
Numer Algor (2016) 72:875–891
DOI 10.1007/s11075-015-0072-9

ORIGINAL PAPER

Numerical treatment of a well-posed Chebyshev Tau
method for Bagley-Torvik equation with high-order
of accuracy

P. Mokhtary1

Received: 19 March 2015 / Accepted: 26 October 2015 / Published online: 3 November 2015
© Springer Science+Business Media New York 2015

Abstract The main purpose of this study is to develop and analyze a new high-order
operational Tau method based on the Chebyshev polynomials as basis functions for
obtaining the numerical solution of Bagley-Torvik equation which has a important
role in the fractional calculus. It is shown that some derivatives of the solutions of
these equations have a singularity at origin. To overcome this drawback we first
change the original equation into a new equation with a better regularity properties by
applying a regularization process and thereby the operational Chebyshev Tau method
can be applied conveniently. Our proposed method has two main advantages. First,
the algebraic form of the Tau discretization of the problem has an upper triangular
structure which can be solved by forward substitution method. Second, Tau approxi-
mation of the problem converges to the exact ones with a highly rate of convergence
under a more general regularity assumptions on the input data in spite of the singu-
larity behavior of the exact solution. Numerical results are presented which confirm
the theoretical results obtained and efficiency of the proposed method.
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1 Introduction

This paper deals with the numerical treatment of the following Bagley-Torvik
equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Au′′(t) + BD 3
2 u(t) + Cu(t) = f (t), t ∈ � = [0, 1]

u(0) = u′(0) = 0,

A �= 0, B, C ∈ R, f (t) ∈ C(�).

(1)

In this study, Dq denotes the Caputo fractional derivative operator of order q ∈ Q
+

given by (See [9, 17, 26])

Dqu(t) = I�q�−q
(
u(�q�)) ,

where the symbol �q� is the smallest integer greater than or equal to q. Iδ is the
fractional integral operator from order δ ∈ Q

+ defined by

Iδu(t) = 1

�(δ)

t∫

0

(t − s)δ−1u(s)ds.

Here �(δ) is the well known Gamma function and R,Q+ are (as usual) the set of
real numbers and positive rational numbers respectively. u(t) is an unknown function
and C(�) is the space of all continuous functions over �. It can be seen [9, 17, 26]
that if u(t) be a continuous function, we have

Dq
(
Iδu

) = Iδ−qu, 0 < q ≤ δ, (2)

where the fractional integral Iδ−qu exists.
Note that the homogeneous initial conditions in (1) are not restrictive because (1)

with non-homogeneous initial conditions u(0) = d0, u
′(0) = d1 can be converted to

the following Bagley-Torvik equation with homogeneous initial conditions
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Aũ′′(t) + BD 3
2 ũ(t) + Cũ(t) = f̃ (t),

ũ(0) = ũ′(0) = 0,

A �= 0, B, C ∈ R, f̃ (t) = f (t) − d0 − d1t ∈ C(�),

by a simple transformation ũ(t) = u(t) − d0 − d1t .
Such kind of equations arising in the motion of real physical systems, an immersed

plate in a Newtonian fluid and in a micro-electro-mechanical system (MEMS)
instrument that has been designed primarily to measure viscosity of fluids that are
encountered during oil well exploration; see [1, 10, 13, 26]. This equation was orig-
inally proposed by the authors of [28] and it thoroughly investigated by Podlubny
in his book [26]. The questions of existence and uniqueness of the solution to this
problem have been discussed in [19].
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Now, we try to describe the smoothness degree of the solutions of (1). To this end,
we assume that u′′(t) = v(t). From (2) and homogeneous initial conditions in (1),
we obtain

u(t) =
t∫

0

(t − s)v(s)ds = I2v, D 3
2 u = I 1

2 v, (3)

Using the relations above we can rewrite (1) as the following Abel integral
equation

Av(t) +
t∫

0

(t − s)−
1
2 K(t, s)v(s)ds = f (t), (4)

where K(t, s) = B√
π

+ C(t − s)
3
2 . In the following lemma we give the regularity

result of (4).

