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Abstract In this paper we present a new steepest-descent type algorithm for con-
vex optimization problems. Our algorithm pieces the unknown into sub-blocs of
unknowns and considers a partial optimization over each sub-bloc. In quadratic opti-
mization, our method involves Newton technique to compute the step-lengths for
the sub-blocs resulting descent directions. Our optimization method is fully paral-
lel and easily implementable, we first presents it in a general linear algebra setting,
then we highlight its applicability to a parabolic optimal control problem, where we
consider the blocs of unknowns with respect to the time dependency of the control
variable. The parallel tasks, in the last problem, turn “on” the control during a specific
time-window and turn it “off” elsewhere. We show that our algorithm significantly
improves the computational time compared with recognized methods. Convergence
analysis of the new optimal control algorithm is provided for an arbitrary choice of
partition. Numerical experiments are presented to illustrate the efficiency and the
rapid convergence of the method.
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1 Introduction

Typically the improvement of iterative methods is based on an implicit transfor-
mation of the original linear system in order to get a new system which has a
condition number ideally close to one see [18, 23, 50] and references therein. This
technique is known as preconditioning. Modern preconditioning techniques such as
algebraic multilevel e.g. [42, 49] and domain decomposition methods e.g. [8, 36, 46,
54] attempt to produce efficient tools to accelerate convergence. Other techniques
have introduced a different definition of the descent directions, for example, CG-
method, GMRES, FGMRES, BFGS, or its limited memory version l-BFGS see for
instance [50]. Others approaches (e.g. [10, 22] and [58] without being exhaustive)
propose different formulas for the line-search in order to enhance the optimization
procedure.

The central investigation of this paper is the enhancement of the iterations of the
steepest descent algorithm via an introduction of a new formulation for the line-
search. Indeed, we show how to achieve an optimal vectorized step-length for a given
set of descent directions. Steepest descent methods [12] are usually used for solv-
ing, for example, optimization problems, control with partial differential equations
(PDEs) constraints and inverse problems. Several approaches have been developed
in the cases of constrained and unconstrained optimization. In the optimal control
framework of partial differential equations several methods has been proposed to
efficiently approximate the solution of the optimality system. One can utilize either
the Discretize-then-Optimize procedure or the Optimize-then-Discretize procedure.
In general settings these two procedures may lead to different ways to tackle the
problem at hand. We may refer to [19, 34, 38] and also [55] as a few standard litera-
tures in the topic. In the past decade, following the increasing advances of computing
power many algorithms based parallel techniques and implementations have been
proposed to the approximation of the solution of optimal control problems with PDE
constrains, see for instance [5, 48, 52, 57] and also see [9, 13, 53] for Stocks and
Navier-Stokes flow problem. We may also refer to [28] as a recent survey in this field.

It is well-known that the steepest descent algorithm has a slow convergence rate
with ill-conditioned problems because the number of iterations is proportional to
the condition number of the problem. The method of J.Barzila and J.Borwein [6]
based on two-point step-length for the steepest-descent method for approximating
the secant equation avoids this handicap. Our method is very different because first,
it is based on a decomposition of the unknown and proposes a set of bloc descent
directions, and second because it is general where it can be coupled together with any
least-square-like optimization procedure.

The theoretical basis of our approach is presented and applied to the optimization
of a positive definite quadratic form. Then we apply it on a complex engineering
problem involving control of system governed by PDEs. We consider the optimal
heat control which is known to be ill-posed in general (and well-posed under some
assumptions) and presents some particular theoretical and numerical challenges. We
handle the ill-posedness degree of the heat control problem by varying the regulariza-
tion parameter and apply our methods in the handled problem to show the efficiency
of our algorithm. The distributed- and boundary-control cases are both considered.
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This paper is organized as follows: In Section 2, we present our method in a linear
algebra framework to highlight its generality. Section 3 is devoted to the introduction
of the optimal control problem with constrained PDE on which we will apply our
method. We present the Euler-Lagrange-system associated to the optimization prob-
lem and give the explicit formulation of the gradient in both cases of distributed- and
boundary-control. Then, we present and explain the parallel setting for our optimal
control problem. In Section 4, we perform the convergence analysis of our paral-
lel algorithm. In Section 5, we present the numerical experiments that demonstrate
the efficiency and the robustness of our approach. We make concluding remarks in
Section 6. For completeness, we include calculus results in the Appendix.

