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Abstract The purpose of this paper is to study split feasibility problems and fixed
point problems concerning left Bregman strongly relatively nonexpansive mappings
in p-uniformly convex and uniformly smooth Banach spaces. We suggest an itera-
tive scheme for the problem and prove strong convergence theorem of the sequences
generated by our scheme under some appropriate conditions in real p-uniformly con-
vex and uniformly smooth Banach spaces. Finally, we give numerical examples of
our result to study its efficiency and implementation. Our result complements many
recent and important results in this direction.
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1 Introduction

Let £ and E> be two p-uniformly convex real Banach spaces which are also uni-
formly smooth. Let C and Q be nonempty, closed and convex subsets of £ and E3
respectively, A : E; — E3 be a bounded linear operator and A* : E5 — E7 be the
adjoint of A. The split feasibility problem (SFP) is to find a point

x € C such that Ax € Q. (1.1)

We assume that SFP (1.1) has a nonempty solution set Q := {y € C : Ay € Q} =
cnA-! (Q). Then, we have that Q2 is a closed and convex subset of E7.

The SFP in finite-dimensional Hilbert spaces was first introduced by Censor and
Elfving [5] for modelling inverse problems which arise from phase retrievals, medical
image reconstruction and recently in modelling of intensity modulated radiation ther-
apy [3]. The SFP attracts the attention of many authors due to its application in signal
processing. Various algorithms have been invented to solve it (see, for example, [4,
12, 15, 17, 30-33] and references therein).

In solving SFP (1.1) in p-uniformly convex real Banach spaces which are also
uniformly smooth, Schopfer et al. [22] proposed the following algorithm: For x| €
Ei{andn > 1, set

Xn+1 = HCJEI [JEI (xn) — tnA*JEz(Axn - PQ(AX,,))], (1.2)

where I1¢ denotes the Bregman projection and J the duality mapping. Clearly the
above algorithm covers the Byrne’s CQ algorithm [3]

Xny1 = Pc(xn —yA*(I — PQ)Axn)»n > 1,

which is found to be a gradient-projection method (GPM) in convex minimization as
a special case. They established the weak convergence of algorithm (1.2) under the
condition that E is p-uniformly convex, uniformly smooth and the duality mapping
of E; is sequentially weak-to-weak-continuous.

We remark here that the condition that the duality mapping of E; is sequentially
weak-to-weak-continuous assumed in [22] excludes some important Banach spaces,
such as the classical L,(2 < p < 00) spaces.

Recently, Wang [28] modified the above algorithm (1.2) and proved strong con-
vergence for the following multiple-sets split feasibility problem (MSSFP) (please,
see [15]): find x € E; satisfying

r r+s
xe(C.Axe () Q. (1.3)
i=1 j=1+r
where r, s are two given integers, C;,i = 1,...,r is a closed convex subset in Eq,
and Q;,j=r+1,...,7 +s,is aclosed convex subset in E>. He defined for each

neN,

T ) Hegm®), 1<i(m) <r,
"= gk U (0 — Ay (Ax — Po iy (AXD], r+1<i(n) <7+,
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where i : N — [ is the cyclic control mapping
iln)=n mod (r +s)+1,

and ¢, satisfies
1

oy
O<t<t, <(—2 )", (1.4)
T NGylIANe

with C, a constant defined as in Lemma 2.1 and proposed the following algorithm:
For any initial guess x; = x, define {x,} recursively by

yn = Tyxy

Dy ={we€ E1:Ap(yp, w) < Ap(xy, w)}
Ey,={weE: (xy—w,Jp&x)— Jp(xy) >0}
Xp+1 = Ip,nE, (X).

Using the idea in the work of Nakajo and Takahashi [16], he proved the follow-
ing strong convergence theorem in p-uniformly convex Banach spaces which is also
uniformly smooth.

(1.5)

Theorem 1.1 Let E| and E5 be two p-uniformly convex real Banach spaces which
are also uniformly smooth. Let C and Q be nonempty, closed and convex subsets of
E| and E; respectively, A : E| — E3 be a bounded linear operator and A* - E;‘ —
E be the adjoint of A. Suppose that SFP (1.3) has a nonempty solution set Q2. Let
the sequence {x,}>> | be generated by (1.5). Then {x,}7°, converges strongly to the
Bregman projection of x onto the solution set 2.

The main advantage of result of Wang [28] is that the weak-to-weak continuity of
the duality mapping, assumed in [22] is dispensed with and strong convergence result
was achieved. On the other hand, to implement the algorithm (1.5) of Wang [28], one
has to calculate, at each iteration, the Bregman projection onto the intersection of two
half spaces D, and E,,.

The class of left Bregman firmly nonexpansive mappings associated with the
Bregman distance induced by a convex function was introduced and studied by
Martin-Marques et al. [14]. Examples of left Bregman firmly nonexpansive mappings
are given in [14]. If C is a nonempty and closed subset of int(dom f), where f is a
Legendre and Fréchet differentiable function, and 7 : C — int (dom f) is a left
Bregman strongly nonexpansive mapping, it is proved that F(T') is closed (see [14]).
In addition, they have shown that this class of mappings is closed under composition
and convex combination and proved weak convergence of the Picard iterative method
to a fixed point of a mapping under suitable conditions (see [13]). However, Picard
iteration process has only weak convergence.

