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Abstract Online solution of time-varying nonlinear optimization problems is con-
sidered an important issue in the fields of scientific and engineering research. In
this study, the continuous-time derivative (CTD) model and two gradient dynamics
(GD) models are developed for real-time varying nonlinear optimization (RTVNO).
A continuous-time Zhang dynamics (CTZD) model is then generalized and investi-
gated for RTVNO to remedy the weaknesses of CTD and GD models. For possible
digital hardware realization, a discrete-time Zhang dynamics (DTZD) model, which
can be further reduced to Newton-Raphson iteration (NRI), is also proposed and
developed. Theoretical analyses indicate that the residual error of the CTZD model
has an exponential convergence, and that the maximum steady-state residual error
(MSSRE) of the DTZD model has an O(τ 2) pattern with τ denoting the sampling
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gap. Simulation and numerical results further illustrate the efficacy and advantages
of the proposed CTZD and DTZD models for RTVNO.

Keywords Time-varying nonlinear optimization · Derivative method ·
Gradient dynamics (GD) · Zhang dynamics (ZD) · Discrete-time

1 Introduction

The online solution of optimization problems is considered a basic and important
issue, and has been widely encountered in the scientific and engineering fields
[1–9]. As one of the important branches, nonlinear optimization has been analyzed
and widely applied in the engineering fields. Given its fundamental roles, numer-
ous algorithms have been proposed and investigated to solve nonlinear optimization
problems [7–12]. A family of scaled conjugate gradient algorithms for large-scale
minimization was defined in [10] and compared with well known algorithms. In [11],
Dai and Liao proposed a conjugate gradient method based on the secant condition,
although their method did not necessarily generate a descent search direction. In [12],
Yasushi and Hiroshi proposed conjugate gradient methods based on secant conditions
that generate descent search directions, they also proved the convergence properties
of these methods. By proposing a three-term conjugate gradient algorithm for large-
scale optimization using subspace minimization technique, Andrei [3] proved that
the search directions are descent, and that they satisfy the Dai-Liao conjugacy condi-
tion discussed in [11]. However, these algorithms were generalized and developed for
solving static nonlinear optimization problems; thus, they might not be effective in
handling time-varying optimization problems. Time-varying optimization is different
from the static one as the former changes with the time; for example, the objec-
tive function relates to time t that is a unidirectional uniform (or say, even) stream
parameter. Thus, the time derivative is important in obtaining an accurate solution for
time-varying optimization.

Traditional numerical algorithms aiming at static optimization assume that the
optimization problem does not change during the computational time. Thus, the cal-
culated solution is directly used in the optimization problem after the calculation.
A computational method designed intrinsically for static optimization, such as the
Newton-Raphson iteration (NRI) and the methods presented in [7–12], can be viewed
as a traditional numerical algorithm. In addition, the dynamical approach, specifi-
cally the neural dynamics originating from the neural network, has several potential
advantages in real-time applications, including self-adaptation, parallel processing,
distributed storage, and hardware implementation [13–17]. For example, for solving
the optimization problem, gradient dynamics (GD), a typical dynamical approach,
is often exploited by defining an ordinary differential equation (ODE), such that the
solution of the optimization problem corresponds to a stable equilibrium point of the
dynamical ODE system [18]. Therefore, the solution of the dynamical system forms
a continuous trajectory, which begins from the initial point and ends at the solution of
the original optimization problem. In addition to those common advantages, changing
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with the problem variation and exploiting the time derivative, Zhang dynamics has
predictive power to some extent. Thus, in this study, a novel continuous-time Zhang
dynamics (CTZD) model is generalized, developed, and investigated for real-time
varying nonlinear optimization (RTVNO). Moreover, for potential digital hardware
(e.g., digital computer or digital circuit) realization, a discrete-time Zhang dynamics
(DTZD) model, which can be further reduced to NRI as a special case of the DTZD
model, is developed and studied for RTVNO.

The rest of this study is organized into five sections. In Section 2, the problem
formulation of RTVNO is presented. Then, the continuous-time derivative (CTD)
model and two GD models are developed as the bases of solution and comparison.
The CTD model is sensitive to the initial value and the perturbations and is unable
to solve RTVNO in a robust manner. Meanwhile, the GD models do not exploit the
time derivative, thereby inducing lagging errors. To remedy the weaknesses of the
CTD and GD models, the CTZD model is proposed. For the potential digital hard-
ware realization, the DTZD model is developed and studied for RTVNO in Section 3.
In Section 4, theoretical analyses indicate that the residual error of the CTZD model
has an exponential convergence, and that the maximum steady-state residual error
(MSSRE) of the DTZD model has an O(τ 2) pattern, with τ denoting the sam-
pling gap. Theoretical analyses in this section also illustrate that the MSSRE of any
method, which is designed intrinsically for solving static optimization problems and
now employed for solving online discrete-time RTVNO, is O(τ). In Section 5, the
simulation and numerical results of the RTVNO examples, which are synthesized by
the proposed CTZD and DTZD models as well as other models comparatively, are
presented. In Section 6, the conclusion of this study is presented, along with the final
remarks.

2 Problem formulation and continuous-time solutions

To build the basis for further investigation, the problem formulation is presented ini-
tially in this section. Subsequently, the CTD, GD and CTZD models are presented,
along with their design procedures.

2.1 Problem formulation

The aim is to solve, for each t ∈ [0, +∞), the problem given by

min
x(t)∈Rn

f (x(t), t) ∈ R, (1)

where time-varying nonlinear mapping function f (·, ·) : R
n × [0, +∞) → R is

second-order differentiable and bounded below. We need to find the time-varying
optimization solution x(t) ∈ R

n in real time t , such that the smooth RTVNO function
depicted in (1) achieves its minimum value at each time instant.
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To obtain the online solution of RTVNO (1), we primarily define g(x(t), t) as

g(x(t), t) = ∂f (x(t), t)
∂x(t)

=
[

∂f

∂x1
,

∂f

∂x2
, · · · ,

∂f

∂xn

]T

= [g1(x(t), t), g2(x(t), t), · · · , gn(x(t), t)]T ∈ R
n, (2)

where ∂f/∂xi = ∂f (x(t), t)/∂xi(t) = gi(x(t), t), ∀i ∈ {1, 2, · · · , n}, with g(·, ·)
denoting the differentiable nonlinear mapping function derived from f (x(t), t), and
with superscript T denoting the transpose operator of a vector or matrix. In addition,
we define the time-varying set

�∗(t) = {(t, x∗(t))|∂f (x∗(t), t)/∂x∗(t) = 0}
for time instant t ∈ [0, +∞). To achieve the desired path x∗(t) of RTVNO (1),
g(x(t), t) should be set to zero.

2.2 CTD and GD models

To solve RTVNO (1), an intuitive method is to exploit the derivative approach.
Specifically, to achieve the desired path x∗(t) on which g(x(t), t) = 0, the derivative
of the gradient g(x(t), t) with respect to time t should be zero for each time instant
t ∈ [0, +∞), that is,

0 = dg(x(t), t)
dt

= ∂g(x(t), t)
∂t

+ ∂g(x(t), t)
∂x(t)

dx(t)
dt

= ġt (x(t), t) + H(x(t), t)
dx(t)

dt
,

(3)
where Hessian matrix H(x(t), t) and time-derivative vector ġt (x(t), t) are defined,
respectively, as

H(x(t), t) =

⎡
⎢⎢⎢⎢⎣

∂g1
∂x1

∂g1
∂x2

· · · ∂g1
∂xn

∂g2
∂x1

∂g2
∂x2

· · · ∂g2
∂xn

...
...

