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Abstract In this paper, we consider two types of space-time fractional diffusion
equations(STFDE) on a finite domain. The equation can be obtained from the
standard diffusion equation by replacing the second order space derivative by a
Riemann-Liouville fractional derivative of order § (1 < 8 < 2), and the first order
time derivative by a Caputo fractional derivative of order y (0 < y < 1). For the
0 < y < 1 case, we present two schemes to approximate the time derivative and
finite element methods for the space derivative, the optimal convergence rate can be
reached 0(12_7 +h2) and O (z2 + h?), respectively, in which 7 is the time step size
and & is the space step size. And for the case y = 1, we use the Crank-Nicolson
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scheme to approximate the time derivative and obtain the optimal convergence rate
O(t% 4+ h?) as well. Some numerical examples are given and the numerical results
are in good agreement with the theoretical analysis.

Keywords Finite element method - Space-time fractional diffusion equation - Riesz
derivative - Caputo derivative - Riemann-Liouville derivative

1 Introduction

Fractional differential equations have attracted considerable interest because of their
ability to model many phenomena in fractal media, mathematical biology, chem-
istry, statistical mechanics, engineering and so on. Fractional derivatives play a
key role in modeling particle transport in anomalous diffusion including the space
fractional diffusion equation (FDE)/space fractional advection-dispersion equation
(FADE) describing Lévy flights (see [2]), the time FDE/FADE depicting traps, and
the time-space FDE/FADE characterizing the competition between Lévy flights and
traps (see [7]). A class of FDE/FADE have been successfully used to describe non-
local dependence on either time or space, to explain the development of anomalous
dispersion. Some different numerical methods for solving the space or time fractional
partial differential equations have been proposed. Liu et al. [2] considered the numer-
ical solution of the space fractional Fokker-Planck equation. They transformed the
space fractional Fokker-Planck equation into a system of ordinary differential equa-
tions (method of lines) that was then solved using backward differentiation formulas.
Meerschaert et al. [13] presented a finite difference method to solve the one dimen-
sional fractional advection-dispersion equations with a Riemann-Liouville fractional
derivative on a finite domain. Meerschaert et al. [14] also proposed shifted Gruwald
formula to solve the two-sided space-fractional partial differential equations. Liu et
al. [4] considered both numerical and analytical techniques for the modified anoma-
lous subdiffusion equation with a nonlinear source term. Fix and Roop [6] developed
a least squares finite element solution of a fractional order two-point boundary value
problem. Zhang et al. [9] considered the Galerkin finite element approximations of
space fractional PDE. Zhuang et al. [15] proposed a new solution and implicit numer-
ical methods for the anomalous subdiffusion equation, which involves one fractional
temporal derivative in the diffusion term. Zheng et al. [23] gave a note on the
finite element method for the space-fractional advection diffusion equation with non-
homogeneous initial boundary condition. Roop [11] investigated the computational
aspects for the Galerkin approximation using continuous piecewise polynomial basis
functions on a regular triangulation of a bounded domain in R?. Zhang et al. [19]
investigated the space-fractional advection-dispersion equation (SFADE) with space
dependent coefficients. Zeng et al. [20] proposed fractional linear multistep methods
for time-fractional subdiffusion equation with second-order accuracy. Zheng et al.
[21] proposed a novel high order space-time spectral method for the time-fractional
Fokker-Planck equation. Zheng et al. [22] discussed the discontinuous Galerkin
method for nonlinear fractional Fokker-Planck equation.

However, numerical methods and analysis of the fractional order partial differ-
ential equations are limited to date, methods and analysis for space-time fractional
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equations are less. Liu et al. [3, 5] considered the space-time fractional diffu-
sion and advection-diffusion equation with Caputo time fractional derivative and
Riemann-Liouville space fractional derivatives. Shen et al. [16] presented explicit
and implicit difference approximations for the space-time Riesz-Caputo fractional
advection-diffusion equation. Li et al. [1] studied the Galerkin finite element method
of the time-space fractional order nonlinear subdiffusion and superdiffusion equa-
tions. Hejazi et al. [8] proposed a finite volume method to solve the time-space two
sided fractional advection-dispersion equation on a one-dimensional domain. Chen et
al. [12] discuss the finite difference scheme for two-dimensional space-time Caputo-
Riesz fractional diffusion equation. Deng [17] developed a finite element method for
the numerical resolution of the space and time fractional Fokker-Plank equation.

