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Abstract The purpose of this paper is to study split feasibility problems and fixed
point problems concerning left Bregman strongly relatively nonexpansive mappings
in p-uniformly convex and uniformly smooth Banach spaces. We suggest an itera-
tive scheme for the problem and prove strong convergence theorem of the sequences
generated by our scheme under some appropriate conditions in real p-uniformly con-
vex and uniformly smooth Banach spaces. Finally, we give numerical examples of
our result to study its efficiency and implementation. Our result complements many
recent and important results in this direction.
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1 Introduction

Let E1 and E2 be two p-uniformly convex real Banach spaces which are also uni-
formly smooth. Let C and Q be nonempty, closed and convex subsets of E1 and E2
respectively, A : E1 → E2 be a bounded linear operator and A∗ : E∗

2 → E∗
1 be the

adjoint of A. The split feasibility problem (SFP) is to find a point

x ∈ C such that Ax ∈ Q. (1.1)

We assume that SFP (1.1) has a nonempty solution set � := {y ∈ C : Ay ∈ Q} =
C ∩ A−1(Q). Then, we have that � is a closed and convex subset of E1.

The SFP in finite-dimensional Hilbert spaces was first introduced by Censor and
Elfving [5] for modelling inverse problems which arise from phase retrievals, medical
image reconstruction and recently in modelling of intensity modulated radiation ther-
apy [3]. The SFP attracts the attention of many authors due to its application in signal
processing. Various algorithms have been invented to solve it (see, for example, [4,
12, 15, 17, 30–33] and references therein).

In solving SFP (1.1) in p-uniformly convex real Banach spaces which are also
uniformly smooth, Schöpfer et al. [22] proposed the following algorithm: For x1 ∈
E1 and n ≥ 1, set

xn+1 = �CJ ∗
E1

[JE1(xn) − tnA
∗JE2(Axn − PQ(Axn))], (1.2)

where �C denotes the Bregman projection and J the duality mapping. Clearly the
above algorithm covers the Byrne’s CQ algorithm [3]

xn+1 = PC(xn − γA∗(I − PQ)Axn), n ≥ 1,

which is found to be a gradient-projection method (GPM) in convex minimization as
a special case. They established the weak convergence of algorithm (1.2) under the
condition that E1 is p-uniformly convex, uniformly smooth and the duality mapping
of E1 is sequentially weak-to-weak-continuous.

We remark here that the condition that the duality mapping of E1 is sequentially
weak-to-weak-continuous assumed in [22] excludes some important Banach spaces,
such as the classical Lp(2 < p < ∞) spaces.

Recently, Wang [28] modified the above algorithm (1.2) and proved strong con-
vergence for the following multiple-sets split feasibility problem (MSSFP) (please,
see [15]): find x ∈ E1 satisfying

x ∈
r⋂

i=1

Ci, Ax ∈
r+s⋂

j=1+r

Qj , (1.3)

where r, s are two given integers, Ci, i = 1, . . . , r is a closed convex subset in E1,
and Qj, j = r + 1, . . . , r + s, is a closed convex subset in E2. He defined for each
n ∈ N,

Tn(x) =
{

�Ci(n)(x), 1 ≤ i(n) ≤ r,

J ∗
E1

[JE1(x) − tnA
∗JE2(Ax − PQj (n)(Ax))], r + 1 ≤ i(n) ≤ r + s,
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where i : N → I is the cyclic control mapping

i(n) = n mod (r + s) + 1,

and tn satisfies

0 < t ≤ tn ≤
(

q

Cq ||A||q
) 1

q−1

, (1.4)

with Cq a constant defined as in Lemma 2.1 and proposed the following algorithm:
For any initial guess x1 = x̄, define {xn} recursively by

⎧
⎪⎪⎨

⎪⎪⎩

yn = Tnxn

Dn = {w ∈ E1 : �p(yn, w) ≤ �p(xn, w)}
En = {w ∈ E1 : 〈xn − w, Jp(x̄) − Jp(xn) ≥ 0}
xn+1 = �Dn∩En(x̄).

(1.5)

Using the idea in the work of Nakajo and Takahashi [16], he proved the follow-
ing strong convergence theorem in p-uniformly convex Banach spaces which is also
uniformly smooth.

Theorem 1.1 Let E1 and E2 be two p-uniformly convex real Banach spaces which
are also uniformly smooth. Let C and Q be nonempty, closed and convex subsets of
E1 and E2 respectively, A : E1 → E2 be a bounded linear operator and A∗ : E∗

2 →
E∗

1 be the adjoint of A. Suppose that SFP (1.3) has a nonempty solution set �. Let
the sequence {xn}∞n=1 be generated by (1.5). Then {xn}∞n=1 converges strongly to the
Bregman projection of x̄ onto the solution set �.

The main advantage of result of Wang [28] is that the weak-to-weak continuity of
the duality mapping, assumed in [22] is dispensed with and strong convergence result
was achieved. On the other hand, to implement the algorithm (1.5) of Wang [28], one
has to calculate, at each iteration, the Bregman projection onto the intersection of two
half spaces Dn and En.

The class of left Bregman firmly nonexpansive mappings associated with the
Bregman distance induced by a convex function was introduced and studied by
Martin-Marques et al. [14]. Examples of left Bregman firmly nonexpansive mappings
are given in [14]. If C is a nonempty and closed subset of int(dom f ), where f is a
Legendre and Fréchet differentiable function, and T : C → int (dom f ) is a left
Bregman strongly nonexpansive mapping, it is proved that F(T ) is closed (see [14]).
In addition, they have shown that this class of mappings is closed under composition
and convex combination and proved weak convergence of the Picard iterative method
to a fixed point of a mapping under suitable conditions (see [13]). However, Picard
iteration process has only weak convergence.