Lemma 1.1 [4, 18] Assume that A �= 0 and constants B, C are chosen such that
K(t, s) ∈ Cl(�×�) with K(t, t) �= 0 and l ≥ 1. If f (t) ∈ Cl(�) then the regularity
of the unique solution of (4) is described by

v(t) ∈ Cl(0, 1]
⋂

C(�), with |v′(t)| ≤ 1√
t
, for t ∈ (0, 1],

and the solution v(t) can be written in the form

v(t) =
∑

(j,k)

γj,kt
j+ k

2 + Vl(t),

where the coefficients γj,k are some constants, Vl(t) ∈ Cl(�) and (j, k) := {(j, k) :
j, k ∈ N0, j + k

2 < l}. Here N0 = N
⋃{0}, where N is(as usual) the set of natural

numbers.

From Lemma 1.1, we can conclude that the first derivative of v(t) has a singularity
near t = 0+ and behaves like 1√

t
. Thus, from (3) the regularity of the solution u(t)

of (1) is given by

u(t) ∈ Cl′(0, 1]
⋂

C2(�) with |u′′′(t)| ≤ 1√
t

for t ∈ (0, 1], l′ ≥ 3. (5)

Consequently, we have to develop a high-order method for obtaining the numeri-
cal solutions of (1). Many results on the numerical solutions of (1) were obtained by
authors. In [6], authors studied the generalized Taylor collocation method to approx-
imate the exact solutions of (1). In [7], authors presented the asymptotic stability
conditions for the exact and discretized Bagley-Torvik equations in terms of its coef-
ficients and a discretization stepsize. K. Diethelm and N. J. Ford [10] discussed
some approaches for obtaining the numerical solutions of (1). Furthermore, In [27]
authors applied a numerical method based on operational Haar wavelet to approx-
imate (1). Other approaches for obtaining an approximate solution for (1) can be
found in [19, 28, 29]. Recently, spectral methods have received considerable attention
for solving fractional differential equations, specially Bagley-Torvik equation (1).
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Bhrawy et al. [2, 3, 11] considered the shifted Jacobi and Laguerre spectral methods
for solving multi-term fractional differential equations. Eslahchi et al. [12] applied
collocation method for obtaining the numerical solution of the nonlinear fractional
integro-differential equations. In [14, 16, 20, 21, 23, 24] authors proposed spec-
tral Tau and collocation methods for obtaining the numerical solution of nonlinear
fractional Riccati differential equations, fractional integro-differential equations and
linear multi-term fractional differential equations where they also discussed the error
analysis of the proposed methods. Moreover, Pedas and Tamme [25] introduced a
new efficient spline collocation method for solving multi-term fractional differential
equations. But many of the techniques mentioned above have at least two main dif-
ficulties. First, many of these methods or have not proper convergence analysis or
if any, very restrictive assumptions including smoothness of the exact solution are
considered. Second, their spectral discretizations lead to badly conditioned algebraic
systems with full coefficient matrix which are very difficult to solve. Thus intro-
ducing and analyzing a well-posed spectral method with a high order of accuracy
for obtaining the numerical solution of (1) is very important and novel in the area.
In order to employ a well-posed and highly accurate numerical method for approxi-
mating the solution of the Bagley-Torvik equation (1) we propose a strategy mainly
consisting in the following two steps:

• First, we follow a stable and highly accurate strategy for obtaining approximate
solution vN(t) to the equivalent equation (4). To this end, Lemma 1.1 concludes
the first derivative of the solution v(t) has singularity at the origin and thereby
its Tau discretization leads to very poor convergence results. Thus, in order to
recover the high-order of convergence we use a regularization procedure that
allows us to improve the smoothness of the given functions and then to approx-
imate the solution with a satisfactory order of convergence using an operational
Tau method. Other property of this methodology is that we can represent the Tau
solution of the problem by solving a well-conditioned upper triangular linear
algebraic system.