So far, it seems no effective finite element method for the fractional equation with
time derivative. In this paper, we develop the finite element method for the STFDE
by utilizing the nodal base functions and the general time discretization scheme, of
which the convergence rate is O (t>~" 4 h?). However, the optimal convergence rate
of the general time discretization scheme is at most 2 — y order. Novelly, combing
the finite element method, we propose a second order scheme and apply it into the
time derivative, of which the convergence rate can be 0(1’2 + hz). Both of the two
schemes are verified by the numerical examples.

In this paper, we consider the following two types of STFDE:

Byu(x,t) aﬂu(x 1)

07 ) (1

with initial condition and boundary condition
u(x,0) = ¥(x), a<x<b, 2)
u(a,t) =0, wub,)=¢p(1), 0=<t=T 3

and 5

BVL;S’” anaﬁfj;) +fn) @

with initial condition and boundary condition
u(x,0) =¥ (x), a<x=<b, %)
u(a,t) =0, u,t)=0, 0<r=<T. (6)
Here, the time fractional derivative % is the Caputo fractional derivative of

order y (0 < y < 1) defined by
oYu(x, 1) _ { = ftau(x ) _dn 0<y <1,

877 (t—m7> 7
otY t , y = 1 ( )

while the derivative % is Riesz space-fractional derivative of order 8 (1 < B8 <

2), defined by
Fux,n 1 [aﬂu(x,r) aﬂu(x,t)]
axP T 2cos L ok 3(—x)P

®)
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and
Fux,n
xP F(Z B) dx2

/( — &) Pu(e, e,

Bﬁu(x,t) 1
a(—x)?  T@Q2—-p) ax?

The outline of the paper is as follows: several lemmas of fractional derivative are
introduced in Section 2. Finite element method with two different time discretization
schemes for solving the STFDE is proposed in Section 3. In Section 4, some numer-
ical experiments are carried out and the results are compared with the exact solution.
Finally, the conclusions are drawn.

/ & — 0" Pue. 1de.

2 The properties of the nodal base functions and their fractional
derivatives

In this section, we mainly state several important notations and lemmas used in the
subsequent sections of this paper.

Let Q = [a, b] be a finite domain and (-, -) denotes the inner product on the
space Lo (€2) with the L, norm || - ||2. Setting S;, be a uniform partition of €2, which
is given by

a=x0<X] <...<Xp—1<Xp=0>b,
where m is a positive integer. Let h = (b —a)/m = x; — x;j—1 and Q; = [x;_1, X;]
fori =1,2,...,m

Define the space V}, as the set of piecewise-linear polynomials on the mesh Sy,
which can be expressed by

Vi =1{v:vlg, € P1(2;), ve C(Q)}

where P;(£2;) is the space of linear polynomials defined on €2;.
Let Vo = Vi N HO1 (£2). The nodal based functions ¢g, ¢1, ..., ¢, of Vi can be
expressed in the form

=L x e o xil,
$i(x) = § =, x € [xi, xiq1], )
0, elsewhere.
wherei =1,2,...,m — 1, and
X]—X
— Tv X € [X(), -xl]’
Po(x) { 0, elsewhere, (10)
X=Xm—1
— h , X € [xm—l’xm]v 11
P (x) { 0, elsewhere. an
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Lemmal Fori=1,2,...,m— 1, we have
W[ i=i=1,
(¢i(x),¢j(x))=g 4, j=i, j=0,1,2,...,m; (12)
0, otherwise.
We define 1 = b=y A = ey, and by = —(i — 27 + 3G — 1> —

3i>7% 4 (i +1)>~*, then the following lemmas hold, which can be derived by directly
calculation.