The classes of firmly nonexpansive operators and strongly nonexpansive opera-
tors (see, for example, [2, 10]) are of utmost importance in fixed point, monotone
mapping, and convex optimization theories in view of Minty’s Theorem regarding
the correspondence between firmly nonexpansive operators and maximal monotone
mappings. In this connection, see Section 7 of the paper by S. Reich [20]. Further-
more, the class of strongly nonexpansive operators, which contains the class of firmly
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nonexpansive operators, presents the advantage of its being closed under composi-
tions, whereas this property fails for firmly nonexpansive operators (see, for example,
[18]). A related class of operators comprises the quasi-nonexpansive operators. These
operators still enjoy relevant fixed point properties although nonexpansivity is only
required for each fixed point. A basic example of a firmly nonexpansive operator is
the nearest point projection onto a closed and convex subset of a Hilbert space. For
details on examples and applications of firmly nonexpansive operators and strongly
nonexpansive operators, please see [14] and the references contained therein.

Our aim in this paper is to construct an iterative scheme for solving problem (1.1)
which is also a fixed point of a left Bregman strongly nonexpansive mapping T .
Thus, let E1 and E2 be two p-uniformly convex real Banach spaces which are also
uniformly smooth. Let C and Q be nonempty, closed and convex subsets of E1 and
E2 respectively, A : E1 → E2 be a bounded linear operator and T be a left Bregman
strongly nonexpansive mapping of C into C. We construct an iterative scheme for
solving the following problem: find

x ∈ C ∩ F(T ) such that Ax ∈ Q. (1.6)

We assume in this paper that the problem (1.6) has solutions. Furthermore, our
problem (1.6) extends some recent problems studied by many authors in the
literature.

Suppose that T = I , the identity map, then F(T ) = C and in this case, our
problem (1.6) reduces to SFP (1.1). If C = E1, then problem (1.6) reduces to: find
x ∈ F(T ) such that Ax ∈ Q. If furthermore, F(S) ⊆ Q, for some nonlinear
operator S, then our problem (1.6) reduces to split common fixed point problems
(SCFPP). Finally, let A = I, C = E1 = E2 = Q, then our problem (1.6) reduces
fixed point problem for T .

In this paper, we shall prove strong convergence of the sequence generated by
our scheme for solving problem (1.6) in p-uniformly convex real Banach spaces
which are also uniformly smooth. Also, we give numerical result to demonstrate the
performance and convergence of our iterative scheme. Our result complements the
result of Shehu et al. [25] and many other recent results in the literature.

2 Preliminaries

Let E1 and E2 be real Banach spaces and let A : E1 → E2 be a bounded linear oper-
ator. The dual (adjoint) operator of A, denoted by A∗, is a bounded linear operator
defined by A∗ : E∗

2 → E∗
1

〈A∗ȳ, x〉 := 〈ȳ, Ax〉, ∀x ∈ E1, ȳ ∈ E∗
2

and the equalities ||A∗|| = ||A|| and N (A∗) = R(A)⊥ are valid, where R(A)⊥ :=
{x∗ ∈ E∗

2 : 〈x∗, u〉 = 0, ∀u ∈ R(A)}. For more details on bounded linear operators
and their duals, please see [9, 26, 27].
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Let 1 < q ≤ 2 ≤ p with 1
p

+ 1
q

= 1. Let E be a real Banach space. The modulus
of convexity δE : [0, 2] → [0, 1] is defined as

δE(ε) = inf

{
1 − ||x + y||

2
: ||x|| = 1 = ||y||, ||x − y|| ≥ ε

}
.

E is called uniformly convex if δE(ε) > 0 for any ε ∈ (0, 2]; p-uniformly convex if
there is a cp > 0 so that δE(ε) ≥ cpεp for any ε ∈ (0, 2]. The modulus of smoothness
ρE(τ) : [0, ∞) → [0, ∞) is defined by

ρE(τ) =
{ ||x + τy|| + ||x − τy||

2
− 1 : ||x|| = ||y|| = 1

}
.

E is called uniformly smooth if lim
n→∞

ρE(τ)
τ

= 0; q-uniformly smooth if there is a

Cq > 0 so that ρE(τ) ≤ Cqτq for any τ > 0. The Lp space is 2-uniformly convex
for 1 < p ≤ 2 and p-uniformly convex for p ≥ 2. It is known that E is p-uniformly
convex if and only if its dual E∗ is q-uniformly smooth (see [11]).

The q-uniformly smooth spaces have the following estimate [29].

Lemma 2.1 (Xu, [29]) Let x, y ∈ E. If E is q-uniformly smooth, then there is a
Cq > 0 so that

||x − y||q ≤ ||x||q − q〈y, J
q
E(x)〉 + Cq ||y||q .

Here and hereafter, we assume that E is a p-uniformly convex and uniformly
smooth, which implies that its dual space, E∗, is q-uniformly smooth and uniformly
convex. In this situation, it is known that the duality mapping J

p
E is one-to-one,

single-valued and satisfies J
p
E = (J

q
E∗)−1, where J

q
E∗ is the duality mapping of E∗

(see [1, 8, 19]). Here the duality mapping J
p
E : E → 2E∗

is defined by

J
p
E(x) = {x̄ ∈ E∗ : 〈x, x̄〉 = ||x||p, ||x̄|| = ||x||p−1}.

The duality mapping J
p
E is said to be weak-to-weak continuous if

xn ⇀ x ⇒ 〈Jp
Exn, y〉 → 〈Jp

Ex, y〉

holds true for any y ∈ E . It is worth noting that the �p(p > 1) space has such a
property, but the J

p
E(p > 2) space does not share this property.

Given a Gâteaux differentiable convex function f : E → R, the Bregman
distance with respect to f is defined as:

�f (x, y) = f (y) − f (x) − 〈f ′(x), y − x〉, x, y ∈ E
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It is worth noting that the duality mapping Jp is in fact the derivative of the function
fp(x) = ( 1

p
)||x||p. Then the Bregman distance with respect to fp is given by

�p(x, y) = 1

q
||x||p − 〈Jp

Ex, y〉 + 1

p
||y||p

= 1

p
(||y||p − ||x||p) + 〈

J
p
Ex, x − y

〉

= 1

q
(||x||p − ||y||p) − 〈

J
p
Ex − J

p
Ey, x

〉
.