Let � be a bounded domain in R
3, and �c ⊂ �, the boundary of � is denoted by

∂�. We denote by � ⊂ ∂� a part of this boundary. We denote 〈., .〉2 (respectively
〈., .〉c and 〈., .〉�) the standard L2(�) (respectively L2(�c) and L2(�)) inner-product
that induces the L2(�)-norm ‖.‖2 on the domain � (respectively ‖ · ‖c on �c and
‖ · ‖� on �).

In the case of finite dimensional vector space in R
m, the scalar product aT b of

a and b (where aT stands for the transpose of a) is denoted by 〈., .〉2 too. The
scalar product with respect to the matrix A, i.e. 〈x, Ax〉2 is denote by 〈x, x〉A and
its induced norm is denoted by ‖x‖A. The transpose of the operator A is denoted by
AT . The Hilbert space L2(0, T ; L2(�c)) (respectively L2(0, T ; L2(�))) is endowed
by the scalar product 〈., .〉c,I ( respectively 〈., .〉�,I ) that induces the norm ‖.‖c,I

(respectively ‖.‖�,I ).

2 Enhanced steepest descent iterations

The steepest descent algorithm minimizes at each iteration the quadratic function
q(x) = ‖x − x�‖2

A, where A is assumed to be a symmetric positive definite (SPD)
matrix and x� is the minimum of q. The vector −∇q(x) is locally the descent direc-
tion that yields the fastest rate of decrease of the quadratic form q. Therefore all
vectors of the form x + θ∇q(x), where θ is a suitable negative real value, mini-
mize q. The choice of θ is found by looking for the mins<0 q(x + s∇q(x)) with
the use of a line-search technique. In the case where q is a quadratic form θ is
given by −‖∇q(x)‖2

2/‖∇q(x)‖2
A. We recall in Algorithm 1 the steepest descent algo-

rithm; Convergence is a boolean variable based on estimation of the residual vector
|rk| < ε, where ε is the stopping criterion.
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Our method proposes to modify the step 5. of Algorithm 1. It considers the step-
length θ ∈ R−\{0} as a vector in R

n̂−\{0} where n̂ is an integer such that 1 ≤ n̂ ≤
size(x), we shall denote this new vector as �n̂.

In the following, it is assumed that for a giving vector x ∈ R
m, the integer n̂ divides

m with with null remainder. In this context, let us introduce the identity operators
IRm witch is an m-by-m matrix and its partition (partition of unity) given by the
projection operators {πn}n̂n=1 : projectors from R

m into a set of canonical basis {ei}i .
These operators are defined for 1 ≤ n ≤ n̂ by

πn(x) =
n× m

n̂∑

i=(n−1)× m
n̂

+1

〈ei, x〉2 ei .

For reading conveniences, we define x̃n a vector in R
m
n̂ such that x̃n := πn(x).

The concatenation (denoted for simplicity by
∑

) of x̃n for all 1 ≤ n ≤ n̂ reads
x̂n̂ ≡ (x̃T

1 , . . . , x̃T
n̂
)T .

Recall the gradient ∇x := ( ∂
∂x1

, . . . , ∂
∂xm

)T , and define the bloc gradient

∇x̂n̂
:=

(
∇T

x̃1
, . . . , ∇T

x̃n̂

)T

, where obviously ∇x̃n
:= ( ∂

∂x(n−1)× m
n̂

+1
, . . . , ∂

∂xn× m
n̂

)T .

In the spirit of this decomposition we investigate, in the sequel, the local descent
directions as the bloc partial derivatives with respect to the bloc-variables (x̃n)

n=n̂
n=1.

We aim, therefore, at finding �n̂ = (θ1, . . . , θn̂)
T ∈ R

n̂ that ensures the

min(θn)n<0 q
(
x̂k
n̂

+ ∑n̂
n=1 θn∇x̃n

q(x̂k
n̂
)
)

.

We state hereafter a motivating result, which its proof is straightforward because
the spaces are embedded. Let us first, denote by

	n̂(�n̂) = q

⎛

⎝x̂
n̂

+
n̂∑

n=1

θn∇x̃n
q(x̂

n̂
)

⎞

⎠ (1)

which is quadratic because q is.

Theorem 2.1 According to the definition of 	n̂(�n̂) (see (1)) we immediately have

min
Rp

	p(�p) ≤ min
Rq

	q(�q) ∀q < p.