Lemma2 Fori=1,2,...,m — 1, we have
0, a=<x=x-i,
3% (x) (x —xi—'™, Xicl SX S g
axx (x —xi—% = 2(x —xp)'7, Xi <X < Xig,
(r— XD =200 — )T+ (= xip )Y, X <x < b
(Xip1 =) =20 — )%+ (o — )Y, @ <x <,
0% (x) _ (g1 — 017 —2(x; — )17, Xiel SX S0
3(—x)e (xip1 —x)17, xi <X < Xigl
0, Xip1 <x <b.
Lemma3 Fori=1,2,...,m — 1, we have
9% (x) M
/x,l g =A8i (15)
Yt 9% (x) @
/x; ax X =R (16)
with
bi—j, j=i-=2 bi—jy1, j=i—1
m_ )23 =i O e A
i,j 1, j=i iJ 1, j=i+1"
0, j=>i+1 0, jzi+2
Lemmad4 Fori=1,2,...,m — 1, we have
/xi Fpj(x) N O (17
iy Ix (—x)“ Ly’
fxi+l 8a¢j(x) B 8“¢j(x) P g(4) (18)
x; Ix® (—x)% Ly°
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with
bi—j, j=<i-=2 bi—jy1, j<i—1
3) 227 4 j=i—1 ) 227 4 =i
gl,j 4_22—05, j=i ’ gz,] 4_22—05’ j=i+1 :
—bj-it1, jzi+]1 —bj—i, jzi+2

3 Finite element method for the STFDE
3.1 The STFDE with Riemann-Liouville space fractional derivative

We first consider (1) and rewrite it as

u(x, 1) 9" u(x, 1)

oy c PR + f(x, 1) (19)
with initial condition
ux,0)=v(x), a<x=<b, (20)
and boundary condition
u(a,t) =0, u,t)=¢p(t), 0<t<T (21)

where) <o <1,0 <y <.

We define #; = kt, k =0,1,...,n;x;, = a+ihfori = 0,1,...,m, where
Tt =T/nand h = (b — a)/m are the time and space steps, respectively. Let P (a, b)
denote the space of continuous and piecewise-linear functions with respect to the
spatial partition, which vanish at the boundary x = a and x = b. The nodal basis
functions ¢; (x) fori =0, 1, ..., m are defined the same as (9)—(11).

In view of the time derivative y, we first consider the case 0 < y < 1, and employ
two schemes with finite element method to approximate the STFDE. Then we discuss
the trivial situation, i.e., the situation y = 1.

3.1.1 The general time discretization scheme (GTDS)

. . . . aY
The time fractional derivative dgt#

discretization scheme (see [18])

at 7, can be approximated by the general time

-1

8)/1/{()(, tn) l_y Z u(x, tn—k) - I/L(.X, tn—k—l) (22)
ary T TR2-y) = T
with by = (k + 1)! 77 — k'=7. The weak form of (19)—(21) is given by
av ¢ dv |
(Wu v) =—c <8x_"‘u a) +(f,v), Yv e Hy(Q) (23)

Denoting f,(x) = f(x, t,),u” be the approximation solution of u(x, t,,),

u(x, ty) —u(x, tr—1)
. )

ou(x, ty) =
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Consider the discretization of the problem (23) as follows: find u”* € P(a, b), such
that for all v € P(a, b),

Zbk(au" k v)+c<a; :,8—”> (fas V), (24)

1=y
F(Z

setting p =T Q2 —y) - ¥, wyp = bx—1 — by,then

W",v) +cp (f’;;z,”, )

(25)
= Y1 o ", 0) + b1 (10, ) + p(fr, v).
m
Letu" = ) u ’!th (x) € P(a, b), and choosing each test function v to be ¢; (x), i =
j=0
1,2,...,m — 1, we obtain
n 9% i
(X, 1004 () + ep (S 20 280
=Y i) o (Z'}Lo W17 g (x), ¢ (x)) (26)

+bn71 (I/I(X), ¢l(x)) + p(f(xﬂ tn)v ¢l('x))
Applying Lemma 1, we obtain

Bt +aul )+ LI ut [ 85”;$x)d

xll

9%
Yt [ O g klwk[ R i S Y B 1))

+bn—1(1ﬂ(X), G1(0) + p(f(x. 1), $i (2)).
Applying Lemma 3, yields
gty )+ [ - g

_6Zk 1a)(u +4u +ul 1) (28)
+by—1(¥ (x), ¢z(x))+l7(f(x tn), $i(x)),

where | = 4 - .
The initial and boundary conditions are

ud = y(ih), up =0, uly=dynr). (29)
The convergence rate of above numerical scheme is O(t 2=7 + h2). In the below
we give a second order scheme, which can be reached second order in both time and
space direction, i.e., O(r2 + hz).
3.1.2 New time discretization scheme (NTDS)

In order to show the second order scheme, we need the following result.

Lemma 5 (see [10]) If « > O then the following equality holds for any f €
C(la, D).