• Second, from (3), we can find the approximate solution of the Bagley-Torvik
equation (1) by defining uN(t) = I2vN(t).

The reminder of this paper is organized as follows: In Section 2, we explain the
numerical treatment of the problem. In Section 3, we analyze convergence behav-
ior of the proposed method. In Section 4, we apply the proposed method developed
in Section 2 to several numerical examples to confirm the theoretical predictions
obtained in Section 3. In Section 5, we give our conclusions.

2 Numerical treatment of the problem

The main concern of this section is the numerical treatment of (4) by applying a well-
posed operational Chebyshev Tau method and extend the approximation obtained to
introduce the numerical solution of Bagley-Torvik equation (1). As we pointed out
in the previous section because of singularity of the first derivative of the solution
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v(t) of (4) (from Lemma 1.1) its Tau discretization concludes very poor convergence
results. In order to make it efficient for (4), the original equation will be changed into
a new integral equation which possesses a better smoothness properties by applying
a suitable variable transformation. To this end, we apply the variable transformation

t = x2, x = √
t, s = w2, w = √

s,

and change (4) as follows

Av̄(x) +
x∫

0

(x2 − w2)−
1
2 K̄(x, w)v̄(w)dw = f̄ (x), (6)

where
f̄ (x) = f (x2), K̄(x, w) = 2wK(x2, w2),

and
v̄(x) = v(x2) =

∑

(j,k)

γjkx
2j+k + Vl(x

2),

is the exact solution which has a more regularity properties compared with v(t).
Now, we present a well-posed operational Tau solution v̄N (x) to the transformed
equation (6) where Chebyshev polynomials have been employed as basis functions
and define vN(t) = v̄N (x) as the approximate solution of (4).

Assume that v̄(x) =
∞∑
i=0

aiTi(x) = aT = aT X is the Chebyshev series

expansion of the exact solution of (6) where a = [a0, a1, ..., aN , ...] and T :=
[T0(x), T1(x), ..., TN(x), ...]T is a shifted Chebyshev polynomial basis in � with
degree (Ti(x)) ≤ i for i = 0, 1, 2, ... . Also, T is an infinitely non-singular lower
triangular coefficient matrix and X = [1, x, x2, ..., xN , ...]T . Suppose that v̄N (x) is
a Chebyshev Tau approximation of degree N for v̄(x) as

v̄N (x) =
∞∑

i=0

aiTi(x) = a T = aT X, a = [a0, a1, ..., aN , 0, ...], (7)

and f̄ (x) is a given polynomial and consider

f̄ (x) =
∞∑

i=0

f̄ix
i = f X, f = [f̄0, f̄1, ..., f̄N , 0, ...]. (8)

If f̄ (x) is not polynomial, then it can be approximated by polynomials to any
degree of accuracy by Taylor series or any other suitable method.

We define

(Lv̄) (x) := Av̄(x) +
x∫

0

(x2 − w2)−
1
2 K̄(x, w)v̄(w)dw, (9)

and show how to replace the operator (9) by a matrix formulation of the operational
Chebyshev Tau method in the following theorem.
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Theorem 2.1 Assume that the approximate solution v̄N (x) is given by (7). Then we
have

(Lv̄N ) (x) := a B T ,

where

B = AI + T
(
BB1 + CB2

)
T −1,

I is the infinite identity matrix and

B1 :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 b1
0 0 · · ·

0 0 b1
1 0 · · ·

0 0 0 b1
2 0 · · ·

...
...

...
. . .

. . .
. . .

0 0 · · · 0 b1
N−2

. . .

0 0 · · · 0 b1
N−1

. . .

0 0 · · · 0
. . .

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, b1
i = �

(
1 + i

2

)

�
(

3+i
2

) , i = 0, 1, 2, ....

B2 :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 b2
0 0 · · ·

0 0 0 0 0 b2
1 0 · · ·

0 0 0 0 0 0 b2
2 0 · · ·

.

.

.
.
.
.