The new algorithm we discuss in this paper proposes to define a sequence (x̂k
n̂
)k

of vectors that converges to x� unique minimizer of the quadratic form q. The update
formulae reads:

x̃k+1
n = x̃k

n + θk
n∇x̃n

q(x̂k
n̂
),

where we recall that n̂ is an arbitrarily chosen integer. Then x̂k+1
n̂

= ∑n̂
n=1 x̃k+1

n .
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We shall explain now how one can accurately computes the vector step-length �k
n̂

at each iteration k. It is assumed that q is a quadratic form. From (1) using the chain
rule, we obtain the Jacobian vector 	′

n̂
(�n̂) ∈ R

n̂ given by

(
	′

n̂
(�n̂)

)
j

=
(
∇x̃j

q(x̂k
n̂
)
)T ∇x̃j

q

⎛

⎝x̂k
n̂

+
n̂∑

n=1

θn∇x̃n
q(x̂k

n̂
)

⎞

⎠ ∈ R, (2)

and the Hessian matrix 	′′
n̂
(�n̂) ∈ R

n̂×n̂ is given by

(
	′′

n̂
(�n̂)

)
i,j

=
(
∇x̃j

q(x̂k
n̂
)
)T (

∇x̃i
∇x̃j

q

⎛

⎝x̂k
n̂

+
n̂∑

n=1

θn∇x̃n
q(x̂k

n̂
)

⎞

⎠
)
∇x̃j

q(x̂k
n̂
).

It is worth noticing that the matrix ∇x̃i
∇x̃j

q
(
x̂k
n̂

+ ∑n̂
n=1 θn∇x̃n

q(x̂k
n̂
)
)

is a bloc

portion of the Hessian matrix A. However if the gradient ∇x̃n
q ∈ R

m
n̂ assumes an

extension by zero (denoted by ∇̃x̃i
q) to R

m so the matrix 	′′
n̂
(�n̂) has therefore the

simplest implementable form
(
	′′

n̂
(�n̂)

)
i,j

= (∇̃x̃j
q(x̂k

n̂
))T A∇̃x̃j

q(x̂k
n̂
). (3)

We thus have the expansion 	n̂(�
k
n̂
) = 	n̂(0) + (�k

n̂
)T 	n̂(0) + 1

2 (�k
n̂
)T 	′′

n̂
(0)�k

n̂
,

with 0 := (0, .., 0)T ∈ R
n̂. Then the vector �k

n̂
that annuls the gradient writes:

�k
n̂

= −	′′
n̂
(0)−1	′

n̂
(0). (4)

Algorithm 1 has therefore a bloc structure which can be solved in parallel. This
is due to the fact that partial derivatives can be computed independently. The new
algorithm is thus as follows (see Algorithm 2)

It is noteworthy that Algorithm 2 reduces to the usual steepest descent method
when n̂ = 1 and reduces to the usual Newton’s method for n̂ = m. The computational
effort of the presented method, although spread across processor in parallel fashion,
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could represent an efficiency-damper when the parameter n̂ is close to the size of the
original matrix. This is very apparent at the step 9 on the inversion of the Hessian
	′′

n̂
(0)(which becomes the global Hessian if n̂ = m).
In the sequel we shall discuss a case where the global Hessian is not given explic-

itly (only matrix-vector product operation is known). Our method uses a new fashion
of decomposition of the time-domain in order to provide a small representative of the
global Hessian via a projection upon a well chosen time-basis. That will improve the
optimization iteration scheme. We shall discuss in details this situation with optimal
control problem with PDE constrains.

3 Application to a parabolic optimal control problem

In this part we are interested in the application of Algorithm 2 in a finite element
computational engineering problem involving optimization with constrained PDE.
Because of the large scale system arising from the discretization of the control prob-
lem, specially in the case of constrained time dependent PDE, its is necessary to
divide the problem in order to deal with a set of small systems, which their reso-
lutions together may lead to (or to an approximation of) the solution of the initial
problem. Those small systems may i) have the same structure of the global sys-
tem, and this method are known as receding horizon control e.g. [14, 26, 35] from
which inherits the instantaneous control technique e.g. [13, 27, 43] which is based
on the time discretiation scheme, or ii) could be a reduced version of the global sys-
tem using a proper reduced basis projection (see for instance [29, 30]), typically via
proper orthogonal decomposition (POD) [1–3, 24, 32] or a snapshot variant of the
POD (see for instance [20, 21, 47]). All the aforementioned techniques (and many
others) could be interpreted as “suboptimal” methods for the control problem. The
last decade has known much interest on time-domain decomposition [33, 39, 41, 56]
related to optimal control with PDE constrains. In [25] it has been proposed in a dis-
tributed optimal control problem context a time-domain decomposition algorithm. In
the light of the snapshots technique and multiple-shooting algorithm, the continuity
conditions (at the breakpoints resulting from the time-domain decomposition) has
been reformulated as a discrete time optimal control. The Krylov-type resoltution
of the whole system is therefore preconditioned via block Gauss-Seidel resolution
of the tridiagonal system of the optimality condition. This method [25] points out
the strong relationship between the aforementioned instantaneous control technique
and the application of one step forward Gauss-Seidel method. In spite of the very
promising numerical experiments of this method, a general convergence theory is
lacking.