. . .
...

∂gn

∂x1

∂gn

∂x2
· · · ∂gn

∂xn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

∂2f
∂x1∂x1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2∂x2

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂xn∂xn

⎤
⎥⎥⎥⎥⎥⎦

∈ R
n×n,

ġt (x(t), t) = ∂g(x(t), t)
∂t

= ∂2f (x(t), t)
∂x(t)∂t

∈ R
n,

with gi and xi denoting respectively the ith elements of g(x(t), t) and x(t), ∀i ∈
{1, · · · , n}. In this study, we assume that Hessian matrix H(x(t), t) is nonsingular
for any t . By rearranging equation (3), we obtain the CTD model expressed as

ẋ(t) = −H−1(x(t), t)
∂2f (x(t), t)

∂x(t)∂t
, with x(0) = x∗(0). (4)

Therefore, assuming that equation (4) satisfies the Lipschitz condition [19] and
that Hessian matrix H(x(t), t) is positive definite, then the solution to equation (4)
corresponds to the theoretical solution to RTVNO (1), which is concluded from the
ensuing Theorem 1.
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Theorem 1 Assume that the n-variable bounded below function f (x(t), t) (with
x(t) ∈ R

n and n � 2) has the second order continuous partial derivatives in
the neighborhood of point p∗ = x∗(tp) = [x∗

1 (tp), x
∗
2 (tp), · · · , x∗

n(tp)]T at time
instant tp, which satisfies fxi

(p∗, tp) = ∂f (x(t), t)/∂xi(t)|t=tp, x(tp)=p∗ = 0, ∀i ∈
{1, 2, · · · , n}. If the corresponding Hessian matrix H(p∗, tp) is positive definite, then
f (x(t), t) achieves its minimum at point p∗ of time instant tp.

Proof The second order Taylor expansion of f (x(t), t) with Lagrange remainder at
time instant tp around point p∗ is formulated as follows [19]:

f (x(tp), tp) = f (p∗, tp) + ∇Tf (p∗, tp)�x + 1

2
�T

x∇2f (p∗, tp)�x + r(p∗, tp)

= f (p∗, tp) + 1

2
�T

x∇2f (p∗, tp)�x + r(p∗, tp)

with

r(p∗, tp) = 1

3!
(

∂

∂x1(t)
�x1 + · · · + ∂

∂xn(t)
�xn

)3

f (x(t), t)|t=tp, x(t)=θx,

where �x = x(tp) − p∗ with �xi
being its ith element. Meanwhile, the ith element

of θx is (x∗
i (tp)+ θi(xi(tp)− x∗

i (tp))) with 0 < θi < 1, ∀i ∈ {1, 2, · · · , n}. Note that
term ∇Tf (p∗, tp)�x = 0 because fxi

(p∗, tp) = 0, ∀i ∈ {1, 2, · · · , n}. For simplicity
and clarity, we have the following definitions:

�f (p∗, tp) = f (x(tp), tp) − f (p∗, tp),
q(p∗, tp) = �T

x∇2f (p∗, tp)�x = �T
xH(p∗, tp)�x.

Subsequently, we obtain �f (p∗, tp) = (p∗, tp)/2 + r(p∗, tp). When x(tp) → p∗,
r(p∗, tp) → 0. Term r(p∗, tp) is considerably smaller than q(p∗, tp)/2. Thus, the
sign of q(p∗, tp) is consistent with that of �f (p∗, tp). By contrast, q(p∗, tp) is a
quadratic term related to �x; thus, when H(p∗, tp) is positive definite, q(p∗, tp) > 0
always holds true. In addition, for �f (p∗, tp) > 0, we have f (x(tp), tp) > f (p∗, tp).
Hence, if the corresponding Hessian matrix H(p∗, tp) is positive definite, then func-
tion f (x(t), t) achieves its minimum at point p∗ of time instant tp. The proof is
complete.

The gradient-descent method is a conventional approach that is frequently used
to solve the static optimization problem. For comparative purposes, two models
of gradient dynamics are developed and exploited to solve RTVNO (1). By fol-
lowing gradient-descent design method, we could initially define a norm-based or
square-based energy function, such as ε = ‖∂f (x)/∂x‖2

2/2. Subsequently, a typical
continuous-time adaptation rule based on the negative-gradient information leads to
the differential equation given by

ẋ(t) = −γ
∂ε

∂x
= −γHT(x(t), t)

∂f (x(t), t)
∂x(t)

= −γH(x(t), t)
∂f (x(t), t)

∂x(t)
, (5)
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where design parameter γ > 0 is used to scale the convergence rate of the GD model,
which should be selected appropriately for numerical stability. In addition, another
GD model can be directly derived from ε = f (x), and is formulated as

ẋ(t) = −γ
∂ε

∂x
= −γ

∂f (x(t), t)
∂x(t)

. (6)

For presentation convenience, GD models (5) and (6) are termed GD-1 model
and GD-2 model, respectively, in this study. Assuming that GD-1 model (5) [or GD-
2 model (6)] satisfies Lipschitz condition [19] and that Hessian matrix H(x(t), t)
is positive definite, Theorem 1 proves that the solution to the GD-1 model (5) [or
GD-2 model (6)] corresponds to the theoretical solution to RTVNO (1). CTD model
(4) and GD-1 model (5) [or GD-2 model (6)] are investigated further by compar-
ing their respective performances for the online solution of RTVNO (1). On the one
hand, CTD model (4) exploits the time derivative [i.e., term ∂2f (x(t), t)/∂x(t)∂t]
during the real-time solution process, whereas GD-1 model (5) [or GD-2 model (6)]
does not employ such important information. As a result, GD-1 model (5) [or GD-2
model (6)] adapts to the change of coefficients in a posterior passive manner, making
them unsuitable for solving RTVNO (1) in a predictive and accurate manner. On the
other hand, GD-1 model (5) [or GD-2 model (6)] exploits the error-feedback infor-
mation [i.e., term ∂f (x(t), t)/∂x(t)] during the real-time solution process, whereas
CTD model (4) does not. Supposing that x0 is not found accurately in advance for
various reasons, including round-off errors, then g(x0, t0) 	= 0, and g(x(t), t) would
in general be propagated and remain nonzero at every t as a result of solving equa-
tion (4). Even if x0 is found accurately, perturbations or computational errors (e.g.,
truncation or round-off errors) may still occur in the problem data during the process,
resulting in g(x(t), t) 	= 0 for all t ≥ 0, in general. From the viewpoint of control,
the norm of the error of a method can be interpreted as a measure of the distance of
the current solution x(t) from the zero of g(x(t), t), and the error can be used as an
input to obtain a robust solution despite the occurrence of perturbations or computa-
tional errors [20–22]. Therefore, the error-feedback information is indispensable in
achieving a robust and accurate solution for the online solution of RTVNO (1). Thus,
a new method combining the advantages of the CTD model (4) and GD-1 model (5)
[or GD-2 model (6)] while remedying their weaknesses is required.

2.3 CTZD model

The CTZD model proposed in this subsection combines the error-feedback informa-
tion and the time-derivative information, thereby obtaining good robustness and high
accuracy for the online solution of RTVNO (1).