.

.

.
. . .

. . .
. . .

. . .
. . .

. . .

0 0 · · · · · · . . .
. . .

. . .
. . . b2

N−5

. . .

0 0 · · · · · · 0 0 0 0 b2
N−4

. . .

0 0 · · · · · · 0 0 0 0
. . .

0 0 · · · · · · 0 0 0
. . .

0 0 · · · · · · 0 0
. . .

0 0 · · · · · · 0
. . .

.

.

.
.
.
.

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, b2
i = 4

8 + 6i + i2
, i = 0, 1, 2, ... .

Proof From relations (7) and (9) we can write

(Lv̄N ) := a

⎛

⎝AT + T
x∫

0

(x2 − w2)−
1
2 K̄(x, w)Xwdw

⎞

⎠ , (10)
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where Xw := [1, w, w2, ..., wN, ...]. Thus, the integral term of (10) can be rewritten
as

x∫

0

(x2 − w2)−
1
2 K̄(x,w)Xwdw = B√

π

x∫

0

(x2 − w2)−
1
2 2wXwdw + C

x∫

0

(x2 − w2)2wXwdw

= 2B√
π

x∫

0

(x2 − w2)−
1
2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w

w2

.

.

.

wN+1

.

.

.

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dw

+2C

x∫

0

(x2 − w2)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w

w2

.

.

.

wN+1

.

.

.

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dw. (11)

By using the relations (See [22])

2√
π

x∫

0

(x2 − w2)−
1
2 w1+idw = b1

i x
1+i , i = 0, 1, ...,

2

x∫

0

(x2 − w2)w1+idw = b2
i x

4+i , i = 0, 1, ...,

we can rewrite (11) as
x∫

0

(x2 − w2)−
1
2 K̄(x, w)Xwdw =

(
BB1 + CB2

)
X. (12)

Substituting (12) into (10) we obtain

(Lv̄N ) := a
(
AT + T

(
BB1 + CB2

)
X

)

= a
(
AI + T

(
BB1 + CB2

)
T −1

)
T

= a B T ,

and we can conclude the result.

We are now ready to obtain the algebraic form of the Chebyshev Tau discretization
of (6). According to the Theorem 2.1 and the relation (8) we obtain

a B T = f T −1T .
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Duo to the orthogonality of {Tj (x)}∞j=0, after projecting the equation above on

{Tj (x)}Nj=0, we have

aNBN = f N
(
T N

)−1
, (13)

where aN = [a0, a1, ..., aN ], f N = [f̄0, f̄1, ..., f̄N ] and BN, T N are the principle
submatrices of order N + 1 from the matrices B and T respectively. Clearly, the
solution of the linear system (13) gives us the unknowns a0, a1, ..., aN .

Now, we give more details regarding the complexity analysis of the linear system
(13). In other words, we will explain that how we can compute the unknowns aN by
a well-posed technique. Our approach is based upon the impressive paper [15].

Consider the linear system (13). Multiplying its both sides by T N yields

aNBNT N = f N,

which can be rewritten as

aN
(
AT N + T N

(
BB1

N + CB2
N

))
= f N, (14)

where B1
N,B2

N are the principle submatrices of order N +1 from the matrices B1,B2

respectively. Defining

aN = aNT N = [ā0, ā1, ..., āN ], (15)

in (14) we have

aN
∏N = f N, (16)

where

∏N := AIN + BB1
N + CB2

N :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A Bb1
0 0 0 Cb2

0 0 · · · 0
0 A Bb1

1 0 0 Cb2
1 0 · · · 0

0 0 A Bb1
2 0 0 Cb2

2 0 · · · 0
.
.
.

.

.

.
.
.
.

. . .
. . .

. . .
. . .

. . .
. . .

.

.

.

0 0 · · · · · · . . .
. . .

. . .
. . .

. . .
.
.
.