Given x, y, z ∈ E, one can easily get

�p(x, y) = �p(x, z) + �p(z, y) + 〈
z − y, J

p
Ex − J

p
Ez
〉
, (2.1)

�p(x, y) + �p(y, x) = 〈
x − y, J

p
Ex − J

p
Ey
〉
. (2.2)

Generally speaking, the Bregman distance is not a metric due to the absence of sym-
metry, but it has some distance-like properties. For the p-uniformly convex space,
the metric and Bregman distance has the following relation (see [22]):

τ ||x − y||p ≤ �p(x, y) ≤ 〈
x − y, J

p
Ex − J

p
Ey
〉
, (2.3)

where τ > 0 is some fixed number.
It is easy to see that if {xn} and {yn} are bounded sequences of a p-uniformly

convex and uniformly smooth E, then xn − yn → 0, n → ∞ implies that
�p(xn, yn) → 0, n → ∞.

Let C be a nonempty, closed and convex subset of E. The metric projection

PCx = argminy∈C ||x − y||, x ∈ E,

is the unique minimizer of the norm distance, which can be characterized by a
variational inequality:

〈
J

p
E(x − PCx), z − PCx

〉 ≤ 0, ∀z ∈ C. (2.4)

Likewise, one can define the Bregman projection:

�Cx = argminy∈C�p(x, y), x ∈ E,

as the unique minimizer of the Bregman distance (see [21]). The Bregman projection
can also be characterized by a variational inequality:

〈
J

p
E(x) − J

p
E(�Cx), z − �Cx

〉 ≤ 0, ∀z ∈ C, (2.5)

from which one has

�p(�Cx, z) ≤ �p(x, z) − �p(x, �Cx), ∀z ∈ C. (2.6)
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In Hilbert spaces, the metric projection and the Bregman projection with respect to
f2 are coincident, but in general they are different. More importantly, the metric
projection can not share the decent property (2.6) as the Bregman projection in
Banach spaces.

Following [1, 6], we make use of the function Vp : E∗×E → [0, +∞) associated
with fp, which is defined by

Vp(x̄, x) = 1

q
||x̄||q − 〈x̄, x〉 + 1

p
||x||p, ∀x ∈ E, x̄ ∈ E∗.

(Recall that E is a p-uniformly convex and uniformly smooth, which implies that
its dual space, E∗, is q-uniformly smooth and uniformly convex). Then Vp is
nonnegative and

Vp(x̄, x) = �p(J
q
E∗(x̄), x) (2.7)

for all x ∈ E and x̄ ∈ E∗. Moreover, using the subdifferential inequality for f (x) =
1
q
||x||q, x ∈ E∗, we have

〈
J

q
E(x), y

〉 ≤ 1

q
||x + y||q − 1

q
||x||q, ∀x, y ∈ E∗. (2.8)

Using (2.8), we have for all x̄, ȳ ∈ E∗ and x ∈ E that

Vp(x̄ + ȳ, x) = 1

q
||x̄ + ȳ||q − 〈x̄ + ȳ, x〉 + 1

p
||x||p

≥ 1

q
||x̄||q + 〈

ȳ, J
q
E∗(x̄)

〉− 〈x̄ + ȳ, x〉 + 1

p
||x||p

= 1

q
||x̄||q − 〈x̄, x〉 + 1

p
||x||p + 〈ȳ, J

q
E∗(x̄)〉

−〈ȳ, x〉
= 1

q
||x̄||q − 〈x̄, x〉 + 1

p
||x||p + 〈

ȳ, J
q
E∗(x̄) − x

〉

= Vp(x̄, x) + 〈
ȳ, J

q
E∗(x̄) − x

〉
.

In other words,

Vp(x̄, x) + 〈
ȳ, J

q
E∗(x̄) − x

〉 ≤ Vp(x̄ + ȳ, x) (2.9)
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for all x ∈ E and x̄, ȳ ∈ E∗ (see, for example, [23, 24]). In addition, Vp is convex in

the first variable since ∀z ∈ E, {xi}Ni=1 ⊂ E and {ti}Ni=1 ⊂ (0, 1) with
N∑

i=1
ti = 1,

�p

(
J

q
E∗

(
N∑

i=1

tiJ
p
E (xi)

)
, z

)
= Vp

(
N∑

i=1

tiJ
p
E (xi), z

)

= 1

q

∣∣∣
∣∣∣

N∑

i=1

tiJ
p
E (xi)

∣∣∣
∣∣∣
q −

〈
N∑

i=1

tiJ
p
E (xi), z

〉
+ 1

p
||z||p

≤ 1

q

N∑

i=1

ti ||Jp
E (xi)||q − 1

q

N∑

i=1

ti〈Jp
E (xi), z〉 + 1

p
||z||p

= 1

q

N∑

i=1

ti ||xi ||(p−1)q − 1

q

N∑

i=1

ti〈Jp
E (xi), z〉 + 1

p
||z||p

= 1

q

N∑

i=1

ti ||xi ||p − 1

q

N∑

i=1

ti〈Jp
E (xi), z〉 + 1

p
||z||p

=
N∑

i=1

ti�p(xi, z).

Thus, for all z ∈ E,

�p

(
J

q
E∗

(
N∑

i=1

tiJ
p
E (xi)

)
, z

)
≤

N∑

i=1

ti�p(xi, z), (2.10)

where {xi}Ni=1 ⊂ E and {ti}Ni=1 ⊂ (0, 1) with
N∑

i=1
ti = 1.

Let C be a convex subset of int domfp, where fp(x) =
(

1
p

)
||x||p, 2 ≤ p < ∞

and let T be a self-mapping of C. A point p ∈ C is said to be an asymptotic fixed
point (please, see [7, 18] of T if C contains a sequence {xn}∞n=1 which converges
weakly to p and lim

n→∞||xn − T xn|| = 0 (see [7, 18]). The set of asymptotic fixed

points of T is denoted by F̂ (T ).

Definition 2.2 Recalling that the Bregman distance is not symmetric, we define the
following operators.