To monitor and control the solving process of RTVNO (1), we define the following
vector-valued indefinite error-function as

e(t) = [e1(t), e2(t), · · · , en(t)]
T = g(x(t), t), (7)

where ej (t) = gj (x(t), t) is the j th element of e(t), ∀j ∈ {1, 2, · · · , n}. Evidently,
if the error-function e(t) converges to zero, then the solution x(t) converges to the



Numer Algor (2016) 73:115–140 121

desired path x∗(t). To make every element of e(t) converge to zero, a CTZD design
formula is adopted as

de(t)
dt

= −γΦ(e(t)), i.e.,
dg(x(t), t)

dt
= −γΦ(g(x(t), t)), (8)

where design parameter γ > 0 is defined the same way as before. In addition, Φ(·) :
R

n → R
n denotes a vector array of activation function, and the element of Φ(·) is

denoted by φ(·). As proven in the ensuing Theorems 2 and 3, CTZD design formula
(8) is asymptotically stable (specifically, exponentially stable) and drives the residual
error e(t) during the real-time process to zero in an exponential manner. Generally
speaking, any monotonically increasing odd activation function φ(·) can be used to
construct the dynamics model. Different choices of activation function φ(·) may lead
to different convergence performance. In this study, three activation functions (i.e.,
the linear, power-sigmoid and hyperbolic sine activation functions) are applied to
construct the CTZD model. These functions are expressed as

– the linear (li) activation function:

φli(ei) = ei;
– the power-sigmoid (ps) activation function (with p = 3 and ξ = 4):

φps(ei) =
{

1+exp(−ξ)
1−exp(−ξ)

1−exp(−ξei )
1+exp(−ξei )

, if |ei | < 1,

e
p
i , if |ei | � 1;

– and the hyperbolic sine (hs) activation function (with m = 3):

φhs(ei) = exp(eim)

2
− exp(−eim)

2
.

Expanding CTZD design formula (8) obtains the differential equation given by

H(x(t), t)ẋ(t) = −γΦ(g(x(t), t)) − ġt (x(t), t). (9)

If Hessian matrix H(x(t), t) is nonsingular, the above dynamics can be rewritten
as

ẋ(t) = −H−1(x(t), t) (γΦ(g(x(t), t)) + ġt (x(t), t))

= −H−1(x(t), t)
(

γΦ

(
∂f (x(t), t)

∂x(t)

)
+ ∂2f (x(t), t)

∂x(t)∂t

)
, (10)

where x(t), starting from randomly-generated initial condition x(0) ∈ R
n, denotes

the state of the dynamics corresponding to x∗(t) ∈ R
n of RTVNO (1). Solving CTZD

model (10) instead of CTD model (4) is then expected to take care of the e(t) incurred
during the process, by driving it to zero asymptotically (specifically, exponentially).
In addition, with the use of error-feedback information and time-derivative informa-
tion, CTZD model (10) is expected to solve RTVNO (1) in a robust and accurate
manner. If Hessian matrix H(x(t), t) is positive definite, then x(t) corresponds to the
theoretical solution to RTVNO (1).

As stated in Section 2.2, CTD model (4) and GD model (5) [or (6)] should satisfy
Lipschitz condition for the online solution of RTVNO (1). By contrast, the pro-
posed CTZD model (10) does not require such an assumption because it satisfies
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the Lipschitz condition naturally. For simplicity and for improved understanding, we
investigate CTZD design formula (8) for the scalar case, that is, ėi (t) = −γφ(ei(t))

with ei(t) being the ith element of e(t). In the ensuing Theorems 2 and 3, as proven
by Lyapunov theory, the dynamic system ėi (t) = −γφ(ei(t)) possesses the global
exponential convergence property. The resultant ei(t) of such a dynamic system,
starting from any randomly-generated initial state ei(0), exponentially converges to
zero. Hence, for a given initial state ei(0), ei(t) is bounded within interval [ei(0), 0]
[corresponding to ei(0) < 0] or [0, ei(0)] [corresponding to ei(0) > 0].
For the dynamic system ėi (t) = −γφ(ei(t)), ei(t) is bounded within interval
[−|ei(0)|, |ei(0)|] (where symbol | · | denotes the absolute value of a scalar). Based
on the aforementioned analysis, we further obtain the Lipschitz constant L for the
general activation function situation, which is given by

L = max

{
φei

(ei) = ∂φ(ei)

∂ei

}
, with ei ∈ [−|ei(0)|, |ei(0)|] .

That is, as the activation function φ(·) exploited in this work satisfies Lipschitz
condition, the dynamic system ėi (t) = −γφ(ei(t)) with any initial value ei(0) has a
unique zero-converging solution ei(t), of which the existence and uniqueness of the
CTZD solution are guaranteed naturally.

Specifically, based on these results, we have the following corresponding Lips-
chitz constants for the linear, power-sigmoid, and hyperbolic-sine activation func-
tions employed in this work:

– For the linear activation function,

Lli = max{φei
(ei) = 1} = 1.

– For the power-sigmoid activation function,

Lps =
{

max
{
φei

(ei) = 1+exp(−4)
1−exp(−4)

8 exp(−4ei )

(1+exp(−4ei ))
2

}
, if |ei | < 1,

max
{
φei

(ei) = 3e2
i

}
, if |ei | � 1;

=
{

2.0746, if |ei(0)| < 1,

3e2
i (0), if |ei(0)| � 1.

– For the hyperbolic-sine activation function,

Lhs = max
{
φei

(ei) = 3(exp(3ei) + exp(−3ei))/2
}

= 3(exp(3|ei(0)|) + exp(−3|ei(0)|))
2

.

Each activation function satisfies Lipschitz condition; hence, the existence and
uniqueness of the CTZD solution are guaranteed naturally. This means that, with a
given initial condition, the proposed CTZD model (10) derived from CTZD design
formula (8) generates a unique solution, which corresponds to the theoretical solution
to RTVNO (1), provided that Hessian matrix H(x(t), t) is positive definite.
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3 Discrete-time solutions

For potential digital hardware (e.g., digital computer or digital circuit) realization, a
DTZD model is generalized and developed in this section. Consider the following
discrete-time RTVNO with computational time interval [tk, tk+1) ∈ [0, +∞) given
by

min
x(tk+1)∈Rn

f (x(tk+1), tk+1) ∈ R (11)

where f (x(tk+1), tk+1) is assumed to be generated or measured from the smoothly
time-varying signal f (x(t), t) by sampling at time instant t = (k + 1)τ (denoted as
tk+1). In addition, τ > 0 denotes the sampling gap, and k = 0, 1, 2, · · · denotes the
update index.

In the online solution process of discrete-time RTVNO (11), computation has
to be performed based on the present and/or previous data. For example, at time
instant tk , only the known information can be used, such as x(tk), f (x(tk), tk) and its
derivatives, instead of unknown information, such as f (x(tk+1), tk+1) and its deriva-
tives, to compute the unknown vector x(tk+1) during the computational time interval
[tk, tk+1). Thus, through the present and/or previous data, the objective is to deter-
mine the unknown vector x(tk+1) of the unknown function f (x(tk+1), tk+1) during
[tk , tk+1), such that (11) achieves its minimal value at each time instant. At the start
of the computation (i.e., at time instant t0 = 0), we could not compute x(t0) based on
pervious data; thus x(t0) can be randomly generated or directly set as x∗(t0), which is
computed in advance for achieving better performance, where x∗(t0) is the theoretical
solution of (11) at time instant t0 = 0.

Corresponding to Section 2.3, we define an updating function u(x, t) as

u(x(t), t) = −H−1(x(t), t)
(

γΦ

(
∂f (x(t), t)

∂x(t)

)
+ ∂2f (x(t), t)

∂x(t)∂t

)
.

Subsequently, to discretize the CTZD model, we use Euler method [24] and obtain

x(tk+1) = x(tk) + τu(x(tk), tk), tk+1 = tk + τ.

