − xn||)

≤ ||xn − x∗||2 − αn,0αn,lg(||Slz̄n − xn||).

Therefore

αn,0αn,lg(||Slz̄n − xn||) ≤ ||xn − x∗||2 − ||un − x∗||2
≤ (||xn − x∗|| − ||un − x∗||) (||xn − x∗|| + ||un − x∗||)

≤ ||xn − un||
(||xn − x∗|| + ||un − x∗||) .

The last inequality together with (24), lim infn→∞ αn,0αn,l > 0 and the boundedness
of {xn} , {un} implies that limn→∞ g(||Slz̄n − xn||) = 0. Hence

lim
n→∞ ||Slz̄n − xn|| = 0. (25)

Moreover, from (24),(25) and ||Slxn − xn|| ≤ ||Slxn − Slz̄n|| + ||Slz̄n − xn|| ≤
||xn − z̄n|| + ||Slz̄n − xn|| we obtain

lim
n→∞ ||Slxn − xn|| = 0

for all l = 1, . . . , M . The same argument as in the proofs of Lemma 9 and Theorem
1 shows that the sequence {xn} converges strongly to x† := PF x0. The proof of
Theorem 3 is complete.

Remark 4 Putting M = N = 1 in Theorems 1 and 3, we obtain the corresponding
result announced in [1, Theorem 3.1].
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4 Numerical experiment

Let H = �1 be a Hilbert space with the standart inner product 〈x, y〉 := xy and
the norm ||x|| := |x| for all x, y ∈ H . Consider the bifunctions defined on the set
C := [0, 1] ⊂ H by

fi(x, y) := Bi(x)(y − x), i = 1, . . . , N,

where Bi(x) = 0 if 0 ≤ x ≤ ξi, and Bi(x) = exp(x − ξi) + sin(x − ξi) − 1 if
ξi ≤ x ≤ 1. Here 0 < ξ1 < . . . < ξN < 1. Obviously, conditions A3, A4 for the
bifunctions fi are satisfied. Further, since Bi(x) is nondecreasing on [0, 1],

fi(x, y) + fi(y, x) = (x − y)(Bi(y) − Bi(x)) ≤ 0.

Thus, each bifunction fi is monotone, and so is pseudomonotone. Moreover, Bi(x)

is 4-Lipschitz continuous. A straightforward calculation yields fi(x, y) + fi(y, z) −
fi(x, z) = (y − z)(Bi(x) − Bi(y)) ≥ −4|x − y||y − z| ≥ −2(x − y)2 − 2(y − z)2,

which proves the Lipschitz-type continuity of fi with c1 = c2 = 2. Finally,

fi(x, y) = Bi(x)(y − x) ≥ 0, ∀y ∈ [0, 1]
if and only if 0 ≤ x ≤ ξi , i.e., EP(fi) = [0, ξi]. Therefore ∩N

i=1EP(fi) = [0, ξ1].
Define the mappings

Sjx := xj sinj−1(x)

2j − 1
, j = 1, . . . , M.

Clearly, Sj : C → C and

|Sj
′(x)| = 1

2j − 1
|jxj−1 sinj−1(x) + (j − 1)xj sinj−2(x) cos(x)| ≤ 1.

Hence Sj , j = 1, . . . , M are nonexpansive mappings. Moreover, F(S1) = [0, 1]
and F(Sj ) = {0} , j = 2, . . . , M . Thus, the solution set

F =
(
∩N

i=1EP(fi)
) ⋂(

∩M
j=1F(Sj )

)
= {0}.

By Algorithm 1, we have

yi
n = argmin

{

ρBi(xn)(y − xn) + 1

2
(y − xn)

2 : y ∈ [0; 1]
}

. (26)

A simple computation shows that (26) is equivalent to the following relation

yi
n = xn − ρBi(xn), i = 1, . . . , N.