Definition 2.3 A nonlinear mapping T with a nonempty asymptotic fixed point set
is said to be: (i) left Bregman strongly nonexpansive (L-BSNE) (see [13, 14]) with
respect to a nonempty F̂ (T ) if

�p(T x, x̄) ≤ �p(x, x̄), ∀x ∈ C, x̄ ∈ F̂ (T )

and if whenever {xn} ⊂ C is bounded, x̄ ∈ F̂ (T ) and

lim
n→∞(�p(xn, x̄) − �p(T xn, x̄)) = 0,
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it follows that

lim
n→∞�p(xn, T xn) = 0.

According to Martin-Marquez et al. [13, 14], a left Bregman strongly nonexpansive
mapping T with respect to a nonempty F̂ (T ) is called strictly left Bregman strongly
nonexpansive mapping. (ii) An operator T : C → E is said to be: left Bregman
firmly nonexpansive (L-BFNE) if

〈
JE

p (T x) − JE
p (T y), T x − Ty

〉
≤
〈
JE

p (T x) − JE
p (T y), x − y

〉

for any x, y ∈ C, or equivalently,

�p(T x, T y)+�p(Ty, T x)+�p(x, T x)+�p(y, T y) ≤ �p(x, T y)+�p(y, T x).

Remark 2.4 It should be pointed out at this point that using our definition of �f (x, y)

given above, we see that our definitions of left Bregman strongly nonexpansive map-
ping and left Bregman firmly nonexpansive mapping in Definition 2.3 coincide with
the definitions of left Bregman strongly nonexpansive mapping and left Bregman
firmly nonexpansive mapping given in [13, 14]. Kindly observe the order of x, y in
our definitions here and in the results of [13, 14].

The class of left Bregman strongly nonexpansive mappings is of particular sig-
nificance in fixed point, iteration and convex optimization theories mainly because
it is closed under composition. For more information and examples of L-BSNE and
L-BFNE operators, please see [13, 14]. From [13, 14], we know that every left
Bregman firmly nonexpansive mapping is left Bregman strongly nonexpansive if
F(T ) = F̂ (T ).

We next state the following lemmas which will be used in the sequel.

Lemma 2.5 (Xu [29]) Let {an} be a sequence of nonnegative real numbers satisfying
the following relation:

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 1,

where, (i) {αn} ⊂ [0, 1], ∑αn = ∞; (ii) lim sup σn ≤ 0; (iii) γn ≥ 0; (n ≥ 1),∑
γn < ∞. Then, an → 0 as n → ∞.

We shall adopt the following notations in this paper:

• xn → x means that xn → x strongly;
• xn ⇀ x means that xn → x weakly;
• ωw(xn) := {x : ∃xnj

⇀ x} is the weak w-limit set of the sequence {xn}∞n=1.

In this paper, we assume that E1 and E2 are p-uniformly convex real Banach
spaces which are also uniformly smooth, E∗

1 is q-uniformly smooth real Banach
space which is also uniformly convex where 1 < q ≤ 2 ≤ p < ∞ with 1

p
+ 1

q
= 1.

We further denote by J
p
E1

and J
p
E2

the duality mappings of E1 and E2 respectively

and J
q

E∗
1

the duality mapping of E1
∗.
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3 Main results

Theorem 3.1 Let E1 and E2 be two p-uniformly convex real Banach spaces which
are also uniformly smooth. Let C and Q be nonempty, closed and convex subsets
of E1 and E2 respectively, A : E1 → E2 be a bounded linear operator and A∗ :
E∗

2 → E∗
1 be the adjoint of A. Suppose that SFP (1.1) has a nonempty solution set

�. Let T be a left Bregman strongly nonexpansive mapping of C into C such that
F(T ) = F̂ (T ) and F(T ) ∩ � �= ∅. Let {αn} be a sequence in (0, 1). For a fixed
u ∈ E1, let sequence {xn}∞n=1 be iteratively generated by u1 ∈ E1,

{
xn = �CJ

q

E∗
1
[Jp

E1
(un) − tnA

∗Jp
E2

(Aun − PQ(Aun))]
un+1 = �CJ

q

E∗
1
(αnJ

p
E1

(u) + (1 − αn)J
p
E1

(T xn)), n ≥ 1.
(3.1)

Suppose the following conditions are satisfied:
(a) lim

n→∞αn = 0;

(b)
∞∑

n=1
αn = ∞ and

(c) 0 < t ≤ tn ≤ k <
(

q
Cq ||A||q

) 1
q−1

.

Then the sequence {xn}∞n=1 converges strongly to an element x∗ ∈ F(T ) ∩ �, where
x∗ = �F(T )∩�u.

Proof Let x∗ ∈ �. Suppose wn := Aun − PQ(Aun), ∀n ≥ 1. Suppose
vn := J

q

E∗
1
[Jp

E1
(un) − tnA

∗Jp
E2

(Aun − PQ(Aun))], ∀n ≥ 1. Then, we have

xn = �Cvn, ∀n ≥ 1. Also, it follows from (2.4) that

〈Jp
E2

(wn), Aun − Ax∗〉 = ||Aun − PQ(Aun)||p + 〈Jp
E2

(wn), PQ(Aun) − Ax∗〉
≥ ||Aun − PQ(Aun)||p = ||wn||p, (3.2)

which, with Lemma 2.1, yields

�p(xn, x
∗) ≤ �p(vn, x

∗) = �p

(
J

q

E∗
1

[
J

p
E1

(un) − tnA
∗Jp

E2
(wn)

]
, x∗)

= 1

q
||Jp

E1
(un) − tnA

∗Jp
E2

(wn)||q − 〈Jp
E1

(un), x
∗〉

+tn

〈
J

p
E2

(wn), Ax∗〉+ 1

p
||x∗||p

≤ 1

q
||Jp

E1
(un)||q − tn〈Aun, J

p
E2

(wn)〉 + Cq(tn||A||)q
q

||Jp
E2

(wn)||q

−
〈
J

p
E1

(un), x
∗〉+ tn

〈
J

p
E2

(wn), Ax∗〉+ 1

p
||x∗||p
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= 1

q
||un||p − 〈Jp

E1
(un), x

∗〉 + 1

p
||x∗||p + tn

〈
J

p
E2

(wn), Ax∗ − Aun

〉

+Cq(tn||A||)q
q

||Jp
E2

(wn)||q

= �p(un, x
∗) + tn

〈
J

p
E2

(wn), Ax∗ − Aun

〉
+ Cq(tn||A||)q

q
||Jp

E2
(wn)||q

≤ �p(un, x
∗) −

(
tn − Cq(tn||A||)q

q

)
||wn||p. (3.3)

Using the condition (c), we have

�p(xn, x
∗) ≤ �p(un, x

∗), ∀n ≥ 1.