Exploiting the linear activation function array, we obtain the equation given by

x(tk+1) = x(tk) − H−1(x(tk), tk) (hg(x(tk), tk) + τ ġt (x(tk), tk)) , (12)

where step-size h = τγ > 0. Unfortunately, in numerous engineering applications,
determining the analytical form or numerical value of ġt (x(t), t) may be difficult
(or even impossible). Thus, ġt (x(t), t) may generally be estimated from g(x(t), t) by
employing Euler backward-difference rule expressed as

ġt (x(tk), tk) ≈ g (x(tk), tk) − g (x(tk), tk−1)

τ
. (13)

From CTZD model (10), we derive the DTZD model for RTVNO (11) as

x(tk+1) = x(tk) − H−1(x(tk), tk) ((h + 1)g(x(tk), tk) − g(x(tk), tk−1)) . (14)
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Without g(x(t0), t−1), we could not approximate ġt (x(t0), t0) using (13).
Therefore, we simply set ġt (x(t0), t0) = 0 and use x(t1) = x(t0) −
hH−1(x(t0), t0)g(x(t0), t0) to initialize DTZD model (14). If the power-sigmoid or
the hyperbolic sine activation function array is applied to construct DTZD model,
then we have

x(tk+1) = x(tk) − H−1(x(tk), tk) (hΦ(g(x(tk), tk)) + g(x(tk), tk) − g(x(tk), tk−1)) ,

(15)
where Φ = Φps or Φ = Φhs. In addition, if NRI model [24] is exploited to solve
RTVNO (11), we have

x(tk+1) = x(tk) − H−1(x(tk), tk)g(x(tk), tk), (16)

which can be viewed as a special case of DTZD model (14), with h = 1 and without
using the approximation of ġt (x(tk), tk). Moreover, the discrete form of CTD model
(4) via Euler method [i.e., the discrete-time derivative (DTD) model] can be obtained
correspondingly as

x(tk+1) = x(tk) − H−1(x(tk), tk) (g(x(tk), tk) − g(x(tk), tk−1)) (17)

with x(t0) = x∗(0). Therefore, by exploiting the approximation of time-derivative
information and the error-feedback information in a combinative manner, DTZD
model (14) is expected to have better performance than NRI model (16) and DTD
model (17).

4 Theoretical analyses and results

In this section, theoretical analyses and results of CTZD model (10) and DTZD model
(14) for solving RTVNO are presented as follows.

Theorem 2 Consider RTVNO (1). Suppose that the corresponding Hessian matrix
is positive definite. If monotonically increasing odd activation-function array Φ(·) is
employed, then state x(t) ∈ R

n of CTZD model (10), starting from randomly gener-
ated initial state x(0) ∈ R

n, converges to the theoretical solution to RTVNO (1) as
t → +∞.

Proof Define a Lyapunov function candidate [25] as

V (x(t), t) = 1

2
‖g(x(t), t)‖2

2 = 1

2
gT(x(t), t)g(x(t), t)

= 1

2

n∑
j=1

g2
j (x(t), t) = 1

2

n∑
j=1

(
∂f (x(t), t)

∂xj (t)

)2

� 0, (18)

which guarantees the positive-definiteness of Lyapunov function candidate
V (x(t), t); that is, V (x(t), t) > 0 for any gj (x(t), t) 	= 0, and V (x(t), t) = 0 only
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for each gj (x(t), t) = 0, with j ∈ {1, 2, · · · , n}. The time derivative V̇ (x(t), t) along
the element trajectories of CTZD model (10) becomes

V̇ (x(t), t) = dV (x(t), t)
dt

=
n∑

j=1

gj (x(t), t)
dgj (x(t), t)

dt
=−γ

n∑
j=1

gj (x(t), t)φ(gj (x(t), t))

= −γ

n∑
j=1

∂f (x(t), t)
∂xj (t)

φ

(
∂f (x(t), t)

∂xj (t)

)
. (19)

As the element of Φ(·) [i.e., φ(·)] is a monotonically increasing odd function, we
get

φ

(
∂f (x(t), t)

∂xj (t)

)⎧⎨
⎩

> 0, if ∂f (x(t), t)/∂xj (t) > 0,

= 0, if ∂f (x(t), t)/∂xj (t) = 0,

< 0, if ∂f (x(t), t)/∂xj (t) < 0.

Hence we have

∂f (x(t), t)
∂xj (t)

φ

(
∂f (x(t), t)

∂xj (t)

){
> 0, if ∂f (x(t), t)/∂xj (t) 	= 0,

= 0, if ∂f (x(t), t)/∂xj (t) = 0,

which guarantees the final negative-definiteness of V̇ (x(t), t). The Lyapunov func-
tion candidate (18) is positive definite and its time derivative (19) is negative definite,
thus satisfying the requirement of Lyapunov theory. Hence, based on Lyapunov the-
ory, starting from randomly generated initial state x(0), state x(t) of CTZD model
(10) converges to the desired path x∗(t) ∈ R

n. According to Theorem 1, if the cor-
responding Hessian matrix H(x(t), t) is positive definite, then state x(t) ∈ R

n of
CTZD model (10) converges to the theoretical solution to RTVNO (1) as t → +∞.
The proof is complete.

Theorem 3 In addition to Theorem 2, CTZD model (10) possesses the following
properties.

1) If the linear activation function array is exploited, the exponential convergence
with rate γ in terms of ∂f (x(t), t)/∂x(t) → 0 is achieved for CTZD model (10).

2) If the power-sigmoid activation function array is exploited, superior con-
vergence is achieved for CTZD model (10), compared with the convergence
obtained using the linear activation function array.

3) If the hyperbolic sine activation function array is exploited, superior conver-
gence to the exponential convergence with rate mγ (m = 3) is achieved for
CTZD model (10), compared with the one obtained using the power-sigmoid
activation function array.

Proof We focus on the convergence properties of CTZD model (10) by using the
aforementioned three types of activation function array Φ(·).
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1) If CTZD model (10) is activated by the linear activation function array, then

dg(x(t), t)/dt = −γΦli (g(x(t), t)) = −γ g(x(t), t) = −γ
∂f (x(t), t)

∂x(t)
. (20)

From (20), we obtain

∂f (x(t), t)
∂x(t)

= g(x(t), t) = exp(−γ t)g(x(0), 0) = exp(−γ t)
∂f (x(0), 0)

∂x(0)
,(21)

which proves that CTZD model (10) possesses the exponential convergence with
rate γ in terms of ej (t) = gj (x(t), t) = ∂f (x(t), t)/∂xj (t) → 0.

2) Next, the power-sigmoid activation function array is discussed. The following
two sub-cases are considered in the application of the power-sigmoid activation
function array to CTZD model (10).

2.a) For |∂f (x(t), t)/∂xj (t)| � 1, the power function φ(ej (t)) = e
p
j (t) with

p = 3 is exploited specifically for this error range. Reviewing equations
(18) and (19), we have

V̇ps(x(t), t) = −γ

n∑
j=1

gjφps
(
gj

) = −γ

n∑
j=1

g
p+1
j

{
= −γ

∑n
j=1 g2

j = −γ
∑n

j=1 gjφli
(
gj

) = V̇li(t), ∀|gj | = 1,

< −γ
∑n

j=1 g2
j = −γ

∑n
j=1 gjφli

(
gj

) = V̇li(t), ∃|gj | > 1,

where V̇ps(x(t), t) and V̇li(x(t), t) denote V̇ (x(t), t) activated by the
power-sigmoid activation function array and by the linear activation
function array, respectively [note that, in this proof, gj stands for
∂f (x(t), t)/∂xj (t) due to the space limitation]. Therefore, if the power-
sigmoid activation function array over error range |gj | > 1 is exploited,
superior convergence is achieved for CTZD model (10), compared with
the convergence obtained using the linear activation function array, in
which the exponential convergence rate is γ .