The classes of firmly nonexpansive operators and strongly nonexpansive opera-
tors (see, for example, [2, 10]) are of utmost importance in fixed point, monotone
mapping, and convex optimization theories in view of Minty’s Theorem regarding
the correspondence between firmly nonexpansive operators and maximal monotone
mappings. In this connection, see Section 7 of the paper by S. Reich [20]. Further-
more, the class of strongly nonexpansive operators, which contains the class of firmly
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nonexpansive operators, presents the advantage of its being closed under composi-
tions, whereas this property fails for firmly nonexpansive operators (see, for example,
[18]). A related class of operators comprises the quasi-nonexpansive operators. These
operators still enjoy relevant fixed point properties although nonexpansivity is only
required for each fixed point. A basic example of a firmly nonexpansive operator is
the nearest point projection onto a closed and convex subset of a Hilbert space. For
details on examples and applications of firmly nonexpansive operators and strongly
nonexpansive operators, please see [14] and the references contained therein.

Our aim in this paper is to construct an iterative scheme for solving problem (1.1)
which is also a fixed point of a left Bregman strongly nonexpansive mapping 7.
Thus, let E1 and E> be two p-uniformly convex real Banach spaces which are also
uniformly smooth. Let C and Q be nonempty, closed and convex subsets of E| and
E» respectively, A : E1 — E»> be a bounded linear operator and 7' be a left Bregman
strongly nonexpansive mapping of C into C. We construct an iterative scheme for
solving the following problem: find

x € CNF(T) such that Ax € Q. (1.6)

We assume in this paper that the problem (1.6) has solutions. Furthermore, our
problem (1.6) extends some recent problems studied by many authors in the
literature.

Suppose that T = I, the identity map, then F(T) = C and in this case, our
problem (1.6) reduces to SFP (1.1). If C = E{, then problem (1.6) reduces to: find
x € F(T) such that Ax € Q. If furthermore, F(S) C Q, for some nonlinear
operator S, then our problem (1.6) reduces to split common fixed point problems
(SCFPP). Finally, let A = I, C = E; = E; = Q, then our problem (1.6) reduces
fixed point problem for 7T'.

In this paper, we shall prove strong convergence of the sequence generated by
our scheme for solving problem (1.6) in p-uniformly convex real Banach spaces
which are also uniformly smooth. Also, we give numerical result to demonstrate the
performance and convergence of our iterative scheme. Our result complements the
result of Shehu et al. [25] and many other recent results in the literature.

2 Preliminaries
Let Eq and E; be real Banach spaces and let A : E; — E; be a bounded linear oper-
ator. The dual (adjoint) operator of A, denoted by A*, is a bounded linear operator
defined by A* : E — E}

(A*y,x) == (y, Ax), Vx € E;,j € E}
and the equalities ||A*|| = ||A|| and N (A*) = R(A)' are valid, where R(A)* :=

{x* € E : (x*,u) =0, Yu € R(A)}. For more details on bounded linear operators
and their duals, please see [9, 26, 27].
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Let1 < ¢ <2 < pwith L +1 = 1. Let E be a real Banach space. The modulus
of convexity §g : [0, 2] — [0, 1] is defined as

el

(SE(e)zinf{l >

Sxll=1T=1yll, [lx = yll = 6}.

E is called uniformly convex if g (€) > 0 for any € € (0, 2]; p-uniformly convex if
thereisac, > Osothatdg(e) > c,e” forany € € (0, 2]. The modulus of smoothness
pe(7T) 1 [0, 00) — [0, 00) is defined by

llx + 7yl + [lx — 7yl
pE(T)Z{ > —1lxll=lIyll=1¢.
E is called uniformly smooth if lim oe@ 0; g-uniformly smooth if there is a

n—oo T

C4 > Osothat pp(r) < Cyt9 for any T > 0. The L, space is 2-uniformly convex
for 1 < p <2 and p-uniformly convex for p > 2. It is known that E is p-uniformly
convex if and only if its dual E* is g-uniformly smooth (see [11]).

The g-uniformly smooth spaces have the following estimate [29].

Lemma 2.1 (Xu, [29]) Let x,y € E. If E is q-uniformly smooth, then there is a
C, > 050 that

llx =yl < 11X = gy, JE()) + Cqllyll?.

Here and hereafter, we assume that E is a p-uniformly convex and uniformly
smooth, which implies that its dual space, E*, is g-uniformly smooth and uniformly
convex. In this situation, it is known that the duality mapping J 1157 is one-to-one,
single-valued and satisfies J; = (J}.)~!, where J{. is the duality mapping of E*
(see [1, 8, 19]). Here the duality mapping JP : E — 2F" is defined by

JE() ={X € E*: (x,X) = [Ix||7, ||%]] = []x]|P7"}.
The duality mapping J 5 is said to be weak-to-weak continuous if
N p p
Xn x = (Jgxn, y) > {(Jpx,y)

holds true for any y € E . It is worth noting that the £,(p > 1) space has such a
property, but the J g (p > 2) space does not share this property.

Given a Gateaux differentiable convex function f : E — R, the Bregman
distance with respect to f is defined as:

Ap@e,y)=f) = f) = {(f'x),y—x), x,y€E
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It is worth noting that the duality mapping J), is in fact the derivative of the function
fr(x) = (%) [lx]|”. Then the Bregman distance with respect to f, is given by

1 1
Aplx,y) = gIIXIII7 - (ng,y)+;||y||p

1
;(||y||" — X1y + (TEx, x — y)

1
g(IIXIIP —Iyll?) = (Jfx = TRy, x).
Given x, y, z € E, one can easily get

Ap(x,y) =Ap(x,2) + Apz. y) +(z—y. JEx — Jfz), (2.1)

Ap(x,y)+ Ap(y,x) =(x —y, JEx — JLy). 2.2)

Generally speaking, the Bregman distance is not a metric due to the absence of sym-
metry, but it has some distance-like properties. For the p-uniformly convex space,
the metric and Bregman distance has the following relation (see [22]):

tllx —yII? < Ap(x,y) < (x —y, JEx — JEy), (2.3)

where t > 0 is some fixed number.