0 0 · · · · · · A Bb1
N−4 0 0 Cb2

N−4
0 0 · · · · · · A Bb1

N−3 0 0
0 0 · · · · · · A Bb1

N−2 0
0 0 · · · · · · A Bb1

N−1
0 0 · · · · · · A

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(17)

is the non-singular (N +1)× (N +1) upper triangular matrix. IN is the the principle
submatrices of order N + 1 from I .

The matrix
∏N has two important advantages. First, each columns of this matrix

has at most three non-zero elements, i.e.,
∏N has sparse structure. Second, since

{
b1
i

}N−1
i=0 and

{
b2
i

}N−1
i=0 are strictly descending sequences, condition number of this

matrix remains bounded independently of approximation degree N for sufficiently
large values of N . These properties deduce the well-posedness of the proposed
strategy in obtaining the unknown vector aN .
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Now, we come to obtain the Chebyshev Tau representation v̄N (x) in (7). To this
end, from (15) it is sufficient that we find aN by solving (16) and set

aN = aN
(
T N

)−1
. (18)

Due to the upper triangular structure of
∏N , we can give components of the

unknown vector aN by solving (16) using forward substitution method as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ā0 = 1
A

f̄0,

āi = 1
A

(
f̄i − Bb1

i−1āi−1
)
, i = 1, 2, 3,

āi = 1
A

(
f̄i − Bb1

i−1āi−1 − Cb2
i−4āi−4

)
, i = 4, 5, ..., N.

(19)

Finally the approximate solution uN(t) from the original equation (1) can be given
as

uN(t) = I2vN(t) = I2v̄N (x).

3 Convergence analysis

In this section, we provide a suitable convergence analysis, which theoretically justi-
fies the high-order rate of convergence of the proposed method when applied to the
regularized equation (6).

We recall the following preliminaries which are needed in the sequel (See [5, 27])

• ci will denote some generic positive constants that are independent on N .
• ‖.‖∞ denotes the uniform norm and defines as ‖g‖∞ = max

x∈�
|g(x)|.

• L2
α,β(�) is the space of functions whose square is Lebesque integrable in �

relative to the shifted Jacobi weight function wα,β(x) = 2α+βxβ(1 − x)α for the
parameters α, β > −1 with the norm ‖g‖2

α,β = (g, g)α,β := ∫

�

g2(x)wα,β(x)dx.

Here, (., .)α,β is the weighted inner product formula.
• PN be the space of all algebraic polynomials of degree up to N .
• PN : L2

− 1
2 ,− 1

2
(�) → PN is the Chebyshev orthogonal projection which is a

mapping such that for any g ∈ L2
− 1

2 ,− 1
2
(�),

(g − PNg, φ)− 1
2 ,− 1

2
= 0, ∀φ ∈ PN.

• For r ≥ 0 and 0 ≤ k ≤ 1 we denote by Cr,k(�) the space of functions whose
r-th derivatives are Holder continuous with exponent k, endowed with the usual
norm

‖g‖r,k := max
0≤l≤r

max
x∈�

|g(l)(x)| + max
0≤l≤r

sup
x �=y

|g(l)(x) − g(l)(y)|
|x − y|k .
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When γ = 0, Ck,0(�) denotes the space of functions with k continuous
derivatives on �, also denotes Ck(�) and with norm ‖.‖k

In our analysis we shall apply the following Lemmas:

Lemma 3.1 [22, 27, 30] Concerning the truncation error of Chebyshev series, the
following estimates hold

‖g − PNg‖− 1
2 ,− 1

2
≤ c1N

−s‖g(s)‖− 1
2 +s,− 1

2 +s
, g(s) ∈ L2

− 1
2 +s,− 1

2 +s
(�), s ≥ 0.