2.b) For |∂f (x(t), t)/∂xj (t)| < 1, the bipolar-sigmoid function is applied for
this error range. Reviewing Lyapunov function candidate V (x(t), t) =
‖∂f (x(t), t)/∂x(t)‖2

2/2 and equation (19) again over the error range, we
prove with ξ = 4 that

V̇ps(x(t), t) = −γ

n∑
j=1

gjφps
(
gj

)
< −γ

n∑
j=1

g2
j = −γ

n∑
j=1

gjφli
(
gj

)= V̇li(t), ∀|gj |<1,

which implies that, if the power-sigmoid activation function array is
applied over error range |gj | < 1, superior convergence is achieved for
CTZD model (10), in contrast with the result obtained using the linear
activation function array, in which the exponential convergence rate is γ .

The analysis of the two sub-cases shows that the power-sigmoid activa-
tion function array is utilized, and hence, superior convergence is achieved
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(to the exponential convergence of using the linear activation function
array with rate γ ).

3) Finally, the hyperbolic sine activation function array with m = 3 is discussed.
Applying Taylor expansion to the hyperbolic sine activation function, we obtain

φhs
(
gj

) =
(

exp(3gj )

2
− exp(−3gj )

2

)
= 1

2

(+∞∑
l=0

(3gj )
l

l! −
+∞∑
l=0

(−3gj )
l

l!

)

=
+∞∑
l=1

(3gj )
2l−1

(2l − 1)! > 3gj . (22)

Reviewing equations (19) and (22), for any |gj | 	= 0, we have

V̇hs(t) = −γ

n∑
j=1

gjφhs
(
gj

)
< −γ

n∑
j=1

3g2
j = 3V̇li(x(t), t),

V̇hs(t) = −γ

n∑
j=1

gjφhs
(
gj

)
< −γ

n∑
j=1

gjφps
(
gj

) = V̇ps(t),

which, together with V (x(t), t) = ‖∂f (x(t), t)/∂x(t)‖2
2/2, implies that, superior

convergence can be achieved for CTZD model (10) if we use the hyperbolic sine
activation function array, in contrast with the result obtained by using the linear acti-
vation function array and the power-sigmoid activation function array. In addition,
the convergence of ∂f (x(t), t)/∂x(t) → 0 using the hyperbolic sine activation func-
tion array is faster than the exponential convergence with rate mγ (where m = 3).
As such, the proof is complete.

Remark 1 As shown in Theorem 3, the residual error of CTZD model (10) for
RTVNO (1) with a linear activation function array is e(t) = e(0)exp(−γ t), where
e(0) is the initial value of e(t). Generally, a fast convergence rate is expected, which
requires that γ should be set sufficiently large. In addition, after the time period of
4/γ seconds, |ei(t)| [being the absolute value of the ith element of e(t)] would be
less than 1.85 % of |ei(0)|, ∀i ∈ {1, 2, · · · , n}. This means that, with γ = 400, |ei(t)|
is less than 0.0185 × |ei(0)| at t = 0.01 second, and less than 4.25 × 10−18 × |ei(0)|
at t = 0.1 second. Note that floating-point numbers have some limited precision in
a computer. For example, the spacing of floating-point numbers, “eps”, in MATLAB
environment is of order 10−16 (i.e., 2−52). Thus, this result is appropriate in practical
applications. This means that when the residual error is less than 4.25×10−18×|ei(0)|
at t = 0.1 second, the time-varying optimization of f (x(t), t) is solved in a pointwise
and accurate manner in real time t .

Remark 2 From Theorem 1, we know that the positive definiteness of Hessian matrix
H(x∗(t), t) guarantees that function f (x(t), t) achieves its minimum at x∗(t). How-
ever, during the real-time solution process, it may be difficult or even impossible to
have x∗(t) and compute Hessian matrix H(x∗(t), t) to judge its positive definiteness.
Considering the fact that residual error g(x(t), t) converges exponentially to zero, it
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is practicable and reasonable to have ∂f (x(t), t)/∂x(t) = 0 [i.e., x(t) satisfies the
assumption of fxi

(p∗) = 0 in Theorem 1] and to compute Hessian matrix H(x(t), t)
as an estimate of H(x∗(t), t) to judge its positive definiteness.

Theorem 4 Consider discrete-time RTVNO (11). For the general case of step-size
h ∈ (0, 2), the MSSRE of DTZD model (14), limk→∞ ‖g(x(tk+1), tk+1)‖2, is O(τ 2),
where ‖g(x(tk+1), tk+1)‖2 denotes the two-norm of g(x(tk+1), tk+1). In addition, for
the special case of h = 1, the maximum residual error ‖g(x(tk+1), tk+1)‖2 of DTZD
model (14) from the second update is theoretically O(τ 2).

Proof Corresponding to equation (12), DTZD model (14) utilizes the simple approx-
imation of ġt (x(tk), tk) via (g(x(tk), tk) − g(x(tk), tk−1))/τ when k � 1. We know
that

g(x(tk), tk) − g(x(tk), tk−1)

τ
= ġt (x(tk), tk) + O(τ ),

where O(τ ) denotes a vector with each element being O(τ). Therefore, for DTZD
model (14), x̃(tk) = x(tk+1) − x(tk) can be written as

x̃(tk) = −H−1(x(tk), tk) ((hg(x(tk), tk) + τ(ġt (x(tk), tk) + O(τ ))) . (23)

Using Taylor expansion, we have

g(x(tk+1), tk+1) = g(x(tk) + x̃(tk), tk + τ) (24)

= g(x(tk), tk) + H(x(tk), tk )̃x(tk) + ġt (x(tk), tk)τ + O(τ 2),

where O(τ x̃(tk)) and O(‖̃x(tk)‖2
2) are absorbed into O(τ 2), as they are on the same

order of magnitude [26]. Substituting (23) into (24), we obtain

g(x(tk+1), tk+1) = (1 − h)g(x(tk), tk) + O(τ 2). (25)

Then, we have

g(x(tk+1), tk+1) = (1 − h)g(x(tk), tk) + O(τ 2)

= (1 − h)
(
(1 − h)g(x(tk−1), tk−1) + O(τ 2)

)
+ O(τ 2)

= (1 − h)2g(x(tk−1), tk−1) + (1 − h)O(τ 2) + O(τ 2)

...

= (1 − h)kg(x(t1), t1) + (1 − h)k−1O(τ 2) + · · · + O(τ 2)

= (1 − h)kg(x(t1), t1) + (1 − h)k − 1

1 − h − 1
O(τ 2)

= (1 − h)kg(x(t1), t1) + 1 − (1 − h)k

h
O(τ 2). (26)

Note that, as mentioned before, we use x(t1) = x(t0)−hH−1(x(t0), t0)g(x(t0), t0)
for the initialization of DTZD model (14). For equation (26), as 0 < h < 2, we have
−1 < 1 − h < 1 and limk→∞(1 − h)k = 0. Thus, from (26), we have

lim
k→∞ ‖g(x(tk+1), tk+1)‖2 =

∥∥∥∥ 1

h
O(τ 2)

∥∥∥∥
2

= O(τ 2).
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In addition, it follows from (25) that, if h = 1, then residual error
‖g(x(tk+1), tk+1)‖2 of DTZD model (14) from the second update is O(τ 2). Thus, the
proof is complete.