It is easy to see that if {x,} and {y,} are bounded sequences of a p-uniformly
convex and uniformly smooth E, then x, — y, — 0, n — oo implies that
Ap(xp, yn) = 0, n— oo.

Let C be a nonempty, closed and convex subset of E. The metric projection

Pcx = argmin.cllx — y||, x € E,

is the unique minimizer of the norm distance, which can be characterized by a
variational inequality:

(JE(x — Pcx),z — Pcx) <0, VzeC. (2.4)
Likewise, one can define the Bregman projection:
[Mex = argminyecAp(x, y), x € E,

as the unique minimizer of the Bregman distance (see [21]). The Bregman projection
can also be characterized by a variational inequality:

(JE ) = Jf(Mcx), z = Mex) <0, VzeC, (2.5)
from which one has

Ap(Mcx,z) < Ap(x,2) — Ap(x, Ilcx), VzeC. (2.6)
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In Hilbert spaces, the metric projection and the Bregman projection with respect to
f> are coincident, but in general they are different. More importantly, the metric
projection can not share the decent property (2.6) as the Bregman projection in
Banach spaces.

Following [1, 6], we make use of the function V), : E* x E — [0, 4-00) associated
with f},, which is defined by

i 1 _ 1 o
Vp(x,x) = —||x[|7 — (x,x) + —||x||”,Vx € E,x € E*.
q p

(Recall that E is a p-uniformly convex and uniformly smooth, which implies that
its dual space, E*, is g-uniformly smooth and uniformly convex). Then V), is
nonnegative and

Vp (%, x) = Ap(JE (%), x) (2.7)

for all x € E and ¥ € E*. Moreover, using the subdifferential inequality for f(x) =
ql”x”q’ x € E*, we have

1 1
(JEx),y) < glliryIIq—gIIXIlq, Vx,y € E*. (2.8)
Using (2.8), we have for all X, y € E* and x € E that

L IS B
V(X +y,x) = 5||x+y|| —(X+y,X>+;IIXI|

1 . , L 1
> ;1||x||q+(y,fq*(X)>—<X+y,x)+;||X||p

1 _ - 1 _ -
= C—IIIXIIq—(x,X)Jr;IIXII”Jr(y, T ()

—(¥, x)

Lo o Lo e g -

=5||x|| —(x,x>+;||x|| + (. T (B) = x)
= Vp(X, x) +(y, JE(X) —x).

In other words,

V(3 x) + (3, JE(F) — x) < V(3 + 5, %) 2.9)
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forallx € E and X, y € E* (see, for example, [23, 24]). In addition, V,, is convex in
N
the first variable since Vz € E, {x;}| C E and {t;}_ | C (0, 1) with }_#; = L,

i=1
N
A, (Jg* (Z f Jg(x,-)) ,z)
i=1

N
vy (Z HJE(x0), z)
i=1
1< i & 1
||t = (S wsk .2 ) + i
q i=1 i=1 p

1Y 1Y 1
= GIIECONT — =Y {(IEG), 2 + —lzll)?
ql;l P(x; qzl P 5

IA

N
1 _
;Znnxin“’ D _ Zr, (JE (i), 2) f||z||"
th,llx,lll —er, (JE(x). 2) f||z||P
Zz,-Ap(xi,z).
i=1

Thus, forall z € E,

N N
Ap (Jg* (Zt,-Jg(x,-)) ,z> < ZtiAp(x,-,z), (2.10)
i=1

where {)c,-}fv:l C E and {tl}Nl C (0, 1) with Z i =1.

i=
Let C be a convex subset of int dom f, where fr(x) = (%) [x||?, 2<p<o0

and let T be a self-mapping of C. A point p € C is said to be an asymptotic fixed

point (please, see [7, 18] of T if C contains a sequence {x,}°, which converges

weakly to p and lim ||x, — Tx,|| = O (see [7, 18]). The set of asymptotic fixed
n— oo

points of T is denoted by F (7).

Definition 2.2 Recalling that the Bregman distance is not symmetric, we define the
following operators.

Definition 2.3 A nonlinear mapping 7' with a nonempty asymptotic fixed point set
is said to be: (i) left Bfggman strongly nonexpansive (L-BSNE) (see [13, 14]) with
respect to a nonempty F(7T) if

A,(Tx, %) < Ap(x,%), Vx €C, %€ F(T)
and if whenever {x,} C C is bounded, x € F (T) and

lim (A, (xp, X) — Ap(Txy, %)) =0,
n—oo
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it follows that
lim A, (x,, Tx,) =0.

n—oo
According to Martin-Marquez et al. [13, 14], a left Bregman strongly nonexpansive
mapping 7 with respect to a nonempty F (T) is called strictly left Bregman strongly
nonexpansive mapping. (ii) An operator T : C — FE is said to be: left Bregman
firmly nonexpansive (L-BFNE) if

<Jf(Tx) —JE(Ty), Tx - Ty> < <J5(Tx) —JETy), x - y>
for any x, y € C, or equivalently,

AP(TX, Ty)+Ap(Tya TX)+AP(X, Tx)+Ap(y7 T)’) S Ap(xv T)’)‘I’Ap(y, Tx)

Remark 2.4 1t should be pointed out at this point that using our definition of A ¢ (x, y)
given above, we see that our definitions of left Bregman strongly nonexpansive map-
ping and left Bregman firmly nonexpansive mapping in Definition 2.3 coincide with
the definitions of left Bregman strongly nonexpansive mapping and left Bregman
firmly nonexpansive mapping given in [13, 14]. Kindly observe the order of x, y in
our definitions here and in the results of [13, 14].