Similarly, we obtain

zi
n = xn − ρBi(y

i
n), i = 1, . . . , N. (27)

From (27), we can find the itermediate approximation z̄n which is the farthest from
xn among zi

n, i = 1, . . . , N . Therefore,

u
j
n = αnxn + (1 − αn)

z̄
j
n sinj−1(z̄n)

2j − 1
, j = 1, . . . , M. (28)
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From (28), we can find the intermediate approximation ūn which is farthest from
xn among u

j
n, j = 1, . . . , M . By Lemma 7, if xn = ūn, xn = 0 ∈ F . Otherwise,

if xn > ūn ≥ 0, by the proof of Theorem 1, 0 ∈ Cn, i.e., |ūn| ≤ |xn|, hence
0 ≤ ūn < xn. This together with the definitions ofCn andQn lead us to the following
formulas:

Cn =
[

0,
xn + ūn

2

]

;
Qn = [0, xn].

Therefore

Cn ∩ Qn =
[

0,min

{

xn,
xn + ūn

2

}]

.

Since ūn ≤ xn, we find
xn+ūn

2 ≤ xn. So

Cn ∩ Qn =
[

0,
xn + ūn

2

]

.

From the definition of xn+1 we obtain

xn+1 = xn + ūn

2
.

Thus we come to the following algorithm:
Initialization. x0 := 1; n := 1; ρ := 1/5; αn := 1/n; ε := 10−5; ξi := i/(N + 1),
i = 1, . . . , N ; N := 2 × 106; M := 3 × 106.
Step 1. Find the intermediate approximations yi

n in parallel (i = 1, . . . , N).

yi
n =

{
xn if 0 ≤ xn ≤ ξi,

xn − ρ[exp(xn − ξi) + sin(xn − ξi) − 1] if ξi < xn ≤ 1.

Step 2. Find the intermediate approximations zi
n in parallel (i = 1, . . . , N).

zi
n =

{
xn if 0 ≤ yi

n ≤ ξi,

xn − ρ[exp(yi
n − ξi) + sin(yi

n − ξi) − 1] if ξi < yi
n ≤ 1.

Step 3. Find the element z̄n which is farthest from xn among zi
n, i = 1, . . . , N .

in = argmax
{
|zi

n − xn| : i = 1, . . . , N
}

, z̄n = zin
n .

Step 4. Find the intermediate approximations u
j
n in parallel

u
j
n = αnxn + (1 − αn)

z̄
j
n sinj−1(z̄n)

2j − 1
, j = 1, . . . , M.

Step 5. Find the element ūn which is farthest from xn among u
j
n, j = 1, . . . , M .

jn = argmax
{
|uj

n − xn| : j = 1, . . . ,M
}

, ūn = z
jn
n .

Step 6. If |ūn − xn| ≤ ε then stop. Otherwise go to Step 7.
Step 7. xn+1 = xn+ūn

2 .
Step 8. If |xn+1 − xn| ≤ ε then stop. Otherwise, set n := n + 1 and go to Step 1.
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Table 1 Experiment with
αn = 1

n
T OL PHMEM

Tp Ts

10−5 5.23 9.98

10−6 5.86 11.25

10−8 7.57 14.33

The numerical experiment is performed on a LINUX cluster 1350 with 8 comput-
ing nodes. Each node contains two Intel Xeon dual core 3.2 GHz, 2GBRam. All the
programs are written in C.

For given tolerances we compare execution time of the parallel hybrid Mann-
extragradient method (PHMEM) in parallel and sequential modes.

We use the following notations:

PHMEM The parallel hybrid Mann-extragradient method
T OL Tolerance ‖xk − x∗‖
Tp Time for PHMEM’s execution in parallel mode (2CPUs - in seconds)
Ts Time for PHMEM’s execution in sequential mode (in seconds)

According to the above experiment, in the most favourable cases the speed up and
the efficiency of the parallel hybrid Mann-extragradient method are Sp = Ts/Tp ≈
2; Ep = Sp/2 ≈ 1, respectively (Table 1).

5 Concluding remarks

In this paper we proposed three parallel hybrid extragradient methods for finding a
common element of the set of solutions of equilibrium problems for pseudomonotone
bifunctions {fi}Ni=1 and the set of fixed points of nonexpansive mappings

{
Sj

}M

j=1 in
Hilbert spaces, namely:

– a parallel hybrid Mann-extragradient method;
– a parallel hybrid Halpern-extragradient method, and
– a parallel hybrid iteration-extragradient method.

The efficiency of the proposed parallel algorithms is verified by a simple numerical
experiment on computing clusters.
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