DEI% f = f(x), (30)
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where D7, and 1}, are the Riemann-Liouville fractional derivative and integral,
respectively, which are given by
1 d [* f@) L[ f@

Fd—a)dx), x—1)° e S0 = ) (x=nl-

DZlJrf(x) =

Then (19) can be transformed into the following equivalent form (see [15])

u(x,t) VY [ alt*u(x, 1)
= atl_y[ e . 31)
with initial condition
ulx,0)=vx), a<x=<bhb, (32)
and boundary condition :

u(a,t) =0, u,t)=a¢p), 0=<t=T, (33)
where 0 < o < 1 and ‘;ltl_—ff denotes the Riemann-Liouville fractional derivative of
order 1 — y defined by

al—r ) 1 9 /’ u(x, n)
o, ulx, = ' 5
arl=r L(y)otJo (¢t —mt-7r

with 0 < y < 1. By integrating both sides of (31) for ¢, we obtain

14+a .
L e e 4 f G )
u(xi, tpy1) = u(x;,0) + —— dn. (34)
Iq

ro) = (st =17
Now we use the following numerical scheme and lemma.

Lemma 6 (see [15]) If the function v(x, t) is sufficiently smooth, then

v, ) = LMV 1) j Ly

By applying Lemma 6, we have

u(xi, th11) = u(x;, 0)

31+0{’4(ij ) 31+Qu(xi,1 D
poc oy ffqﬂ (’q+1—’7)3x|7+aq+(’/—’q)wi+ﬁdn
T et F i o f i fg)
1 n q+1 Ug+1—1) ] (Xi,1q N—1g) f (Xilg41 2
+ 7707 2q=0 ft,, =) 7 dn+ 0(t7),

which leads to
u(xi, ty+1) = u(x;, 0)
1 I+a 2) glta
+r33 00 C4 )aaxmu(xi, tn—q) + C§ )adxmu(xi, tn—q+1):| (36)

11 Yo | €8 f (it tamg) + CF £ i tage) |+ 0,
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_ _ct¥ _ j24
where r3 = oD 4 = ToFD and

1
c — 1y — [ nr+! _ y+1],
g =@+1 y+1(q+) q

1
c® — [ Hyr+!_ V+l] _av.
4 o (g+D q q

The variational (weak) formulation of the above equation subject to the boundary
condition (33) reads: find u”" € P(a, b), such that

oy n— oy n— 1
+ra o [Cél)(f"—q, v) + Cf)<f"—q+1, v)], Vv e Pa.b).
m
Let u" = ) u’}qﬁj (x) € P(a,b), and choosing each test function v to be
j=0
¢i(x),i =1,2,...,m — 1, we obtain
(XM, ¢i(0) = (Y (x). 61 (x)
1 3% (x) ¢y
=3 Y- O[C( (X ouj 5 M) (38)
2 +193%;(x) 3¢y
O (g, 1) |
ra Yo [CP P9 i) + P 00
Applying Lemma 1 and Lemma 3, we obtain
B!+ aut ol = (x/x(x)z i (x))
1 1
—VSZ—o{C()[Z—o(gl(,)—g,(j)) ]
(39)

+C(2)[Z O(g(l) _g(Z)) n— q—H]}
= i,j i,j
1 Yo [ €V (70 6000) + € (1L i) .

where rs = r3 - %

Now we consider the trivial situation. When y = 1, (19) can be simplified as

du(x,t) Aty (x, 1)
=c
ot dx1te
By using the Crank-Nicolson scheme to approximate (40), we can obtain

+ f(x, ). (40)

u(x, ty) = u(x, ty—1) + %[% (—3“”5552;“))
O%u(x,ty—
+i (%)} + 5[t + £ )],

The variational (weak) formulation of the above equation subject to the boundary
condition (21) reads: find " € P(a, b), such that

(41)

n _ (,n—1 co (8w v _ cr (8% ov
@' v)=W"",v) -5 G 5x 20\ e ’3x) (42)

+%(f('x’ tn), U) + %(f('x7 tnfl)v U), V v E P(av b)7
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Let u" = Z?:o u;%bj (x) € P(a,b), and choosing each test function v to be
¢i(x),i =1,2,...,m — 1, we obtain