Now, using (3.1), we have

�p(xn+1, x
∗) ≤ �p(un+1, x

∗) ≤ αn�p(u, x∗) + (1 − αn)�p(T xn, x
∗)

≤ αn�p(u, x∗) + (1 − αn)�p(xn, x
∗) (3.4)

≤ max{�p(u, x∗), �p(xn, x
∗)}

...

≤ max{�p(u, x∗), �p(x1, x
∗)}.

Hence, {xn}∞n=1 is bounded.

Let yn := J
q

E∗
1

(
αnJ

p
E1

(u) + (1 − αn)J
p
E1

(T xn)
)

, n ≥ 1. From condition (i), we

obtain

�p(yn, T xn) ≤ αn�p(u, T xn) + (1 − αn)�p(T xn, T xn)

= αn�p(u, T xn) → 0, n → ∞.

Furthermore,

�p(xn+1, x
∗) ≤ �p(vn+1, x

∗) ≤ �p(un+1, x
∗)

= Vp

(
αnJ

p
E1

(u) + (1 − αn)J
p
E1

(T xn), x
∗)

≤ Vp

(
αnJ

p
E1

(u)+(1 − αn)J
p
E1

(T xn)−αn

(
J

p
E1

(u)−J
p
E1

(x∗)
)

, x∗)

+αn

〈
J

p
E1

(u) − J
p
E1

(x∗), yn − x∗〉

= Vp

(
αnJ

p
E1

(x∗) + (1 − αn)J
p
E1

(T xn), x
∗)

+αn

〈
J

p
E1

(u) − J
p
E1

(x∗), yn − x∗〉

≤ αnVp

(
J

p
E1

(x∗), x∗)+ (1 − αn)Vp

(
J

p
E1

(T xn), x
∗)

+αn

〈
J

p
E1

(u) − J
p
E1

(x∗), yn − x∗〉

= (1 − αn)�p(T xn, x
∗) + αn

〈
J

p
E1

(u) − J
p
E1

(x∗), yn − x∗〉

≤ (1 − αn)�p(xn, x
∗) + αn〈Jp

E1
(u) − J

p
E1

(x∗), yn − x∗〉〉. (3.5)
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The rest of the proof will be divided into two parts.

Case 1 Suppose that there exists n0 ∈ N such that {�p(xn, x
∗)}∞n=n0

is non-
increasing. Then {�p(xn, x

∗)}∞n=1 converges and �p(xn, x
∗) − �p(xn+1, x

∗) →
0, n → ∞. Observe that

�p(xn+1, x
∗) ≤ �p(un+1, x

∗) ≤ αn�p(u, x∗) + (1 − αn)�p(T xn, x
∗).

It then follows that

�p(xn, x
∗) − �p(T xn, x

∗) = �p(xn, x
∗) − �p(xn+1, x

∗)
+�p(xn+1, x

∗) − �p(T xn, x
∗)

≤ �p(xn, x
∗) − �p(xn+1, x

∗)
+αn(�p(u, x∗) − �p(T xn, x

∗)) → 0, n → ∞. (3.6)

It then follows that

lim
n→∞�p(xn, T xn) = 0.

Since {xn} is bounded, there exists a subsequence {xnj
} of {xn} that converges

weakly to z. Since F(T ) = F̂ (T ), we have z ∈ F(T ).

Next, we show that z ∈ �. Now, from (3.3), we obtain
(

tn − Cq(tn||A||)q
q

)
||Aun − PQ(Aun)||p ≤ �p(un, x

∗) − �p(xn, x
∗). (3.7)

Also, from (3.4), we have

�p(un+1, x
∗) ≤ αn�p(u, x∗) + �p(xn, x

∗). (3.8)

Putting (3.7) into (3.8), we have
(

tn − Cq(tn||A||)q
q

)
||Aun − PQ(Aun)||p ≤ �p(un, x

∗) − �p(xn, x
∗)

≤ αn−1�p(u, x∗) + �p(xn−1, x
∗)

−�p(xn, x
∗). (3.9)

By condition (c) and (3.9), we have

0 < t

(
1 − Cqkq−1||A||q

q

)
||Aun − PQ(Aun)||p

≤
(

tn − Cq(tn||A||)q
q

)
||Aun − PQ(Aun)||p

≤ αn−1�p(u, x∗) + �p(xn−1, x
∗) − �p(xn, x

∗) → 0, n → ∞.

Hence, we obtain

lim
n→∞||Aun − PQ(Aun)|| = 0. (3.10)
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Since vn := J
q

E∗
1

[
J

p
E1

(un) − tnA
∗Jp

E2
(Aun − PQ(Aun))

]
, ∀n ≥ 1, then we have

0 ≤ ||Jp
E1

(vn) − J
p
E1

(un)|| ≤ tn||A∗||||Jp
E2

(Aun − PQ(Aun))||

≤
(

q

Cq ||A||q
) 1

q−1||A∗||||Aun−PQ(Aun)||→0, n→∞.(3.11)

Therefore, we obtain

lim
n→∞||Jp

E1
(vn) − J

p
E1

(un)|| = 0.

Since J
q

E∗
1

is also norm-to-norm uniformly continuous on bounded subsets of E∗
1 , we

have
lim

n→∞||vn − un|| = 0.

Furthermore,

||J q

E∗
1

[
J

p
E1

(un) − tnA
∗Jp

E2
(Aun − PQ(Aun))

]
− un|| = ||vn − un|| → 0, n → ∞.