The class of left Bregman strongly nonexpansive mappings is of particular sig-
nificance in fixed point, iteration and convex optimization theories mainly because
it is closed under composition. For more information and examples of L-BSNE and
L-BFNE operators, please see [13, 14]. From [13, 14], we know that every left
Bregman firmly nonexpansive mapping is left Bregman strongly nonexpansive if
F(T)=F(T).

We next state the following lemmas which will be used in the sequel.

Lemma 2.5 (Xu [29]) Let {a,} be a sequence of nonnegative real numbers satisfying
the following relation:

any1 < (I —ap)ay +apon + yu,n > 1,

where, (i) {a,} C [0, 1], Y a, = oo; (ii) limsup o, < 0; (iii) y, = 0; (n > 1),
> vn < 00. Then, ay — 0asn — oo.

We shall adopt the following notations in this paper:

® x, — x means that x, — x strongly;
X, — x means that x, — x weakly;
o wy(xy) ={x: Elx,,j — x} is the weak w-limit set of the sequence {xn}flo: 1

In this paper, we assume that E| and E; are p-uniformly convex real Banach
spaces which are also uniformly smooth, E} is g-uniformly smooth real Banach
space which is also uniformly convex where 1 < ¢ <2 < p < oo with % + % =1
We further denote by J gl and J 1?2 the duality mappings of E| and E, respectively
and Jgf the duality mapping of E;*.
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3 Main results

Theorem 3.1 Let E| and Ey be two p-uniformly convex real Banach spaces which
are also uniformly smooth. Let C and Q be nonempty, closed and convex subsets
of E| and E; respectively, A : E| — E, be a bounded linear operator and A* -
E} — Ef be the adjoint of A. Suppose that SFP (1.1) has a nonempty solution set
Q. Let T be a left Bregman strongly nonexpansive mapping of C into C such that
F(T) = I":(T) and F(T) N Q2 # (. Let {a,} be a sequence in (0, 1). For a fixed
u € Ey, let sequence {x, }}‘2‘3:1 be iteratively generated by u| € Eq,

Xp = ncﬂr[]f;1 () — t,,A*ng(Aun — Po(Auy))] a1

Up+1 = HCJgT(an-Igl(u)‘i‘(l _an)ng(Txn))v n>1. '

Suppose the following conditions are satisfied:
(@) lim a, =0;
n—oQ

o0
) > ay =o00and
n=1
1

(©) O<t§zn§k<(m>qj-
Then the sequence {x,}5°

x* = HF(T)QQM.

| converges strongly to an element x* € F(T) N, where

Proof Let x* € €. Suppose w, = Au, — Po(Au,), VYn > 1. Suppose

ve = JEJE () — nA*JE (Auy — Po(Aun))l, Vn > 1. Then, we have
1

x, = Icv,, Vn > 1. Also, it follows from (2.4) that

(JE, (wn), Auy — Ax*) = ||Aup — Po(Au)||” + (JF, (wn), Po(Auy) — Ax*)
> ||Aun — Po(Au)||” = [lw,||?, (32)

which, with Lemma 2.1, yields
Ap i, ¥ = Ap(oa, ¥ = Ap (T [ I8, () = 12 A*TE ) | x*)
1
= 118, Gun) = A" T, Qo = (I ), )

1
(7, o), Ax) 4 11

Cq (tnllAID?

IA

1
;Hng l? = ta(Aun, T, (wn)) + 15, ()|

1
~{JE, ). )t (I, o), Ax) I
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1 1
= lhnll? = G Gon). ")+ 1P ot (T, o), A = A

Cy (a1 AID?
|, (wa) I
Cq(tal| Al
= Aplun, x%) + o (TF (), Ax* = Auy )+ ZEEEE L ]9
Cy(tallAID
< Ap(un, x¥) — (rn - qT) [[wall?. (33)

Using the condition (c), we have

Ap(xmx*) =< Ap(unvx*), Vn > 1.

Now, using (3.1), we have

Ap(Xpg1, X)) < Ap(upy1, x¥)

o Ap(u, x*) + (1 — ) Ap(Txy, x¥)
o Ap(u, x*) + (1 —ap) Ap(xp, x*)  (3.4)
max{A ,(u, x*), Ap(xn, x*)}

IANIATA

IA

max{Ap(u, x*), Ap(x1, x*)}.

Hence, {x,}72, is bounded.
Let y, = J9, (anjgl W) + (1 — a,,)ng(Tx,,)> . n > 1. From condition (i), we
1

obtain

A

Furthermore,

Ap (g1, x7)

p(yna Tx,) < anAp(us Txy)+(1— Oln)Ap(Txna Txy)

= apApu, Tx,) - 0, n— oo.