(20)

‖g−PNg‖∞ ≤ c2 (1 + log N) N−(k+γ )‖g‖k,γ , g ∈ Ck,γ (�), k ≥ 0, γ ∈ [0, 1].
(21)

‖g − PNg‖∞ ≤ c3N
3
4 −s‖g(s)‖− 1

2 ,− 1
2
, g(s) ∈ L2

− 1
2 ,− 1

2
(�), s ≥ 1. (22)

Lemma 3.2 [8, 27] Consider the following linear weakly singular integral
operator

(Mg) (x) :=
x∫

0

(x − w)−
1
2 M(x, w)g(w)dw,

where M(x,w) is a given kernel function. If 0 < γ < 1
2 , then for any continuous

function g(x), there exists a positive constant c4 may depend on ‖M‖0,γ and ‖M‖∞
such that

‖Mg‖0,γ ≤ c4‖g‖∞.

Lemma 3.3 [8] (Gronwall inequality) Assume that g(x) is a non-negative, locally
integrable function defined on � which satisfies

g(x) ≤ b(x) + d

x∫

0

(x − w)mwng(w)dw, w ∈ �, m, n > −1,

where b(x) ≥ 0 and d ≥ 0. Then, there exists a constant c5 such that

g(x) ≤ b(x) + c5

x∫

0

(x − w)mwnb(w)dw, w ∈ �.

Now, we state and prove the main result of this section regarding the conver-
gence of the proposed method for obtaining the numerical solution of the regularized
equation (6).
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Theorem 3.4 Suppose that v̄N (x) is the Chebyshev Tau solution of (6) given by (7).
Then the following error estimates are hold

‖ēN‖∞ ≤ c12N
3
4 −s1‖v̄(s1)‖− 1

2 ,− 1
2
, (23)

‖ēN‖− 1
2 ,− 1

2
≤ c13N

−s2‖v̄(s2)‖− 1
2 +s2,− 1

2 +s2
+ c14(1 + log N)N

3
4 −s1−γ ‖v̄(s1)‖− 1

2 ,− 1
2
,

(24)
where γ ∈ (0, 1

2 ) and v̄(s1) ∈ L2
− 1

2 ,− 1
2
(�), v̄(s2) ∈ L2

− 1
2 +s2,− 1

2 +s2
(�) for s1 ≥ 1 and

s2 ≥ 0. ēN (x) = v̄(x) − v̄N (x) defines the error function.

Proof Considering (6), according to the proposed method we have

Av̄N(x) + PN

x∫

0

(x2 − w2)−
1
2 K̄(x, w)v̄N (w)dw = PN f̄ . (25)

Subtracting (6) from (25), we have

AēN(x) +
⎛

⎝

x∫

0

(x2 − w2)−
1
2 K̄(x,w)v̄(w)dw − PN

x∫

0

(x2 − w2)−
1
2 K̄(x,w)v̄N (w)dw

⎞

⎠

= ePN
(f̄ ), (26)

where ePN
(f̄ ) := f̄ (x) − PNf̄ . Using some simple manipulations we can rewrite

(26) as follows

AēN(x) = ePN
(f̄ ) − (S v̄ − PNS v̄N )

= ePN
(f̄ ) − (

ePN
(S v̄) + PNS ēN

)

= ePN
(f̄ ) − (

ePN
(S v̄) + S ēN − ePN

(S ēN )
)

= ePN
(f̄ ) − ePN

(f̄ − Av̄) − (
S ēN − ePN

(S ēN )
)

= AePN
(v̄) − (

S ēN − ePN
(S ēN )

)
,

which implies that

|ēN (x)| ≤ c6

x∫

0

(x − w)−
1
2 |ēN |dw +

∣
∣
∣
∣ePN

(v̄) + 1

A
ePN

(S ēN )

∣
∣
∣
∣ , (27)

where c6 = ‖ K̄(x,w)

A
√

x+w
‖∞ and

(S ēN ) (x) :=
x∫

0

(x2 − w2)−
1
2 K̄(x, w)ēN (w)dw.
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Applying Gronwall inequality, i.e., Lemma 3.3 in (27) yields

‖ēN‖∞ ≤ c7
(‖ePN

(v̄)‖∞ + ‖ePN
(S ēN )‖∞

)
. (28)

Using (21) and Lemma 3.2 in (28) we can get

‖ēN‖∞ ≤ c8
(‖ePN

(v̄)‖∞ + (1 + log N) N−γ ‖S ēN‖0,γ

)

≤ c9
(‖ePN

(v̄)‖∞ + (1 + log N) N−γ ‖ēN‖∞
)
.