Since J
p
E1

is norm-to-norm uniformly continuous on bounded sets, then

t ||A∗Jp
E2

(Aun − PQ(Aun))|| ≤ tn||A∗Jp
E2

(Aun − PQ(Aun))||
= ||Jp

E1
(un) − tnA

∗Jp
E2

(Aun − PQ(Aun))

−J
p
E1

(un)|| → 0, n → ∞.

Thus,

lim
n→∞||A∗Jp

E2
(Aun − PQ(Aun))|| = 0. (3.12)

Furthermore, we have from (2.6) and (3.4) that

�p(vn, xn) = �p(vn, �Cvn) ≤ �p(vn, x
∗) − �p(xn, x

∗)
≤ �p(un, x

∗) − �p(xn, x
∗)

≤ αn−1M
∗ + �p(xn−1, x

∗) − �p(xn, x
∗) → 0, n → ∞, (3.13)

for some M∗ > 0. By (2.3), we have that

lim
n→∞||vn − xn|| = 0.

Hence,
||xn − un|| ≤ ||vn − un|| + ||vn − xn|| → 0, n → ∞.

Since {xn} is bounded, there exists {xnj
} of {xn} such that xnj

⇀ z ∈ ωw(xn). Now,
since xnj

⇀ z and lim
n→∞||xn − un|| = 0, we obtain that unj

⇀ z. From (2.2), (2.5)

and (2.3), we have that

�p(z,�Cz) ≤
〈
J

p
E1

(z) − J
p
E1

(�Cz), z − �Cz
〉

=
〈
J

p
E1

(z) − J
p
E1

(�Cz), z − unj

〉
+
〈
J

p
E1

(z) − J
p
E1

(�Cz), unj
− �Cunj

〉

+
〈
J

p
E1

(z) − J
p
E1

(�Cz),�Cunj
− �Cz

〉

≤
〈
J

p
E1

(z) − J
p
E1

(�Cz), z − unj

〉
+
〈
J

p
E1

(z) − J
p
E1

(�Cz), unj
− �Cunj

〉
.
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As j → ∞, we obtain that �p(z, �Cz) = 0. Thus, z ∈ C. Let us now fix x ∈ C.
Then, Ax ∈ Q and

||(I − PQ)Aunj
||p = 〈Jp

E2
(Axn − PQ(Aunj

)), Axn − PQ(Aunj
)〉

= 〈Jp
E2

(Axn − PQ(Aunj
)), Aunj

− Ax〉
+〈Jp

E2
(Axn − PQ(Aunj

)), Ax − PQ(Aunj
)〉

≤ 〈Jp
E2

(Axn − PQ(Aunj
)), Aunj

− Ax〉
≤ M||A∗(I − PQ)Aunj

||p−1 → 0, n → ∞,

where M > 0 is sufficiently large number. It then follows from (2.4) that

||(I − PQ)Az||p = 〈Jp
E2

(Az − PQ(Az)), Az − PQ(Az)〉
= 〈Jp

E2
(Az − PQ(Az)), Az − Aunj

〉
+〈Jp

E2
(Az − PQ(Az)), Aunj

− PQ(Aunj
)〉

+〈Jp
E2

(Az − PQ(Az)), PQ(Aunj
) − PQ(Az)〉

≤ 〈Jp
E2

(Az − PQ(Az)), Az − Aunj
〉

+〈Jp
E2

(Az − PQ(Az)), Aunj
− PQ(Aunj

)〉.
Also, since Aunj

⇀ Az, we have that

lim
n→∞||(I − PQ)Az|| = 0.

Thus, Az ∈ Q. This implies that z ∈ � and hence z ∈ F(T ) ∩ �.

Furthermore, we have that

�p(xn, yn) ≤ αn�p(xn, u) + (1 − αn)�p(xn, T xn) → 0, n → ∞. (3.14)

Fig. 1 Example 4.1 case I: (u = (1, 1, 1), u1 = (3, 0, 4) and tn = 0.0137)
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Fig. 2 Example 4.1 case I: (u = (1, 1, 1), u1 = (3, 0, 4) and tn = 0.01)

By (2.3), it follows that ||xn − yn|| → 0, n → ∞.

Let p := �F(T )∩�u. We next show that lim sup
n→∞

〈
J

p
E1

(u) − J
p
E1

(p), yn − p
〉

≤
0. To show the inequality lim sup

n→∞

〈
J

p
E1

(u) − J
p
E1

(p), yn − p
〉

≤ 0, we choose a

subsequence {xnj
} of {xn} such that

lim sup
n→∞

〈
J

p
E1

(u) − J
p
E1

(p), xn − p〉 = lim
j→∞〈Jp

E1
(u) − J

p
E1

(p), xnj
− p

〉
.

Fig. 3 Example 4.1 case I: (u = (1, 1, 1), u1 = (3, 0, 4) and tn = 0.001)
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By ||xn − yn|| → 0, n → ∞ and (2.5), we obtain

lim sup
n→∞

〈Jp
E1

(u) − J
p
E1

(p), yn − p〉 ≤ lim sup
n→∞

〈Jp
E1

(u) − J
p
E1

(p), xn − p〉 ≤ 0.(3.15)

Now, using (3.15), (3.5) and Lemma 2.5, we obtain �p(xn, p) → 0, n → ∞.
Hence, xn → p, n → ∞.

Case 2 Assume that {�p(xn, x
∗)}∞n=1 is not monotonically decreasing sequence. Set

�n = �p(xn, x
∗), ∀n ≥ 1 and let τ : N → N be a mapping for all n ≥ n0 (for

some n0 large enough) by

τ(n) := max{k ∈ N : k ≤ n, �k ≤ �k+1}.
Clearly, τ is a non decreasing sequence such that τ(n) → ∞ as n → ∞ and

0 ≤ �τ(n) ≤ �τ(n)+1, ∀n ≥ n0.

Furthermore, we obtain

�p(xτ(n), x
∗) − �p(T xτ(n), x

∗) = Df (x∗, xτ(n)) − Df (x∗, xτ(n)+1)

+Df (x∗, xτ(n)+1) − �p(T xτ(n), x
∗)

≤ �p(xτ(n), x
∗) − �p(xτ(n)+1, x

∗)
+αn(�p(u, x∗) − �p(xτ(n), x

∗)) → 0, n → ∞.