Theorem 5 The maximum residual error ‖g(x(tk+1), tk+1)‖2 of NRI model (16) for
solving discrete-time RTVNO (11) is O(τ).

Proof Reviewing and simplifying (24) with x̃(tk) = x(tk+1) − x(tk) and NRI model
(16), we have

g(x(tk+1), tk+1) = ġt (x(tk), tk)τ + O(τ 2),

‖g(x(tk+1), tk+1)‖2 = ‖ġt (x(tk), tk)τ + O(τ 2)‖2 = O(τ),

which is also in view of the second-order differentiability of f (x(t), t), i.e., the
continuity and finiteness of ġt (x(t), t). The proof is complete.

Various methods have been proposed for the fast and accurately solution of the
static optimization problem, and for this reason, the time-derivative information is not
utilized during the real-time solution process. Thus, we have the following theorem,
which reveals that the MSSRE of any method designed intrinsically to solve the static
optimization problem and employed for the online solution of discrete-time RTVNO
(11) is O(τ).

Theorem 6 Suppose that a traditional method (i.e., a method designed intrinsically
to solve the static optimization problem that does not utilize the time-derivative infor-
mation) converges to the optimal solution to a static optimization problem within
computational time interval [0, τ ). If the traditional method is employed for the
online solution of discrete-time RTVNO (11), the MSSRE of the traditional method is
O(τ).

Proof As always, assume that the time derivative of x∗(t) exists, and dx∗
i (tk)/dt =

δi(tk) at time instant t = kτ , with x∗
i (t) being the ith element of vector x∗(t) and

δi(tk) being the finite time-derivative value of x∗
i (tk). Then, limτ→0 x̃∗

i (tk)/τ =
dx∗

i (tk)/dt = δi(tk). Thus, x̃∗
i (tk) ≈ δi(tk)τ . That is, x̃∗

i (tk) changes in an O(τ)

pattern. In mathematics, x̃∗
i (tk) = O(τ) and x̃∗(tk) = O(τ ). Note that, within

computational time interval [kτ, (k + 1)τ ), the traditional method converges to the
optimal solution x∗(tk) to the discrete-time RTVNO (11) sampled at time instant
t = kτ , i.e., x(tk+1) = x∗(tk). Moreover, at time instant t = (k + 1)τ , the difference
between the solution generated by the traditional method and the optimal solution is
x(tk+1)− x∗(tk+1) = x∗(tk)− x∗(tk+1) = −̃x∗(tk) = O(τ ). Using Taylor expansion,
and considering the second-order differentiability of f (x(t), t) [i.e., the continuity
and finiteness of H(x∗(tk+1), tk+1)], we have

g(x(tk+1), tk+1) = g(x∗(tk+1) + O(τ ), tk+1)

= g(x∗(tk+1), tk+1) + H(x∗(tk+1), tk+1)O(τ ) + O(τ 2)

= g(x∗(tk+1), tk+1) + O(τ ).
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Given that g(x∗(tk+1), tk+1) = 0, we further have

‖g(x(tk+1), tk+1)‖2 = ‖O(τ )‖2 = O(τ).

The proof is complete.

As such, from Theorem 6, the MSSRE of each method in [7–12, 20] has an O(τ)

pattern for solving online discrete-time RTVNO (11).

5 Simulative and numerical verification

In this section, computer simulations and numerical experiments are provided to ver-
ify the efficacy of the proposed CTZD and DTZD models for the RTVNO. These
simulations are carried out in MATLAB version 7.6.0 environment using a per-
sonal digital computer equipped with a central processing unit of 2.20-GHz Inter(R)
Core(TM) 2 Duo E4500, 2.0-GB memory and a Microsoft Windows XP Professional
operating system.

5.1 CTZD, GD and CTD for solving RTVNO

To illustrate and compare the aforementioned exponential convergence of the CTZD
model for the RTVNO, in this subsection, one example of the RTVNO formulation
is handled by using CTZD model (10), GD models (5) and (6) as well as CTD model
(4), which is expressed as

min
x(t)∈R4

f (x(t), t) = (x1(t) + t)2 + (x2(t) + t)2 + (x3(t) − exp(−t))2

+0.1(t − 1)x3(t)x4(t) − (x1(t) + ln(0.1t + 1))(x2(t) + sin(t))

+(x1(t) + sin(t))x3(t) + (x4(t) + exp(−t))2. (27)

In addition, all the continuous-time models in this study are simulated using
MATLAB routine “ode45” [19].

Figure 1 illustrates the simulation results of the comparison between CTZD model
(10) and GD models (5) and (6) in terms of their solutions to RTVNO (27). All
states x(t) start from initial states x(0) = [0.5 ∗ j, 4 − j, j − 8, j − 6]T, where
j = 0, 1, · · · , 5. Specifically, Fig. 1a illustrates the element trajectories of state x(t)
of CTZD model (10) using the hyperbolic sine activation function array over time
interval [0 10] s. To investigate the convergence performance of CTZD model (10)
and GD models (5) and (6), the residual error ‖e(t)‖2 = ‖∂f (x(t), t)/∂x(t)‖2 is
monitored during the solving process. The residual errors of CTZD model (10) for
solving RTVNO (27) are shown in Fig. 1b. As shown in the figure, all the resid-
ual errors of CTZD model (10) converge rapidly to zero. In addition, the minimal
eigenvalue of H(x(t), t), as shown in Fig 1c, is larger than zero during the solving
process. This means that RTVNO (27) has its time-varying minimum trajectory over
time interval [0 10] s. Results of the residual errors of GD models (5) and (6) are
shown in Fig. 1d and e, respectively. Starting with different initial states x(0), all
residual errors of CTZD model (10) converge rapidly to zero, while GD models (5)
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Fig. 1 Comparison of CTZD model (10) and GD models (5) and (6) for solving RTVNO (27) with
γ = 10, where the CTZD model is activated by the hyperbolic sine function array

and (6) display relatively large lagging errors. In addition, Fig. 1f shows the compar-
ison of f (x(t), t) generated by CTZD model (10) and GD models (5) and (6). As can
be seen, f (x(t), t) generated by CTZD model (10) is smaller than those generated
by GD models (5) and (6). An analysis of Fig. 1b, c and f shows that x(t) of CTZD
model (10) achieves the time-varying minimum solution of the objective function
depicted in RTVNO (27) in real time t .

Furthermore, as seen from Figs. 1, 2 and 3 as well as in Table 1, in using differ-
ent activation functions, CTZD model (10) displays different performances on the
convergence of the residual error, even with the same value of the design parameter
γ . Specifically speaking, the performance of the power-sigmoid activation func-
tion array is better than that of the linear activation function array; nevertheless, the
hyperbolic sine activation function array has the best performance among the three
activation function arrays, which further validates Theorem 3. In addition, as shown
in Table 1, the convergence time of CTZD model (10) can be expedited from order
10−3 to 10−9 s, as design parameter γ is increased from 103 to 109. The above results
substantiate the analysis that CTZD model (10) has an exponential convergence
property, which can be expedited by increasing the value of γ .