In our previous effort [40] we have proposed a time-domain decomposition
method based on iterations that require an approximated solution of optimal con-
trol problem restricted to time subdomains (the approximated solutions could be at
least the results of one iteration of the gradient method). It is worth noticing that the
method proposed in [40] like the one proposed in [25] uses snapshot technique. How-
ever, in [25] the author used the fact that the target is provided during the integration
time domain (because the cost functional is a mixed integral and final value), in [40],
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since the cost functional provides only the final value as a target function, it was
necessary to improvise intermediate targets in order to define small optimal control
problems (of the same type as the original problem) restricted to time subdomains.
The method presented in this paper, is completely different from these techniques,
where one iterations in our new algorithm require several resolution of the same prob-
lem but with control variable only defined on subdomains. This step, even though it
increases the complexity compared to standard approach, but this excess in the com-
plexity is achieved through parallel simulations. This technique somehow enables
us to approximate the second derivative of the infinite dimensional cost functional
by a finite dimensional matrix with a relatively small size (i.e. n̂). The method that
we propose could be interpreted therefore as “suboptimal” control technique regard-
ing the reduction made on the Hessian. It could be viewed also as preconditioner to
the Krylov-type methods, where it is hard to theoretically prove that the condition
number is improved, however numerical results support our claims.

In this paper, we deal with the optimal control problem of a system, which is gov-
erned by the heat equation. We shall present two types of control problems. The first
concerns the distributed optimal control and the second concerns the Dirichlet bound-
ary control. The main difference from the algorithm just presented in linear algebra
is that the decomposition is applied on the time-domain that involve only the control
variable. This technique is not classical, we may refer to a similar approaches that
has been proposed for the time domain decomposition in application to the control
problem, for instance [39–41] which basically they use a variant of the parareal in
time algorithm [36].

3.1 Distributed optimal control problem

Let us briefly present the steepest descent method applied to the following optimal
control problem: find v� such that

J (v�) = min
v∈L2(0,T ;L2(�c))

J (v), (5)

where J is a quadratic cost functional defined by

J (v) = 1

2
‖y(T ) − ytarget‖2

2 + α

2

∫

I

‖v‖2
cdt, (6)

where ytarget is a given target state and y(T ) is the state variable at time T > 0
of the heat equation controlled by the variable v over I := [0, T ]. The Tikhonov
regularization parameter α is introduced to penalize the control’s L2-norm over the
time interval I . The optimality system of our problem reads:

{
∂ty − σ�y = Bv, on I × �,

y(t = 0) = y0.
(7)

{
∂tp + σ�p = 0, on I × �,

p(t = T ) = y(T ) − ytarget .
(8)

∇J (v) = αv + BT p = 0, on I × �. (9)
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In the above equations, σ stands for the diffusion coefficient, the operator B stands
for the characteristic function of �c ⊂ �, the state variable p stands for the Lagrange
multiplier (adjoint state) solution of the backward heat equation (8), (7) is called
the forward heat equation. The optimal control problem (5) is known to be well-
posed [37]. The boundary conditions for the (7–8) does’t affect the results of our
algorithm. The reader could apply his own choice of boundary condition.

3.2 Dirichlet boundary optimal control problem

In this subsection we are concerned with the PDE constrained Dirichlet boundary
optimal control problem, where we aim at minimizing the cost functional J� defined
by

J�(v�) = 1

2
‖y�(T ) − ytarget‖2

2 + α

2

∫

I

‖v�‖2
�dt, (10)

where the control variable v� is only acting on the boundary � ⊂ ∂�. Here too,
ytarget is a given target state (not necessary equal the one defined in the last subsec-
tion !) and y�(T ) is the state variable at time T > 0 of the heat equation controlled
by the variable v� during the time interval I := [0, T ]. This kind of optimal control
problem are known to be ill-posed [7, 11]. As before α is a regularization term. The
involved optimality system reads