It then follows that

lim
n→∞�p(xτ(n), T xτ(n)) = 0.

After a similar conclusion from (3.10), it is easy to see that

||Auτ(n) − PQuτ(n)|| → 0, n → ∞.

Fig. 4 Example 4.1 case II: (u = (1, 1, 1), u1 = (1, 2, 1) and tn = 0.0137)
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Fig. 5 Example 4.1 case II: (u = (1, 1, 1), u1 = (1, 2, 1) and tn = 0.01)

By the similar argument as above in Case 1, we conclude immediately that

lim
n→∞||A∗Jp

E2
(Auτ(n) − PQ(Auτ(n)))|| = 0.

and
lim sup
n→∞

〈Jp
E1

(u) − J
p
E1

(x∗), yτ(n) − x∗〉 ≤ 0.

Since {xτ(n)} is bounded, there exists a subsequence of {xτ(n)}, still denoted by {xτ(n)}
which converges weakly to z ∈ C and Az ∈ Q. From (3.5) we have that

�p(xτ(n)+1, x
∗) ≤ (1 − ατ(n))�p(xτ(n), x

∗) + αn〈Jp
E1

(u) − J
p
E1

(x∗), yτ(n) − x∗〉

Fig. 6 Example 4.1 case II: (u = (1, 1, 1), u1 = (1, 2, 1) and tn = 0.001)
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Fig. 7 Example 4.1 case III: (u = (1, 5, 1), u1 = (2, 1, 4) and tn = 0.0137)

which implies by Lemma 2.5

lim
n→∞�p(xτ(n), x

∗) = 0 (3.16)

and lim
n→∞�p(xτ(n)+1, x

∗) = 0. Furthermore, for n ≥ n0, it is easy to see that �τ(n) ≤
�τ(n)+1 if n �= τ(n) (that is, τ(n) < n), because �j ≥ �j+1 for τ(n) + 1 ≤ j ≤ n.

As a consequence, we obtain for all n ≥ n0,

0 ≤ �n ≤ max{�τ(n), �τ(n)+1} = �τ(n)+1.

Hence lim �n = 0, that is, {xn} converges strongly to x∗. This completes the proof.

Fig. 8 Example 4.1 case III: (u = (1, 5, 1), u1 = (2, 1, 4) and tn = 0.01)
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Corollary 3.2 Let E1 and E2 be two Lp spaces with 2 ≤ p < ∞. Let C and Q be
nonempty, closed and convex subsets of E1 and E2 respectively, A : E1 → E2 be
a bounded linear operator and A∗ : E∗

2 → E∗
1 be the adjoint of A. Let T be a left

Bregman strongly nonexpansive mapping of C into C such that F(T ) = F̂ (T ) and
F(T ) ∩ � �= ∅. Let {αn} be a sequence in (0, 1). For a fixed u ∈ E1, let sequence
{xn}∞n=1, be iteratively generated by u1 ∈ E,

{
xn = �CJ

q

E∗
1
[Jp

E1
(un) − tnA

∗Jp
E2

(Aun − PQ(Aun))]
un+1 = �CJ

q

E∗
1
(αnJ

p
E1

(u) + (1 − αn)J
p
E1

(T xn)), n ≥ 1.

Suppose the following conditions are satisfied:
(a) lim

n→∞αn = 0;

(b)
∞∑

n=1
αn = ∞ and

(c) 0 < t ≤ tn ≤ k <
(

q
cq ||A||q

) 1
q−1

.

Then the sequence {xn}∞n=1 converges strongly to an element x∗ ∈ F(T ) ∩ �, where
x∗ = �F(T )∩�u.

Next, using the idea in [13], we consider the mapping T : C → C defined by T =
TmTm−1...T1, where Ti(i = 1, 2, . . . , m) are left Bregman strongly nonexpansive
mappings on E. We know from Proposition 3.4 (page 602) of [13] that

(∩m
i=1F(Ti)

) = F(T ).

Using Theorem 3.1, we have the following corollary.

Fig. 9 Example 4.1 case III: (u = (1, 5, 1), u1 = (2, 1, 4) and tn = 0.001)
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Fig. 10 Example 4.2 case I: (u = 5
2 t2 − 2t, u1 = 3 sin(t) and tn = 1.0 × 109)

Corollary 3.3 Let E1 and E2 be two p-uniformly convex real Banach spaces which
are also uniformly smooth. Let C and Q be nonempty, closed and convex sub-
sets of E1 and E2 respectively, A : E1 → E2 be a bounded linear operator and
A∗ : E∗

2 → E∗
1 be the adjoint of A. Let Ti(i = 1, 2, . . . , m) be a sequence of left

Bregman strongly nonexpansive mapping of C into C such that F(Ti) = F̂ (Ti) and
(∩m

i=1F(Ti)) ∩ � �= ∅. Let {αn} be a sequence in (0, 1). For a fixed u ∈ E1, let
sequence {xn}∞n=1 be iteratively generated by u1 ∈ E,

{
xn = �CJ

q

E∗
1
[Jp

E1
(un) − tnA

∗Jp
E2

(Aun − PQ(Aun))]
un+1 = �CJ

q

E∗
1
(αnJ

p
E1

(u) + (1 − αn)J
p
E1

(TmTm−1...T1xn)), n ≥ 1.

Fig. 11 Example 4.2 case I: (u = 5
2 t2 − 2t, u1 = 3 sin(t) and tn = 0.1)
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Suppose the following conditions are satisfied:

(a) lim
n→∞αn = 0;

(b)
∞∑

n=1
αn = ∞ and

(c) 0 < t ≤ tn ≤ k <
(

q
Cq ||A||q

) 1
q−1

.

Then the sequence {xn}∞n=1 converges strongly to an element x∗ ∈ (∩m
i=1F(Ti)) ∩ �,

where x∗ = �(∩m
i=1F(Ti ))∩�u.

4 Numerical example

In this section, we present some preliminary numerical results. All codes were written
in Matlab 2012b and run on Hp i-5 Dual-Core laptop.