Next, CTD model (4) and CTZD model (10) are utilized to solve RTVNO (27)
for further investigation and comparison. The corresponding simulative and numeri-
cal results are shown in Fig. 4. As seen from Fig. 4a, starting with x∗(0), the residual
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Fig. 2 Residual errors of CTZD model (10) using different activation function arrays and γ = 10 for
solving RTVNO (27)

errors of CTD model (4) and CTZD model (10) are both relatively small. However,
as time t increases, the residual error of CTD model (4) becomes slightly larger than
that of CTZD model (10). This is evidently attributed to the lack of error feedback
in CTD model (4). Thus, the performance of the CTD model (4) may grow worse
as computational errors accumulate. Meanwhile, observed from Fig. 4b, the resid-
ual error of CTD model (4) does not converge to zero, while that of CTZD model
(10) converges rapidly to zero with initial state x(0) 	= x∗(0). These comparative
results have illustrated once again the efficacy of the proposed CTZD model for
time-varying nonlinear optimization.

Remark 3 Zhang dynamics, where the state dimension can be one or more, has
been derived from the Zhang neural network (which originated from the research of
Hopfield neural network). Zhang dynamics is viewed as a systematic approach to
the online solution of time-varying problems, including the scalar situation; it dif-
fers from the conventional GD in terms of the problem addressed, error function,
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Fig. 3 Residual errors of CTZD model (10) using hyperbolic sine activation functions with different
values of γ for solving RTVNO (27)
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Table 1 Average convergence times (in seconds) of CTZD model (10) solving RTVNO (27) using
different activation function arrays with varying values of γ to achieve precision ‖e(t)‖2 < 0.01

γ = 103 γ = 105 γ = 107 γ = 109

Linear 0.0078 7.8172 × 10−5 7.8915 × 10−7 7.9920 × 10−9

Power-sigmoid 0.0035 3.4515 × 10−5 3.4410 × 10−7 3.4395 × 10−9

Hyperbolic sine 0.0027 2.7475 × 10−5 2.7505 × 10−7 2.7530 × 10−9

design formula, dynamic equation and the utilization of time derivatives. Thus, A
comparison of CTZD model (10) and GD models (5) and (6) is provided below.

1) The design of CTZD model (10) is based on the elimination of each element of
a vector-valued indefinite error function. In contrast, the design of GD models
(5) and (6) is based on the elimination of the whole norm-based or square-based
scalar-valued nonnegative or, at least, lower-bounded energy function [25, 27].

2) The design method of GD models (5) and (6) are intrinsically made for static
nonlinear optimization with constant coefficients. Thus, it can only approxi-
mately approach the theoretical solution of a time-varying problem. In contrast,
the design method of CTZD model (10) is a new method intrinsically made for
time-varying problems [23]. Thus, it converges to the exact theoretical solution
of RTVNO.

3) GD models (5) and (6) do not utilize the time-derivative information of RTVNO
(1). Thus, they may not be effective enough in solving an RTVNO problem. In
contrast, CTZD model (10) methodically and systematically exploits the time-
derivative information of the objective function depicted in (1) during its real-
time solving process. This is why CTZD model (10) converges to the theoretical
solution of an RTVNO [28].

4) CTZD model (10) exponentially converges to the time-varying theoretical solu-
tion. In contrast, GD models (5) and (6) generate only approximate results for
the time-varying theoretical solution with larger lagging errors [29].
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Fig. 4 Residual errors of CTD model (4) and CTZD model (10) (with γ = 10 and linear activation
functions) for solving RTVNO (27), where each initial state in subfigure b is x(0) = [0, 4,−8,−6]T
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Fig. 5 Residual errors of DTZD model (14) (with h = 1) and NRI model (16) for solving RTVNO (27)

5) The investigation of different activation functions (e.g., the power-sigmoid
function and the hyperbolic sine function) leads to more choices for better
performance. In addition, the convergence speed of CTZD model (10) using
nonlinear activation functions is faster than that obtained when using linear
activation functions. In contrast, GD models (5) and (6) lack such activation
functions. Thus, the application of activation function can be seen as an advan-
tage. Owing to the design parameter γ (being a multiplier of the exponential
convergence rate), another effective factor can be expedited for the convergence
of the CTZD model (10).

5.2 DTZD, NRI and DTD for solving RTVNO

In this subsection, three time-varying optimization problems are solved as three
examples to illustrate the efficacy and advantages of DTZD model (14) for the
RTVNO solving. The results are then compared with those of NRI model (16) and
DTD model (17).

5.2.1 Example 1

In this example, RTVNO (27) is considered, and its residual errors synthesized by
DTZD and NRI models are shown in Fig. 5. As seen from Fig. 5a, starting with
the initial state [0.5, 3, −7, −5]T, the MSSRE synthesized by DTZD model (14) is
of order 10−4. In addition, the MSSRE synthesized by NRI model (16) is of order
10−2, which is roughly 100 times larger than that of DTZD model (14). Figure 5b
further shows that DTZD model (14) only needs two updates to converge to order
10−4. These results substantiate the important role of time-derivative information in
obtaining a more precise solution.

Table 2 shows more detailed MSSRE data of the two models for solving RTVNO
(27) with respect to different values of sampling gap τ and step-size h. The following
important facts are summarized from the table. First, the MSSREs of DTZD model
(14) roughly change in an O(τ 2) pattern. Second, the MSSREs of NRI model (16)
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Table 2 MSSREs of DTZD model (14) and NRI model (16) for solving RTVNO (27)

Parameters

Sampling gap (s)

Model Step-size τ = 0.1 τ = 0.01 τ = 0.001 τ = 0.0001

DTZD model (14) h = 0.50 0.0421 3.8840 × 10−4 3.8834 × 10−6 3.8833 × 10−8

h = 0.75 0.0279 2.5901 × 10−4 2.5815 × 10−6 2.5814 × 10−8

h = 1.00 0.0236 1.9420 × 10−4 1.9419 × 10−6 1.9418 × 10−8

h = 1.25 0.0185 1.5533 × 10−4 1.5481 × 10−6 1.5481 × 10−8

h = 1.50 0.0157 1.2955 × 10−4 1.3038 × 10−6 1.3038 × 10−8

h = 1.75 0.0155 1.1594 × 10−4 1.1583 × 10−6 1.1582 × 10−8

h = 2 1.1765 1.1023 2.8313 5.7615

NRI model (16) 0.4485 0.0450 0.0045 4.4871 × 10−4

change in an O(τ) pattern. Third, step-size h affects the convergence performance of
DTZD model (14).

In addition, the corresponding numerical results in terms of computational time
[including the MSSRE and the average computing time per update (ACTPU)] with
respect to different values of sampling gap τ are listed in Table 3. As seen from
the table, the MSSREs synthesized by DTZD model (14) are much smaller than
those by NRI model (16), whereas each computational time of those models is of the
same order. As such, the proposed DTZD model is an effective method for improv-
ing the accuracy of the solution of software computation and/or digital hardware
implementation for RTVNO.

Table 3 Comparison between DTZD model (14) (with h = 1) and NRI model (16) in terms of MSSRE
and ACTPU for solving RTVNO (27)

Sampling gap τ (s) Model MSSRE ACTPU (s)

τ = 0.1 DTZD model (14) 0.0236 1.9095 × 10−3

NRI model (16) 0.4485 1.9039 × 10−3

τ = 0.01 DTZD model (14) 1.9420 × 10−4 1.8346 × 10−3

NRI model (16) 0.0450 1.8048 × 10−3

τ = 0.007 DTZD model (14) 9.6322 × 10−5 1.8534 × 10−3

NRI model (16) 0.0315 1.8436 × 10−3

τ = 0.005 DTZD model (14) 4.9929 × 10−5 1.8370 × 10−3

NRI model (16) 0.0225 1.8325 × 10−3

τ = 0.002 DTZD model (14) 9.0214 × 10−6 1.8162 × 10−3

NRI model (16) 0.0090 1.7886 × 10−3
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Fig. 6 Residual errors of DTZD model (15) (with h = 0.5) and with different activation functions for
solving RTVNO (27)

The power-sigmoid and the hyperbolic sine activation function arrays are devel-
oped for solving RTVNO (27). Figure 6 consists of two subfigures: the left subfigure
presents the residual errors of DTZD model (15) with τ = 0.1 s, whereas the right
one presents those of DTZD model (15) with τ = 0.01 s. The residual errors of
DTZD model (15) with the power-sigmoid and the hyperbolic sine activation func-
tion arrays are slightly less than that obtained with the linear activation function array.
This finding illustrates that the power-sigmoid and the hyperbolic sine activation
function arrays can achieve relatively better performance for the DTZD model.