⎧
⎪⎪⎨

⎪⎪⎩

∂ty� − σ�y� = f on I × �

y� = v� on I × �

y� = g on I × {∂�\�}
y�(0) = y0

(11)

⎧
⎨

⎩

∂tp� + σ�p� = 0 on I × �

p� = 0 on I × ∂�

p�(T ) = y�(T ) − ytarget
(12)

∇J�(v�) = αv� − (∇p�)T 
n = 0 on I × �, (13)

where f ∈ L2(�) is any source term, g ∈ L2(�) and 
n is the outward unit normal
on �. The adjoint state p� stands for the Lagrange multiplier, and is the solution of
the backward heat equation (12). Both functions f and g will be given explicitly for
each numerical test that we consider in the numerical experiment section.

3.3 Steepest descent algorithm for optimal control of constrained PDE

In the optimal control problem, the evaluation of the gradient as it is clear in (9)
(respectively (13)) requires the evaluation of the time dependent Lagrange multiplier
p (respectively p�). This fact, makes the steepest descent optimization algorithm
slightly different from the Algorithm 1 already presented.

Let us denote by k the current iteration superscript. We suppose that v0 is known.
The first order steepest descent algorithm updates the control variable as follows:

vk = vk−1 + θk−1∇J (vk−1), for k ≥ 1, (14)



Numer Algor (2016) 72:635–666 643

The step-length θk−1 ∈ R−\{0} in the direction of the gradient ∇J (vk−1) = αvk−1+
BT pk−1 (respectively ∇J�(vk−1

� ) = αv� − (∇p�)T 
n) is computed as :

θk−1 = −‖∇J (vk−1)‖2
c,I /‖∇J (vk−1)‖2

∇2J
.

The above step-length θk−1 (respectively θk−1
� ) is optimal (see e.g. [15]) in the

sense that it minimizes the functional θ → J (vk−1 + θ∇J (vk−1)) (respectively
θ → J�(vk−1

� + θ∇J�(vk−1
� ))). The rate of convergence of this technique is

( κ−1
κ+1

)2,
where κ is the condition number of the quadratic form, namely the Hessian of the
cost functional J (respectively J�) that writes:

∇2J (v)(δv, δw) = 〈δy(T )(δv), δy(T )(δw)〉 + α

∫ T

0
〈δv, δw〉 dt,

where δy(T )(δv) (respectively δy(T )(δv)) is the state variable evaluated at time T

where it has been controlled during the entire time domain [0, T ] by the control
δv (respectively δw). It is worth noticing that the matrix representation of the Hes-
sian operator is not assembled during the optimization procedure even after space
discretization. Our method only evaluate it and never invert it.

3.4 Time-domain decomposition algorithm

Consider n̂ subdivisions of the time interval I = ∪n̂
n=1In, consider also the following

convex cost functional J :

J (v1, v2, .., vn̂) = 1

2
‖Y(T ) − ytarget‖2

2 + α

2

n̂∑

n=1

∫

In

‖vn‖2
cdt, (15)

where vn, n = 1, ..., n̂ are control variables with time support included in In, n =
1, ..., n̂. The state Y(T ) stands for the sum of state variables Yn which are time-
dependent state variable solution to the heat equation controlled by the variable vn.
Obviously because the control is linear the state Y depends on the concatenation of
controls v1, v2, .., vn̂ namely v = ∑n=n̂

n=1 vn.
Let us define �n̂ := (θ1, θ2, ..., θn̂)

T where θn ∈ R−\{0}. For any admissible con-
trol w = ∑n̂

n wn, we also define ϕn̂(�n̂) := J (v + ∑n̂
n=1 θnwn), which is quadratic.

We have:

ϕn̂(�n̂) = ϕn̂(0) + �T
n̂
∇ϕn̂(0) + 1

2
�T

n̂
∇2ϕn̂(0)�n̂, (16)

where 0 = (0, ..., 0)T . Therefore we can write ∇ϕn̂(�n̂) ∈ R
n̂ as ∇ϕn̂(�n̂) =

D(v, w) + H(v,w)�n̂, where the Jacobian vector and the Hessian matrix are given
respectively by:

D(v, w) := (〈∇J (v),π1(w)〉c, . . . , 〈∇J (v),π n̂(w)〉c)T ∈ R
n̂,

H(v,w) := (Hn,m)n,m, for Hn,m = 〈πn(w), πm(w)〉∇2J .