Example 4.1 We give a numerical example in (R3, ||.||2) of the problem considered
in Theorem 3.1 in the previous section. Now take

C := {x = (x1, x2, x3) ∈ R
3 : 〈a, x〉 ≥ b},

where a = (2, −1, 5) and b = 1, then

�C(x) = PC(x) = b − 〈a, x〉
||a||22

a + x.

Let
Q := {x = (x1, x2, x3) ∈ R

3 : 〈a, x〉 = b},
where a = (3, 5, 7) and b = 2 then

PQ(x) = max

{
0,

b − 〈a, x〉
||a||22

}
a + x.

Furthermore, let T = PC (which is an example of a left Bregman strongly nonex-

pansive mapping, please see [13, 14], αn = 1
n+1 and A =

⎛

⎝
5 −5 −7

−4 2 −4
−7 −4 5

⎞

⎠, then our

iterative scheme (3.1) becomes
{

xn = PC[un − tnA
T (Aun − PQ(Aun))]

un+1 = PC

(
u

n+1 +
(

1 − 1
n+1

)
(PCxn)

)
, n ≥ 1.

We make different choices of u1, u and tn. The stopping criterion for all testing
methods was taken as: ||xn+1 − xn||

||x2 − x1|| < 10−2.

We note here that in each case, we omit tables for very small values of tn.
Case I: Take u = (1, 1, 1) and u1 = (3, 0, 4) and then consider tn = 0.0137,

tn = 0.01 and tn = 0.001. The graphs using our algorithm (3.1) with these tns are
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given respectively in Figs. 1, 2 and 3 while Table 1 shows the numerical values for
two tns only.

Case II: Take u = (1, 1, 1) and u1 = (1, 2, 1) and then consider tn = 0.0137,
tn = 0.01 and tn = 0.001. The graphs using our algorithm (3.1) with these tns are
given respectively in Figs. 4, 5 and 6 while Table 2 shows the numerical values for
two tns only.

Case III: Take u = (1, 5, 1) and u1 = (2, 1, 4) and then consider tn = 0.0137,
tn = 0.01 and tn = 0.001. The graphs using our algorithm (3.1) with these tns are
given respectively in Figs. 7, 8 and 9 while Table 3 shows the numerical values for
two tns only.

Remark 4.1 We make the following comments from Example 4.1.
1. By the choice of our stopping criterion, we get less number of iterations required
for the convergence. For example, we observe that if the stopping criterion is taken
as:

max{||xn − PCxn||, ||Axn − PQ(Axn)||}
max{||x1 − PCx1||, ||Ax1 − PQ(Ax1)||} < 10−4,

we get very large iterations in thousands in many cases. If the stopping criterion is
taken as

||xn+1 − xn||
||x2 − x1|| < 10−4,

we get about 194 iterations in some cases. Furthermore, using the choice of our stop-
ping criterion ||xn+1−xn||

||x2−x1|| < 10−2, if tn is chosen very small and close to zero, we
require many iteration steps but when tn is chosen such that it is a bit away from zero
but close to 2

||A||2 , we require less iterations for convergence.

Fig. 12 Example 4.2 case II: (u = 5
2 t2 − 2t, u1 = exp(2t) and tn = 1.0 × 109)
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2. We observe from the numerical analysis of our result of the tables and graphs
that we realise fast convergence when tn is taken close to 2

||A||2 and the more the

iteration steps are, the more slowly the sequences {xn}∞n=1 and {un}∞n=1 converge to
the solution of our problem. Furthermore, we see that the sequence {xn}∞n=1 converges
faster to the solution than {un}∞n=1.

3. We also notice that the choice of u1, either close to u or not, does not have
significant effect on the convergent rate of both sequences {xn}∞n=1 and {un}∞n=1.

Example 4.2 Here, we take E1 = L2([0, 1]) = E2 with the inner product given as

〈f, g〉 =
∫ 1

0
f (t)g(t)dt.

Now, let
C := {x ∈ L2([0, 1]) : 〈x, a〉 = b},

where a = 2t2, b = 0. Then

PC(x) = max

{
0,

b − 〈a, x〉
||a||22

}
a + x.

Also, let
Q := {x ∈ L2([0, 1]) : 〈x, c〉 ≥ d},

where c = t
3 , d = −1. Then

�Q(x) = PQ(x) = d − 〈c, x〉
||c||22

c + x.

Let us assume that

A : L2([0, 1]) → L2([0, 1]), (Ax)(t) = x(t)

2
.

Fig. 13 Example 4.2 case II: (u = 5
2 t2 − 2t, u1 = exp(2t) and tn = 0.1)
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Then A is a bounded linear operator and A∗ = A. Suppose that we take operator T

in Theorem 3.1 as T := PC , the metric projection on C. Then the problem consid-
ered in Theorem 3.1 reduces to:

find x ∈ F(T ) ∩ C(= C) such that Ax ∈ Q. (4.1)

We observe that if � denotes the set of solutions of (4.1), then � �= ∅, since x∗ =
0 ∈ �. Furthermore, our iterative scheme (3.1) becomes

{
xn = PC[un − tnA

∗(Aun − PQ(Aun))]
un+1 = PC

(
u

n+1 +
(

1 − 1
n+1

)
(PCxn)

)
, n ≥ 1.

We make different choices of u1 and tn with a choice of u = 5
2 t2 − 2t and the

same stopping criterion as used in the Example 4.1.
Case I: Take u1 = 3sin(t) and then consider both tn = 1.0 × 10−9 and tn = 0.1.

The graphs for both tns are presented respectively in Figs. 10 and 11 while Table 4
shows the numerical values for both cases with the same choice of u1.

Case II: Take u1 = exp(2t) and then consider tn = 1.0 × 10−9 and tn = 0.1. The
graphs for both tns are presented respectively in Figs. 12 and 13 while Table 5 shows
the numerical values for both cases with the same choice of u1.

Remark 4.2 We make the following comments from Example 4.2. We observe that
different choices of tn and u1 have no effect in terms of cpu time for the convergence
of our algorithm but when tn is taken close to zero, we have small reduction in the
number of iterations in some cases with relatively the same cpu time.
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