(S0 wis; (). 4:0) = (Xo )™ 05(0.01()
0“9 (x) d¢; —19%;(x) 3¢y
—F (Do e 0 ) — F (Siou ™ a2 M) @D
+5 (1), $i () + 5 (f (x, tn—1), i (x)) .
Applying Lemma 1, we have
gy +dul + uipy) = %(”?—_11 +duf T+ ”?4:11)
¢t Z?:O u [ a ¢_;‘(X)dx . Zm u fx,-+1 9 ¢j(x)dx

T 2h jdxiog T ox® J=0"j Jx; X (44)
ct m n—1 rx;i  30%¢;(x) m n—1 pxip1 9%¢;(x)
T 2h Zj=0 uj Xj—1  0x¢ dx — Zj=0 uj Xi ax¥ dx

+5 (f G tn), i () + 5 (f (X, ta—1), 41 (X)) .
Applying Lemma 3, we find
Fl - uly ) = BT 4l
~2 (2 () = 82w ] - 3 [ 2o (¢ D)) @)
+5(f(x, 1), §i (X)) + 5(f (x, ta—1), $i (),

where 7y = A - GF.
3.2 The STFDE with Riesz space fractional derivative

Now, we consider (4)
Mu(x, 1)  Pulx,1)

= , 1), 46
=g HIwD (46)
with initial condition
u(x,0) = ¥ (x), a<x=<b, “47)
and boundary condition
ua,t) =0 u,t) =0, 0<tr<T, (48)
where B = 1+« ,0 < o < 1. Then it can be written as
Vu(x,t ¢ Ty (x, 1 Aty (x, t
0 _ (x, 1) G IR
oty 2 cos 7T(12+0t) ax1+a 8(_x)1+0t
0
= —p—HMx,t)+ f(x,1) (49)
ax
with N .
c 0%u(x,t) 0%u(x,t)
== £ 7t = - M
P 2 cos M ") oxv (—x)*

We proceed to approximate the Riesz space fractional STFDE in completely anal-
ogy to the Riemann-Liouville space fractional STFDE given in the previous part. We
first discuss the 0 < y < 1 case.

@ Springer



Numer Algor (2016) 72:749-767 759

3.2.1 The general time discretization scheme (GTDS)

Y u(x,t)

We use (22) to approximate the time fractional derivative at t,, similarly. The

a7
weak form of (47)—(49) is given by
av ov 1
(Wu, v) =p <7—[, £> +(f,v), Yve Hy(R), (50)

Consider the discretization of the problem (50) as follows: find u” € P(a, b), such
that for all v € P(a, b),

_ n—1
=y

l"(2— Zbk(f)u" *vy=p <'H" ) + (fn,v), (5D

p and wy are defined the same as in the previous part, (51) can be written as

u",v) — (’H”, g—;)

52
=i lwk(u K v) + byt (0, v) + p(fu, v). ©2)

_ i) %) N o .
Let R(x) = —5& u' =y uij(x) € Pla, b), and choosing each test

A(—x)¥ >
=0
function v to be ¢; (x),i =1,2,..., ;;1 — 1, we obtain
(S w5 0.61 () = pp Sy iR (), 22
= Szt on (o) 0500, 4:(0) (53)

+bn—1 (Y (x), @i (x)) + p(f(x, 1n), $i (x)).
Applying Lemma 1, we obtain
Gy A ) = BRI 0”” fxi R(x)dx
- Z;":O u;’ fx)ii“ R(x)dx] = Zk 1 a)k[ (u + 4u?™ kg “z+1 Y (54)
+hn—1(Y(x), ¢i (x)) + p(f (x, tn), ¢i (x)).

Applying Lemma 4, we obtain

Bl + 4ul! + u;’+1) - [Z;" o(g,(? — g hu" ]
= 20T o T+ Al )
Fbn—1(¥ (x), ¢>z(x))+P(f(x ), $i(x)),

where rg = A - %. The initial and boundary conditions are

(55)

ud =y(ih), uf=uk =o0. (56)
3.2.2 New time discretization scheme (NTDS)

Similarly, (46) can be turned into

du(x,t) V[ dPulx,t)
= c
ot atl-v alx|P

+ fx, t)i|, (57)
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then it can be written as

du(x,r) 9r 9
5 = 8t1_y[—pa’ﬂ(x,t)+f(x,t)], (58)
with initial condition
ux,0)=v(x), a<x=<b, (59)
and boundary condition :
u(a,t) =0, ub,t)=0, 0<r=<T. (60)