Moreover, DTZD model (14) and DTD model (17) are utilized to solve RTVNO
(27), and the corresponding numerical results are shown in Fig. 7. As seen from Fig.
7a, starting with x∗(0), the residual error of DTZD model (14) converges to near zero
with two updates and remains relatively small, whereas the residual error of DTD
model (17) is much larger and of order 10−2. As update index k increases, the residual
error of DTD model (17) increases due to the lack of error feedback. In addition, as
seen from Fig. 7b, the residual error of DTD model (17) with initial state x(0) 	=
x∗(0) does not converge to zero, whereas that of DTZD model (14) converges to
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Fig. 7 Residual errors of DTZD model (14) (with h = 1) and DTD model (17) for solving RTVNO (27),
where τ = 0.01 and each initial state in subfigure b is x(0) = [0, 4,−8,−6]T
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zero (or say rigorously, near zero) with only one or two updates. Therefore, the DTD
model (17) is highly sensitive to the initial value (as well as the perturbations), thus
limiting its usage in practical applications. These comparative results have illustrated
once again the efficacy of the proposed DTZD model for time-varying nonlinear
optimization.

5.2.2 Example 2

In this example, we consider the RTVNO given by

min
x(t)∈R10

f (x(t), t) = (4 + sin(t))x2
1(t) + 2(x2(t) − exp(−t))2 + 2x2

3(t) + x2
4(t)

− cos(t)x3(t)x4(t) + 2x3(t) exp(−t)x2(t) + (1 + cos(t))x2
5(t)

+(x9(t) − exp(−t))2 + x2
8(t) + log(0.1t + 1)x9(t)x10(t)

+2x2
6(t) + 2x2

7(t) + x1(t)x7(t) + (x10(t) − t)2

− sin(t)x7(t)x8(t) + 2x7(t) − exp(−t)x6(t)x5(t). (28)

In this and in the subsequent examples, the corresponding solution x(t), the min-
imal eigenvalue of the Hessian matrix H(x(t), t) and the generated f (x(t), t) are
omitted due to the complexity of the RTVNO and the space limitation. Therefore,
we only present the residual errors synthesized by DTZD model (14) and NRI
model (16), with the initial state being [0.1, 1.4, −0.8, −0.4, 0, 0, −0.5, 0, 1, 0]T.
The numerical experimental results are shown in Fig. 8. As seen from the figure, the
MSSRE synthesized by DTZD model (14) is of order 10−5, whereas that synthesized
by NRI model (16) is of order 10−2, which is around 1000 times larger than that of
DTZD model (14). In addition, as observed from Fig. 8b, the residual error of DTZD
model (14) achieves the order of 10−4 (specifically, 8.7 × 10−4) after two updates.
Note that the residual error of DTZD model (14) from update index k = 200 to
k = 1000 is finally of order 10−5.
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Fig. 8 Residual errors of DTZD model (14) (with h = 1) and NRI model (16) for solving RTVNO (28)
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Fig. 9 Residual errors of DTZD model (14) (with h = 1) and NRI model (16) for solving RTVNO (29)
with dimension n = 30

5.2.3 Example 3

In this example, a more complicated problem, which originates from equation (22)
in [4], is considered

min
x(t)∈Rn

f (x(t), t) =
n
2∑

i=1

4x2
2i−1 + 2 sin(t)x2i−1x2i + 2x2

2i − 22x2i−1 − 2x2i . (29)

The corresponding numerical experimental results, synthesized by DTZD model (14)
and NRI model (16) starting with [0, · · · , 0]T ∈ R

n, are shown in Fig. 9 and Table 4.
Results shown in Fig. 9a and b are similar to those shown in Figs. 5 and 8, which

Table 4 Comparison between DTZD model (14) (with h = 1) and NRI model (16) in terms of MSSRE
and ACTPU for solving RTVNO (29)

Sampling gap τ (s) Dimension n Model MSSRE ACTPU (s)

τ = 0.1 10 DTZD model (14) 0.0878 2.1815 × 10−3

NRI model (16) 1.2834 2.1762 × 10−3

τ = 0.01 10 DTZD model (14) 8.7716 × 10−4 2.1045 × 10−3

NRI model (16) 0.1270 2.0428 × 10−3

τ = 0.1 20 DTZD model (14) 0.1241 5.0671 × 10−3

NRI model (16) 1.8149 4.9381 × 10−3

τ = 0.01 20 DTZD model (14) 1.200 × 10−3 4.9745 × 10−3

NRI model (16) 0.1779 4.8377 × 10−3

τ = 0.1 30 DTZD model (14) 0.1521 9.0315 × 10−3

NRI model (16) 2.1740 8.9771 × 10−3

τ = 0.01 30 DTZD model (14) 1.5142 × 10−3 8.9817 × 10−3

NRI model (16) 0.2195 8.6771 × 10−3
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substantiate the superiority of the proposed DTZD model (14) again. Meanwhile,
Table 4 lists the corresponding MSSRE and ACTPU data, with respect to different
values of sampling gap τ and dimension n. As seen from the table, the MSSREs
synthesized by DTZD model (14) are much smaller than those by NRI model (16)
even for the relatively larger scale application, whereas their computational times are
of the same order. Several important facts are summarized from the table. First, the
MSSRE of DTZD model (14) changes in an O(τ 2) pattern. Second, the MSSRE of
NRI model (16) changes in an O(τ) pattern. Third, as dimension n increases, the
ACTPU increases. Restricted by the current computer operating environment, the
ACTPU of DTZD model (14) for solving RTVNO (29) with dimension n = 30 is
close to the sampling gap τ = 0.01 s.

6 Conclusions

In this study, the CTD model and two GD models (i.e., GD-1 and GD-2) have been
presented and employed for the RTVNO solving. By following Zhang et al’s design
method, the CTZD model has been proposed, generalized and investigated to com-
bine the advantages of CTD and GD models while remedying their weaknesses.
Moreover, the DTZD model has been developed for potential digital hardware real-
ization. Besides, a bridge has been built to connect the NRI model and DTZD model.
Theoretical analyses have shown that the residual error of the CTZD model has an
exponential convergence, and that the MSSRE of the DTZD model has an O(τ 2)

pattern with τ denoting the sampling gap. The MSSRE of any method designed
intrinsically for solving the static optimization problem and employed for the online
discrete-time RTVNO solving is shown to have an O(τ) pattern. Moreover, sim-
ulative and numerical results further illustrated the efficacy and advantages of the
proposed CTZD and DTZD models for RTVNO solving. Considering that the Hes-
sian matrix H(x(t), t) involved in the proposed CTZD and DTZD models is required
to be invertible in the online solution process of the RTVNO problem, the investiga-
tion of new models for RTVNO with a singular Hessian matrix may be an interesting
but difficult research topic in the future.
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