=< Ap(Un+l»x*) =< Ap(un+lvx>k)
=V, (oz,,ng m) + (1 — oen)Jl‘gl(Txn), x*)
Vp (@ndf, @+ = ) Jf (T —ay (JF, 0= IF, (9) , x*)

+at <J£1 W) = Jg (x*), yn — x*>

IA

=V, (a,,ng ) + (1= an) I (Tx), x*)
+ay (ng (u) — ng ™), yp — x*>
@V (V5,6 x%) + (= an)V, (5, (Tn), 27)

et (JF, ) = IE, (6%, 30 = 2)

IA

= (1 —an)Ap(Txy, x*) + (ng ) = Jg, (), yn — x*>
< (1= o)A p g, X*) + o (Jg, ) = JE (), 30 — X)), (3.5)
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The rest of the proof will be divided into two parts.

Case 1 Suppose that there exists ng € N such that {AI,(xn,)f")},?o:n0 is non-

increasing. Then {A,(x,, x*)}72 | converges and A, (x,, x*) — Ap(xp41, X*) —
0, n — o0. Observe that

Ap(xn—i-l»x*) = Ap(’/‘n+17x*) = anAp(’/hx*) + 1 - an)Ap(Txn»x*)-
It then follows that

Ap(xns x*) - Ap(Txns x*) = Ap(xna x*) - Ap(xn—Hs X*)

+Ap(pg1, X*) — Ap(Txy, x¥)

Ap(xn, x*) — Ap(anrlax*)

+ou (Ap(u, x*) — Ap(Txy, x*)) = 0, n— 00. (3.6

IA

It then follows that

lim A, (x,, Tx,) = 0.
n—oo

Since {x,} is bounded, there exists a subsequence {x,;} of {x,} that converges
weakly to z. Since F(T) = F(T), we have z € F(T).

Next, we show that z € 2. Now, from (3.3), we obtain
Cq(tallAIDY
(rn — qT [Aun — Po(Aun)||P < Ap(un, x*) — Ap(xp, x¥). (3.7)

Also, from (3.4), we have
Ap(pg1, X¥) < apAp(u, x*) + Ap(x,, x*). (3.8)

Putting (3.7) into (3.8), we have

Cy(tal|AI
(rn - "T ||Au, — Po(Auy)||?

IA

Ap(un, x*) - Ap(xn, x*)

IA

an—lAp(u, x*) + Ap(xp—1, x*)
—Ap(x,, x¥). (3.9)

By condition (c) and (3.9), we have

Cak71| Al
O<t|l———]||Au, — PQ(AMn)Hp
q

Cy(tal| Al
(rn - qT l|Au, — Po(Auy)||?

-1 Ap(u, x*) + Ap(xp—1, x*) — Ap(xy, x*) = 0,n — 0.

IA

Hence, we obtain

lim [|Au, — Po(Au,)|| = 0. (3.10)
n—oo
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Since v, = J2, [ng (n) — 1 A* TP (Auty — PQ(AM,,))] . Vn > 1, then we have
1

A

0 < 11JE,@n) = JE, @)l < tallA*NIITE, (At — Po(Aun))l|

1
q T
=\ aje) 1A NIAu=PolA 0, Gl
_<Cq||A||q) HA®|[[|Aup o (Auy)||— 0, n— 0o.( )
Therefore, we obtain
. » » B
im [1JE (ua) = J£ ()| = 0.

Since Jg* is also norm-to-norm uniformly continuous on bounded subsets of £ ’f, we
1
have
lim ||v, — uy,|| =0.
n—oo

Furthermore,

198 [J2 ) = 12 A" IE, (At = Po(Aun)) | = nll = I1n = unll — 0,1 — o0,

Since J gl is norm-to-norm uniformly continuous on bounded sets, then

A

t|A* T, (Aup — Po(Aup))l| < tal|A*JE (Aun — Po(Auy))||
= [, (un) — ta A*JE (Atty — Po(Aup))
—ng (uy)|| = 0,n — oo.
Thus,
lim [|JA*JE (Au, — Po(Aup))|| = 0. (3.12)
n—00 2
Furthermore, we have from (2.6) and (3.4) that
Ap(Una Xp) = Ap(vnv Mcvy) < Ap(vmx*) - Ap(xmx*)
= Ap(uns x*) — Ap(xn’ x*)
< o 1M+ Ap(xp—1, X)) — Ap(xy, x¥) = 0,n — 00, (3.13)
for some M* > 0. By (2.3), we have that
lim ||v, — x,|| = 0.
n—oo
Hence,
X0 — unll < [lvp — unll + |lvn — xull = 0,n — o0.

Since {x,} is bounded, there exists {x,,} of {x,} such that x,;, — z € wy (x;). Now,
since x,; — z and lim [|x, — u,|| = 0, we obtain that u,; — z. From (2.2), (2.5)
’ n— 00 ’

and (2.3), we have that
Ap Tea) < (ng @ - ng (Mc¢z),z— l'IcZ>
= <ng (2) — ng (Mc¢z),z — ”nj> + (ng (2) — ng (Te2)., — ch”])
+{J8, @ = JE (M), Meun, — Mez)

= (78 @ = 9 (Mea 2 = )+ (I8, @ = I, (e, un, = Teun, ).
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As j — oo, we obtain that A,(z, I1cz) = 0. Thus, z € C. Let us now fix x € C.
Then, Ax € Q and

(I = Po)Aun 1|7 = (JE (Axy — Po(Auy))), Axy — Po(Auy;))
= (JE (Axy — Po(Auy))), Auy; — Ax)

+(JP (Axy — Po(Auy))), Ax — Po(Auy)

(JF (Axy — Po(Aup))), Auy,; — Ax)

< M||A*(I — Pg)Auy,||P~" — 0,n — oo,

IA

where M > 0 is sufficiently large number. It then follows from (2.4) that
I(I = Po)Az||? = (Jf,(Az — Po(Az)), Az — Po(Az))
= (J,(Az = Pg(A2)), Az — Auy;)
+(JE (Az = Po(A2)), Aun; — Po(Auy)))
+(JE (Az — Pp(A2)). Po(Auy;) — Po(A2))
(JP. (Az — Po(A2)), Az — Auy))
+(JE,(Az = Pg(A2)), Aun; — Po(Auy)).