By integrating both sides of (58) for 7, we obtain

o art pLH(xi, m) + f (xis )
Ui, 1) = i, 0) — F(V)Z[ S a6

Then we use the same numerical scheme and applying Lemma 6, we have

u(xi, tpy1) = u(x;, 0)
_r% Z Cél) 36)57'[()517 In— q) + C((12) 36)67'[()517 In— q+1)i| (62)

+ra Y g0 CSV F(xiy tag) + C f(xi, tn—q+1)],

where r; = F(Lil) and r4, C;l), C,gz) are the same as in the previous parts.
The variational (weak) formulation of the above equation subject to the boundary
condition (60) reads: find u”* € P(a, b), such that

(u"+1, v) = (MO’ V) + r; ZZ:O |:C((11)('Hn q, ax) + C(Z)('Hn q+1, gz)j| .

11 Yoo [ €V v + CP (0 0 |, Vo € Pla,b),

Let u" = i u’j’.¢j (x) € P(a,b), and choosing each test function v to be
$i(x),i =1, 2/ 7 = 1, we obiain
(Xo w600, () = (@), §i(x)
T [C (SR, 12
+C(2)(Z "o q+lR( ), a%,ix))]
74 Yo [Cé”<f" 7, ¢i0) + CP (1 g .

(64)
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Applying Lemma 1 and Lemma 4, we obtain

Bt + 4+ u D = (), ¢ (1)

i

1 o OO0 (6 = 815~

65)
@) B @y, n—q+l (
+Cq [ X0 (&) —&ip)u * ]}
+ra Y0 [CV (7 i 0) + P (0 g ()],
where rg = rJ - %
Now we consider the trivial situation. When y = 1, (49) can be written as:
du(x,t 0
1 =—p—Hx, )+ f(x,1) (66)
at ax
By using the Crank-Nicolson scheme to approximate (66), we can obtain
u(x, ty) = u(x, t,—1) — %I:%H(xs In) + %H(x» tn—l)i| (67)

FI[F O 1) + f )]

The variational (weak) formulation of the above equation subject to the boundary
condition (48) reads: find 4" € P(a, b), such that

v = @) + 8 (0 8) + 5 (0, )

68
LG 1), ) + S Gt ), Y0 € Pa, b, (68)
m
Let u" = ) u’}d)l-(x) € P(a,b), and choosing each test function v to be
j=0
¢i(x),i =1,2,...,m — 1, we obtain
(S0 iy (0.610) = (Zho w95 ().65(1)
+5 (ZZ‘LO WIR(X), —aq’gf‘)) + & (Z’};O IR @), _affg;x)> (69)

+5 (f(x, 1), () + 5 (f (X, ta—1), i (X)) -
Applying Lemma 1 and Lemma 4, we obtain
gy +4u ‘:”?ﬂ): D)+ ¢ Lg?;ll) \
+%7 [Z’jn:O <gi(,j) - gi})u'}] + %7 [ZT:O (gi(,j) - gi(,j))u;l'_l] (70)
+5(f(x, 1), §i (X)) + 5(f (x, ta—1), $i (X)),

where r;7 = A - ’;l—r.

4 Numerical examples
In order to demonstrate the effectiveness of our numerical methods, two examples are

presented. The main purpose is to check the convergence behavior of the numerical
solution with respect to the time step T and space step 4.
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Table 1 The errors and convergence order of GTDS about &

h(t = h?) =03 a=0.6 =09

Es(h, 7) Order Es(h, T) Order Es(h, T) Order
1/10 9.1884E-04 7.9884E-04 4.3041E-04
1/20 2.3119E-04 1.99 2.1026E-04 1.93 1.1889E-04 1.86
1/40 5.8086E-05 1.99 5.4547E-05 1.95 3.2169E-05 1.89
1/80 1.4581E-05 1.99 1.4013E-05 1.96 8.5882E-06 1.91
1/160 3.6570E-06 2.00 3.5749E-06 1.97 2.2714E-06 1.92

Example 1 First we consider the following STFDE with Riemann-Liouville space
fractional derivative

Mu(x,t) A *u(x, )
T axte TS0

ulx,00=0, 0<x<l,
u(0,1) =0, u(l,ny=12, 0<t<l.

where f(x,?) = F(3 y) — 22 T 21 O; The exact solution is u(x, t) = % - x

We compute the errors in Ly dlscrete norm. And all the numerical results in the
tables and figures below are evaluated at T = 1.