The first inequality (23) can be achieved by applying (22) in the equation above
for sufficiently large values of N .

Now we prove the second estimate (24). To this end, using ‖.‖− 1
2 ,− 1

2
norm instead

of the uniform norm in (28) we have

‖ēN‖− 1
2 ,− 1

2
≤ c10

(
‖ePN

(v̄)‖− 1
2 ,− 1

2
+ ‖ePN

(S ēN )‖− 1
2 ,− 1

2

)

≤ c10

(
‖ePN

(v̄)‖− 1
2 ,− 1

2
+ ‖ePN

(S ēN )‖∞
)

. (29)

Applying (21) and Lemma 3.2 for ‖ePN
(S ēN )‖∞ in (29) we obtain

‖ēN‖− 1
2 ,− 1

2
≤ c11

(
‖ePN

(v̄)‖− 1
2 ,− 1

2
+ (1 + log N)N−γ ‖ēN‖∞

)
. (30)

The second estimate (24) can be concluded by applying the estimates (20) and
(23) in (30).

4 Numerical results

In this section, we report the numerical results for some Bagley-Torvik
equations (1) solved using the proposed numerical scheme. We illustrated three test
problems to show the performance and efficiency of the operational Chebyshev
Tau method which presented and analyzed in Sections 2 and 3 respectively. All of
the calculations performed on a PC running Mathematica software. In the results
obtained that follow we reported some crucial items regarding the condition number

of the matrix
∏N

(

Condition number :=
∥
∥
∥
∏N

∥
∥
∥

2

∥
∥
∥
∥

(∏N
)−1

∥
∥
∥
∥

2

)

, order of conver-

gence

(

Order :=
∣
∣
∣
∣
∣

log εN2

εN1

log
N2
N1

∣
∣
∣
∣
∣
, εN = ‖ēN‖− 1

2 ,− 1
2

)

and L2 and L∞-norms of the errors

obtained.

Example 4.1 Consider (1) with f (t) := 15
4

√
t + 15

8

√
πt + t

5
2 and A = B = C = 1.

The exact solution of this problem is given by u(t) = t
5
2 .

By applying the technique described in Section 2, with N = 5 we approximate
the solution as follows

u5(t) = I2 (v̄5(x)) , x = √
t, (31)
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where

v̄5(x) =
5∑

i=0

aiTi(x) = a5T 5, a5 := [a0, a1, ..., a5],

is the Tau solution of the regularized equation (6) with f̄ (x) = f (x2). From (18) we
have

a5 = a5
(
T 5

)−1
,

where a5 is the solution of the upper triangular system (16) with f 5 :=
[0, 15

4 , 15
8

√
π, 0, 0, 1] and

∏5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2√
π

0 0 1
2 0

0 1
√

π

2 0 0 4
15

0 0 1 4
3
√

π
0 0

0 0 0 1 3
√

π

8 0
0 0 0 0 1 16

15
√

π

0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Applying (19) and then (18) we obtain

a5 :=
[

0,
15

4
, 0, 0, 0, 0

]

, a5 :=
[

15

8
,

15

8
, 0, 0, 0, 0

]

.

Thus, the Tau representation v̄5(x) can be presented by

v̄5(x) = a0T0(x) + a1T1(x) = 15

4
x.

From (31) the approximate solution of the Bagley-Torvik problem considered in
this example is given by

u5(t) = I2
(

15

4
x

)

= I2
(

15

4

√
t

)

= t
5
2 ,

which is the exact solution.