Also, since Aunj — Az, we have that

IA

lim ||(I — Pg)Az|| =0.
n—oo
Thus, Az € Q. This implies that z € Q and hence z € F(T) N Q.

Furthermore, we have that

Ap(xn, yn) < anAp(xn’ u) + (1 — an)Ap(xn, Tx,) >0, n—o0. (3.14)

== ||Xn+1-xn“2
\\ ——=lu-ull,

o
= \
IE \
3
= 10" S
=0
= .
x B e Y e
= e *
o= B R, R
x m\ﬂ&\*\ﬂ
10-2 — 3
&
i 2 4 6 8 10 12 14

Number of iterations

Fig.1 Example4.1casel: (u = (1,1, 1), u; = (3,0,4) and 7, = 0.0137)
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== IIun+1-un”2
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s o i v
e
Q\N
10° e SN o
107
2 4 6 8 10 12 14 16 18 20 22

Number of iterations

Fig.2 Example 4.1 case I: (u = (1, 1, 1), u; = (3,0,4) and 1, = 0.01)

By (2.3), it follows that ||x, — y,|| = 0, n — oo.

Let p := I pr)nqu. We next show that lim sup<J,‘?1 () — ng (p), yn — p> <
n—oo
0. To show the inequality lim sup <ng () — ng (p), yn — p) < 0, we choose a
n—0oo
subsequence {xy; } of {x,} such that

limsup<.l§l (u) — ng (p)sxn — p) = jlingo(fgl (u) — ng (P)s Xn; — P>.

n—oo

10
==X %l
*
\1 —t—=lu vl
10°
o~
= 3
i
s
= -
& 23
= o
T ..
3 MW
10 e TR
SR
10°
0 10 20 30 40 50 60 70 80

Number of iterations

Fig.3 Example 4.1 case I: (u = (1, 1, 1), u; = (3,0,4) and 1, = 0.001)
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By ||xp — yull = 0, n — oo and (2.5), we obtain

limsup(J, (u) — JE, (p), ya — p) < limsup(J (u) — J£ (p), xn — p) < 03.15)

n—o00 n—oQ

Now, using (3.15), (3.5) and Lemma 2.5, we obtain A,(x,, p) — 0, n — oo.
Hence, x, — p, n — oc.

Case 2 Assume that {A ,(x,, x*)}°° | is not monotonically decreasing sequence. Set
r, = A,,(x,,,x*), Vn > 1l and let T : N — N be a mapping for all n > ng (for
some ng large enough) by

t(n) :=max{k e N: k <n, Ty < Tt}
Clearly, 7 is a non decreasing sequence such that 7(n) — oo as n — oo and
0=<Trm = Tr@+1,¥n = no.
Furthermore, we obtain

Ap(Xeny, ¥°) — Ap(Txe(ny, X*) = Dy(X™, Xe()) — D (x™, Xe(m)+1)
+Df(x*, xf(n)Jr]) - AP(TXT(,,), x*)
< Ap(xemy, X)) — Ap(xemy+1, X¥)
+otn (Ap(u, x*) = Ap(xe@my, x¥)) = 0, n — oo.

A

It then follows that

nli)rgoAp(xt(n)a Tx;m) =0.
After a similar conclusion from (3.10), it is easy to see that

|Aurny — Pourmyll — 0,n — oo.

10
—=Ix %,
== lu vl
100'!\
o~
= B \a”-\
S
= 10‘ \
&
f: . 4
_E \ﬁt‘\%
10‘2 e e
et P
3
10 2 4 6 8 10 12 14 16

Number of iterations

Fig. 4 Example 4.1 case II: (u = (1,1, 1), u; = (1,2, 1) and ¢, = 0.0137)
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10
—=Ix %1,
==l -ull,
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= S
i NS
=
= \s\\*\
=‘: - Ry S
X o
‘g -
102 e ‘\M'\h\
10°
2 4 6 8 10 12 14 16 18 20

Number of iterations

Fig. 5 Example 4.1 caseIl: (u = (1,1, 1), u; = (1,2, 1) and ¢, = 0.01)

By the similar argument as above in Case 1, we conclude immediately that

nliygollA*ng(Aur(n) — Po(Aurm)Il = 0.

and
limsup(ng (u) — ng (), yey — x¥) < 0.
n—0oo

Since {x; ()} is bounded, there exists a subsequence of {x; ()}, still denoted by {x ()}
which converges weakly to z € C and Az € Q. From (3.5) we have that

Ap(xr(n)Jr]» X*) <1- Ol1:(n))Ap(x'r(n)s X*) +05n<-]£1 (u) — ng (X*)a Yr(n) — X*)

10

e IIXn+1_xn"2
el

IS e ¢

8&
Py

”