For the 0 < y < 1 case, the theoretical convergence order of the general time dis-
cretization scheme (GTDS) is O (12" + h?). Table 1 shows the error between the
exact solution and numerical solution with ¢ = 42 and the convergence order about
h when y=0.6 for different o values. Table 2 shows the L, error and the convergence
order of T when «=0.6 and 2=1/2000 for different T values. The theoretical conver-
gence order of new time discretization scheme (NTDS) is O (t2 4 h?). Table 3 shows
the error and the convergence order of NTDS about # with T = h, y=0.6 for different
« values. Table 4 shows the error and the convergence order about T when o=0.6 and
h=1/2000 for different t values.

When y = 1, the theoretical convergence order of Crank-Nicolson (CN) scheme
is O(t% + h?). Table 5 shows the error and the convergence order with t = h for

Table 2 The errors and convergence order of NTDS about &

T=h a=03 a=0.6 a=09

Ey(h, 1) Order E>(h, 1) Order E>(h, 1) Order
1/10 9.1056E-04 7.9845E-04 4.3166E-04
1/20 2.2025E-04 2.05 2.0551E-04 1.96 1.1655E-04 1.89
1/40 5.4033E-05 2.03 5.2692E-05 1.96 3.1215E-05 1.90
1/80 1.3372E-05 2.01 1.3455E-05 1.97 8.2990E-06 1.91
1/160 3.3260E-06 2.01 3.4220E-06 1.98 2.1922E-06 1.92
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Table 3 The errors and convergence order of GTDS about ¢
T y =03 y =0.6 y =09
E>(h, 1) Order Ey(h, ) Order E>(h, 1) Order
1/4 1.2600E-03 4.4059E-03 1.1763E-02
1/8 4.1550E-04 1.60 1.7190E-03 1.36 5.5813E-03 1.08
1/16 1.3473E-04 1.62 6.6290E-04 1.37 2.6212E-03 1.09
1/32 4.3163E-05 1.64 2.5396E-04 1.38 1.2263E-03 1.10
Table 4 The errors and convergence order of NTDS about ¢
T y =03 y =0.6 y =09
Ey(h, 1) Order E>(h, 1) Order Ey(h, 1) Order
1/4 3.8592E-04 3.2388E-04 9.7790E-05
1/8 1.0013E-04 1.95 8.0678E-05 2.01 2.3590E-05 2.05
1/16 2.5810E-05 1.96 2.0151E-05 2.00 5.9472E-06 1.99
1/32 6.6030E-06 1.97 5.0245E-06 2.00 1.4870E-06 2.00
Table 5 The errors and convergence order of CN scheme with y=1
T=h a=03 a=0.6 a=0.9
Ey(h, ) Order Ey(h, 1) Order Ey(h, ) Order
1/10 1.1379E-03 9.1816E-04 5.1314E-04
1/20 2.7631E-04 2.04 2.3467E-04 1.97 1.3625E-04 1.91
1/40 6.8010E-05 2.02 5.9854E-05 1.97 3.5996E-05 1.92
1/80 1.6870E-05 2.01 1.5221E-05 1.98 9.4621E-06 1.93
1/160 4.2020E-06 2.01 3.8591E-06 1.98 2.4757E-06 1.93
Table 6 The errors and convergence order of GTDS about &
h(t = h?) «=03 a=06 =09
Es(h, 7) Order Es(h, ) Order E(h, T) Order
1/10 5.7946E-04 5.1052E-04 2.4580E-04
1/20 1.5395E-04 1.91 1.4163E-04 1.85 7.3426E-05 1.74
1/40 3.9858E-05 1.95 3.7643E-05 1.91 2.0936E-05 1.81
1/80 1.0233E-05 1.96 9.7981E-06 1.94 5.8097E-06 1.85
1/160 2.6166E-06 1.97 2.5207E-06 1.96 1.5828E-06 1.88
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Table 7 The errors and convergence order of NTDS method about £

T=h a=03 a=0.6 a=09
E>(h, ) Order E>(h, 1) Order E>(h, 1) Order

1/10 5.7974E-04 5.1046E-04 2.4560E-04
1/20 1.5468E-04 1.91 1.4216E-04 1.84 7.3765E-05 1.74
1/40 4.0121E-05 1.95 3.7848E-05 1.91 2.1076E-05 1.81
1/80 1.0307E-05 1.96 9.8583E-06 1.94 5.8527E-06 1.85
1/160 2.6355E-06 1.97 2.5367E-06 1.96 1.5946E-06 1.88
Table 8 The errors and convergence order of GTDS about ¢
T y =03 y =0.6 y =09