Table 1 Numerical treatment
of Example 4.2 N Numerical results

L∞-error L2-error Order

5 1.58 × 10−1 4.01 × 10−2 2.93

15 8.14 × 10−3 1.6 × 10−3 7.62

25 1.96 × 10−4 3.27 × 10−5 13.06

35 2.73 × 10−6 4.03 × 10−7 19.08

45 2.49 × 10−8 3.33 × 10−9 25.57

55 1.59 × 10−10 1.97 × 10−11 32.42

65 7.62 × 10−13 8.74 × 10−14 39.6

75 2.8 × 10−15 3.02 × 10−16 47.05
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Table 2 Condition number of
the matrix

∏N in the Example
4.2

N Condition number

5 6.1994

15 6.85831

25 6.85832

35 6.85832

45 6.85832

55 6.85832

65 6.85832

75 6.85832

85 6.85832

95 6.85832

Example 4.2 Consider (1) with A = B = 1 and C = −1. We choose f (t) so that
the exact solution of the problem is u(t) = sin

(
t2√t

)
.

We solved the problem by applying the technique described in Section 2 and the
results obtained are given in Tables 1 and 2. Thus, based on Tables 1 and 2 we can
deduce that:

• The L∞ and L2
− 1

2 ,− 1
2
-norms errors decay with the approximation degree N

which show that by employing the proposed method we obtained very accurate
and reliable results.

• The condition number of the coefficient matrix
∏N for N > 15 remains bounded

independently of approximation degree N which concludes the well-posedness
of the proposed method.

• The order of convergence has increased with the approximation degree N which
confirms the high-order of accuracy of the proposed method regardless of the
singular behavior of the exact solution.

Table 3 Numerical treatment
of Example 4.3 N Numerical results

L∞-error L2-error Order

5 1.67 × 10−3 5.29 × 10−4 5.67

10 4.19 × 10−5 1.04 × 10−5 17.59

15 3.63 × 10−8 8.28 × 10−9 14.93

20 5.7 × 10−10 1.13 × 10−10 27.07

25 1.49 × 10−12 2.69 × 10−13 35.95

30 2.29 × 10−15 3.83 × 10−16 46.42
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Table 4 Condition number of
the matrix

∏N in the
Example 4.3

N Condition number

5 2.13825

15 2.19295

25 2.19295

35 2.19295

45 2.19295

55 2.19295

65 2.19295

75 2.19295

85 2.19295

95 2.19295

Example 4.3 [13] Consider (1) with A = C = 1, B = β
√

π, f (t) = 0, u(0) =
1, u′(0) = 0 which is developed for a Micro-Mechanical system (MEMS) instru-
ment that has been designed primarily to measure the viscosity of fluids that are
encountered during oil well exploration. Interpretation of the constant β is given is
[13]. The exact solution of the problem may be expressed as

u(t) = 1 −
∞∑

j=0

∞∑

k=0

(−1)k(−β
√

π)j (j + k)!t2+2k+ j
2

j !k!
(

2 + 2k + j
2

)
�

(
2 + 2k + j

2

) .

The asymptotic behavior of the exact solution is u(t) = 1 − t2

2 + 8t
5
2

75 −O(t3). We
implement the proposed method to obtain an approximate solution for this problem
with β = 1

5 and report the results obtained in Tables 3 and 4. Indeed, from Tables 3
and 4 we can observe that:

• The proposed numerical scheme is stable and well-posed due to bounded condi-
tion numbers for the coefficient matrix

∏N independently of the approximation
degree N .

• The numerical errors are reasonably accurate and as the degree of approximation
gets larger the superiority of the new method becomes more evident.

5 Conclusion

This work has been concerned with the well-posed Chebyshev Tau method and its
convergence analysis for Bagley Torvik type fractional differential equations. Due
to the fact that some derivatives of the solutions of these equations usually have a
weak singularity at origin, we proceed a suitable regularization process to improve
the smoothness of the given functions and then to approximate the solution with a
satisfactory order of convergence. The proposed method has two main advantages.
First, the approximate solution obtains by solving a well-conditioned upper triangular
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linear algebraic system and then Tau representation of the problem possesses a high-
order of convergence under a more general regularity assumptions on the input data.
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