4

'

%

[ S P [PV S

i Mmh

10 0 10 20 30 40 50 60 70

Number of iterations

Fig. 6 Example 4.1 caseIl: w = (1,1, 1), u; = (1,2,1) and t, = 0.001)
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== ||xn+1-xn”2

== U4l
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f 101 \,\1\ e
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\
\! “.\b
e
2
e 2 4 6 8 10 12 14 16
Number of iterations
Fig. 7 Example 4.1 case III: (u = (1,5, 1), u; = (2,1,4)and t, = 0.0137)
which implies by Lemma 2.5
lim A, (xr(ny, x*) =0 (3.16)
n—od

and nli)n;OA,,(xr(nH], x*) = 0. Furthermore, for n > ny, it is easy to see that 'z ;) <

Cr@myt1 if n # t(n) (thatis, t(n) < n), because I'; > I'j g fort(n) +1 < j < n.
As a consequence, we obtain for all n > no,

0<T, <max{l'¢y, Fey+1} = Cegy+1-

Hence lim T, = 0, that is, {x,} converges strongly to x*. This completes the proof.

O]
10’
—=Ix %l
==l q-ully
N
= 10° N \
Cil Y
= \
s LN
é: \‘\\*\:\\*\*
2101 \ \
a S B
i O
e
o
T
10
2 4 6 8 10 12 14 16 18 20

Number of iterations

Fig. 8 Example 4.1 case III: (u = (1,5, 1), u; = (2, 1,4) and 7, = 0.01)
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855

Corollary 3.2 Let Ey and E> be two L, spaces with2 < p < oo. Let C and Q be
nonempty, closed and convex subsets of E1 and E» respectively, A : E1 — E> be
a bounded linear operator and A* : E5 — E{ be the adjoint of A. Let T be a left
Bregman strongly nonexpansive mapping of C into C such that F(T) = F (T) and
F(T)N Q # @. Let {a,} be a sequence in (0, 1). For a fixed u € E|, let sequence

{xn},2 |, be iteratively generated by u, € E,

{ Xp = I'ICJ"T[JP‘?] () — tn A*J g, (Auy — Po(Auy))]

Uptl = HcJZT(aang’] W) + (1 —an)Jg (Txy)), n=>1.

Suppose the following conditions are satisfied:
(@) lim a, =0;
n—oo

o
b) > ay =o00and
n=1
1
© 0<t=n<k<(gkm)
Then the sequence {x,}°

x* = prynqut.

° | converges strongly to an element x* € F(T) N , where

Next, using the idea in [13], we consider the mapping 7 : C — C definedby T =
TnTm—1...T1, where T;(i = 1,2,...,m) are left Bregman strongly nonexpansive
mappings on E. We know from Proposition 3.4 (page 602) of [13] that

(NI F(T})) = F(T).

Using Theorem 3.1, we have the following corollary.

X, %l

T —t=Ilu vl
= 10’ ‘\

= \

R

=2

By \

;c

: X

= 10

mmmmmmmmmmm

A

Number of iterations

Fig.9 Example 4.1 case III: (u = (1,5, 1), u; = (2, 1,4) and 7, = 0.001)
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35
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3 IIun+1_un“2
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Number of iterations
Fig. 10 Example 4.2 case I: (u = 31> — 2¢,u; = 3sin(r) and 1, = 1.0 x 10%)

Corollary 3.3 Let E| and E; be two p-uniformly convex real Banach spaces which
are also uniformly smooth. Let C and Q be nonempty, closed and convex sub-
sets of E1 and E, respectively, A : E1 — E; be a bounded linear operator and
A* 1 ES — ET be the adjoint of A. Let T;(i = 1,2,...,m) be a sequence of left
Bregman strongly nonexpansive mapping of C into C such that F (T;) = F(T;) and
(ﬂ;"le(Ti)) N Q # @. Let {a,} be a sequence in (0, 1). For a fixed u € Eq, let
sequence {x,}° | be iteratively generated by u, € E,

Xy = nchT[ng () — tn A*J g, (Auy — Po(Auy))]
Up+1 = HCJqT(anng (w)+ 1 - an)ng(Tme—lmTlxn)), n>1.

==X, X [l
3K _*_”unﬂ_unllz
25

=

Ei \
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5
y s o & % o
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Number of iterations

Fig. 11 Example 4.2 case I: (1 = %tz —2t,uy = 3sin(t) and ¢, = 0.1)
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Suppose the following conditions are satisfied:

(@) lim o, =0;
n—od

o0
) > ap=occand

n=1

1
q g1

(C) 0<t§tn§k<(m> .
Then the sequence {xy},> | converges strongly to an element x* € (N[, F(T;)) N L,
where x* = H(ﬂ;":IF(T;))ﬂQ”'

4 Numerical example

In this section, we present some preliminary numerical results. All codes were written
in Matlab 2012b and run on Hp i-5 Dual-Core laptop.

Example 4.1 We give a numerical example in (R3, ||.||2) of the problem considered
in Theorem 3.1 in the previous section. Now take
C:={x = (x1,x,x3) € R’ : (a,x) = b},
where a = (2, —1,5) and b = 1, then
b —(a,x)
M) = Pex) = —— 5
llallz

Let
Q= {x = (x1,x2,x3) € R?: {a,x) = b},
where a = (3,5,7) and b = 2 then
b— {a,x)
Pg(x) = max {0, ———(a+x
llall;

Furthermore, let T = P¢ (which is an example of a left Bregman strongly nonex-

5 =5 -7
pansive mapping, please see [13, 14], o, = ﬁ and A= —4 2 —4 |, then our
-7 -4 5

iterative scheme (3.1) becomes
xp = Pclu, — tnAT(Aun - PQ(Aun))]
unsr = Pe (747 + (1= 71) (Pexn)) , n= 1.