E>(h, 1) Order Ey(h, ) Order E>(h, ) Order
1/4 1.4374E-04 5.0221E-04 1.3390E-03
1/8 4.7409E-05 1.60 1.9596E-04 1.36 6.3539E-04 1.08
1/16 1.5382E-05 1.62 7.5575E-05 1.37 2.9847E-04 1.09
1/32 4.9373E-06 1.64 2.8962E-05 1.38 1.3966E-04 1.10
Table 9 The errors and convergence order of NTDS about ¢
T y =03 y =0.6 y =09

E>(h, 1) Order Ey(h, ) Order E>(h, ) Order
1/4 4.4024E-05 3.6704E-05 1.0533E-05
1/8 1.1433E-05 1.95 9.2001E-06 2.00 2.7011E-06 1.96
1/16 2.9573E-06 1.95 2.3083E-06 1.99 6.9275E-07 1.96
1/32 7.6700E-07 1.95 5.8605E-07 1.98 1.8398E-07 1.91
Table 10 The errors and convergence order of CN scheme with y=1
T=h a=03 a=0.6 a=09

Ey(h, 1) Order E>(h, 1) Order Ey(h, 1) Order

1/10 5.6170E-04 4.9616E-04 2.4708E-04
1/20 1.5031E-04 1.90 1.3793E-04 1.85 7.3595E-05 1.75
1/40 3.9151E-05 1.94 3.6736E-05 1.91 2.0912E-05 1.82
1/80 1.0100E-05 1.95 9.5843E-06 1.94 5.7851E-06 1.85
1/160 2.5918E-06 1.96 2.4716E-06 1.96 1.5719E-06 1.88
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different o values. From these tables we can see that the numerical results are in
excellent agreement with the exact solutions.

Example 2 Now we consider the following STFDE with Riesz space fractional
derivative
NNu(x, 1) altey(x, 1)
oty - Y x|1+a

+ f(‘x7 t)?

ux,00=0, 0<x<1,

u(0,t) =0, u(l,t)=0, 0<t<1.

where

2477 201 \2 2
S0 = rG-n* (I=x)"+ cos 4]1(1;017)1_,(4_0[)

—6(3 —)[x* ™ + (1 = 0>+ 2~ )3 - '~ + (1 - 1)},

Aepee -t

The exact solution is u(x, t) = t2x2(1 — x)2.

First we consider the 0 < y < 1 case, the theoretical convergence order of
GTDS is O (127" + h?). Table 6 shows the error and the convergence order about h
with = h?, y=0.6 for different  values. Table 7 shows the error and the conver-
gence order about T when «=0.6 and 2=1/2000 for different T values. The theoretical
convergence order of NTDS is O (1% + h?). Table 8 shows the error and the conver-
gence order about 2 with T = h, y=0.6 for different o values. Table 9 shows the
error and the convergence order about T when «=0.6 and h=1/2000 for different t
values.

When y = 1, the theoretical convergence order of Crank-Nicolson scheme is
O(t2 + hz). Table 10 shows the error and the convergence order with t = A for
different « values. From these tables we can see that the numerical results are in good
agreement with the exact solutions.

5 Conclusions

In this paper, we have developed and demonstrated two finite element methods for
solving two types of space-time fractional diffusion equations(STFDE). First, for
the STFDE with Riemann-Liouville space fractional derivative, we discretized the
time fractional derivative by using the general time discretization scheme which is
of 2 — y order accuracy. We then derived the variational formation of the semidis-
crete scheme. Furthermore, we used the finite element method to approximate the
space fractional derivative and obtain the full discretization scheme with convergence
order of O(t>~" + h?). To introduce the second order numerical scheme, based on
the properties of the Riemann-Liouville and Caputo derivative, we transformed the
formulation of the original equation. What follows, we integrated the equation on
both sides and employed a technique in the new equation. At last we got the full
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discretization scheme with convergence order of O (t% + h?). For the STFDE with
Riesz space fractional derivative, we handled it in completely analogy to the way to
the STFDE with Riemann-Liouville space fractional derivative. By numerical exam-
ples, the effectiveness of the prospered methods was verified. These methods can be
extended to other kinds of space-time fractional diffusion equations.
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