We make different choices of uj, u and #,. The stopping criterion for all testing
methods was taken as:
[xn4+1 — xall
[lx2 — x1]]
We note here that in each case, we omit tables for very small values of #,,.
Case I: Take u = (1,1,1) and u; = (3,0, 4) and then consider #, = 0.0137,
t, = 0.01 and ¢, = 0.001. The graphs using our algorithm (3.1) with these #,s are

<1072
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given respectively in Figs. 1, 2 and 3 while Table 1 shows the numerical values for
two t,s only.

Case II: Take u = (1,1,1) and u; = (1,2, 1) and then consider ¢, = 0.0137,
t, = 0.01 and 7, = 0.001. The graphs using our algorithm (3.1) with these #,s are
given respectively in Figs. 4, 5 and 6 while Table 2 shows the numerical values for
two t,s only.

Case III: Take u = (1,5,1) and u; = (2, 1,4) and then consider ¢, = 0.0137,
t, = 0.01 and #, = 0.001. The graphs using our algorithm (3.1) with these #,s are
given respectively in Figs. 7, 8 and 9 while Table 3 shows the numerical values for
two t,,s only.

Remark 4.1 'We make the following comments from Example 4.1.

1. By the choice of our stopping criterion, we get less number of iterations required
for the convergence. For example, we observe that if the stopping criterion is taken
as:

max{||x, — Pcxnll, [|Axp — Po(Axy)|[}
max{||x; — Pcx1ll, [[Ax1 — Po(Ax1)|[}

1074,

we get very large iterations in thousands in many cases. If the stopping criterion is
taken as
[Xn+1 — Xull

< 1074,
[lx2 — x1]]

we get about 194 iterations in some cases. Furthermore, using the choice of our stop-

ping criterion % < 1072, if 1, is chosen very small and close to zero, we

require many iteration steps but when ¢, is chosen such that it is a bit away from zero

but close to W, we require less iterations for convergence.

== ”xn+1.xn”2
el 4, I

10
\*\1%

2 4 6 8 10 12 14
Number of iterations

e e

Fig. 12 Example 4.2 case I: (u = 31> — 21, u; = exp(2¢) and 1, = 1.0 x 10°)
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2. We observe from the numerical analysis of our result of the tables and graphs
that we realise fast convergence when ¢, is taken close to II:IIZ and the more the
iteration steps are, the more slowly the sequences {x,} >~ | and {u,};2 | converge to
the solution of our problem. Furthermore, we see that the sequence {x,};° ; converges
faster to the solution than {u,};> .

3. We also notice that the choice of u, either close to u or not, does not have

significant effect on the convergent rate of both sequences {x,}7> ; and {u,}; ,.

Example 4.2 Here, we take E| = L,([0, 1]) = E; with the inner product given as

1
(f, 8) 2/0 f(Hg@)de.

Now, let
C:={x € Ly([0, 1] : (x,a) = b},
where a = 2t2, b = 0. Then

Pc(x) = max io, M} a4 x

llall3
Also, let
0 :={x € Lo([0, 1]) : (x,c) > d},
where ¢ = %, d = —1. Then
d— {(c, x)
IMo(x) = Po(x) = ——>—c+x
llellz

Let us assume that

x(1)
A Ly([0, 11) — Lo([0, 1D), (Ax)(1) = -
70
— % I
SOI‘E == ||un+1-un”2
50
:E 40 \
f: 30 \
= 20
10
F\*___f - s z
02 4 6 8 10 12 14 16

Number of iterations

Fig. 13 Example 4.2 case II: (u = %tz —2t,u; =exp(2t) and t, = 0.1)
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Then A is a bounded linear operator and A* = A. Suppose that we take operator T
in Theorem 3.1 as T := Pc, the metric projection on C. Then the problem consid-
ered in Theorem 3.1 reduces to:

find x € F(T) N C(= C) such that Ax € Q. “.1)

We observe that if 2 denotes the set of solutions of (4.1), then Q # @, since x* =
0 € Q. Furthermore, our iterative scheme (3.1) becomes

X, = Pclup, — t, A*(Au, — PQ(AMn))]
un+1 = Pc (n“? + (1 - ,ﬁl) (chn)> , n=1

We make different choices of u; and ¢, with a choice of u = %tz — 2t and the
same stopping criterion as used in the Example 4.1.

Case I: Take u; = 3sin(t) and then consider both 7, = 1.0 x 10~ and t, = 0.1.
The graphs for both #,s are presented respectively in Figs. 10 and 11 while Table 4
shows the numerical values for both cases with the same choice of u.

Case II: Take u| = exp(2¢t) and then consider ¢, = 1.0 x 10~% and 1, = 0.1. The
graphs for both #,s are presented respectively in Figs. 12 and 13 while Table 5 shows
the numerical values for both cases with the same choice of u;.

Remark 4.2 'We make the following comments from Example 4.2. We observe that
different choices of f,, and u| have no effect in terms of cpu time for the convergence
of our algorithm but when 1, is taken close to zero, we have small reduction in the
number of iterations in some cases with relatively the same cpu time.
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