Here, (πn) is the restriction over the time interval In, indeed πn(w) has support
on In and assumes extension by zero in I . The solution ��

n̂
of ∇ϕn̂(�n̂) = 0 can be

written in the form:
��

n̂
= −H−1(v, w)D(v, w). (17)
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In the parallel distributed control problem, we are concerned with the following
optimality system:

{
∂tYn − σ�Yn = Bvn, on I × �,

Yn(t = 0) = δ0
ny0.

(18)

Y(T ) =
n̂∑

n=1

Yn(T ) (19)

{
∂tP + σ�P = 0, on I × �,

P(t = T ) = Y(T ) − ytarget .
(20)

∇J (

n̂∑

n=1

vn) = BT P + α

n̂∑

n=1

vn = 0, on I × �. (21)

where δ0
n stands for the function taking value “1” only if n = 1, else it takes the value

“0”. The Dirichlet control problem we are concerned with:
⎧
⎪⎪⎨

⎪⎪⎩

∂tYn,� − σ�Yn,� = f on I × �

Yn,� = vn,� on I × �

Yn,� = g on I × {∂�\�}
Yn,�(0) = δ0

ny0.

(22)

Y�(T ) =
n̂∑

n=1

Yn,�(T ) (23)

⎧
⎨

⎩

∂tP� + σ�P� = 0 on I × �

P� = 0 on I × ∂�

P�(T ) = Y�(T ) − ytarget .

(24)

∇J�(

n̂∑

n=1

vn,�) = −(∇P�

)T 
n + α

n̂∑

n=1

vn,� = 0 on I × �. (25)

It is noteworthy that each of the forward problems (18) and (22) with respect to
1 ≤ n ≤ n̂ are fully performed in parallel over the entire time interval I , and that
the time domain decomposition is only for the control variable v. More precisely; in
order to evaluate the gradient (21) (respectively (25)) we solve n̂ forward problem in
parallel, then we compute the solution Y(T ) at (23) (respectively (23)). Finally we
evaluate the adjoint solution of the backward problem (20) (respectively (24)). It is
recalled that the superscript k denotes the iteration index. The update formulae for
the control variable vk is given by:

vk
n = vk−1

n + θk−1
n ∇J (vk−1

n ).

We show hereafter how to assemble vector step-length �k
n̂

at each iteration.
For the purposes of notation we denote by Hk the k-th iteration of the Hessian
matrix H(∇J (vk),∇J (vk)) and by Dk the k-th iteration of the Jacobian vector
D(∇J (vk),∇J (vk)). The line-search is performed with quasi-Newton techniques
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that uses at each iteration k a Hessian matrix Hk and Jacobian vector Dk defined
respectively by:

Dk :=
(
〈∇J (vk),π1

(∇J (vk)
)〉c, .., 〈∇J (vk),π n̂

(∇J (vk)
)〉c

)T

, (26)

(Hk)n,m := 〈πn

(∇J (vk)
)
, πm

(∇J (vk)
)〉∇2J . (27)

The spectral condition number of the Hessian matrix ∇2J is denoted as: κ =
κ(∇2J ) := λmaxλ

−1
min, with λmax := λmax(∇2J ) the largest eigenvalue of ∇2J and

λmin := λmin(∇2J ) its smallest eigenvalue.
According to (17) we have

�k
n̂

= −H−1
k Dk. (28)

From (16) we have:

J (vk+1) = J (vk) + (�k
n̂
)T Dk + 1

2
(�k

n̂
)T Hk �k

n̂
. (29)

Our parallel algorithm to minimize the cost functional (15), is stated as follows
(see Algorithm 3).

Since (vn)n has disjoint time-support, thanks to the linearity, the notation
en

(∇J (vk)
)

is nothing but ∇J (vk
n), where vk is the concatenation of vk

1, . . . , vk
n̂
.

In Algorithm 3 steps 9, 10, 11, 12 and 13 are trivial tasks in regards to computa-
tional effort. This is because the aforementioned steps involve only communications
between processors in term of vector-message passing (of size n̂ <<size of the finite
element solution). Also the matrix Hk is of size n̂−by−n̂ so it is trivial to invert in
our examples.
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4 Convergence analysis of algorithm 3

This section provides the proof of convergence of Algorithm 3. In the quadratic opti-
mization framework many convergence analysis are provided in the literature. We
shall fellow a standard technique given in [15]. The key ingredient of the convergence
theorem is the following results. In the sequel, we suppose that ‖∇J (vk)‖c does not
vanish; otherwise the algorithm has already converged.

Proposition 4.1 The increase in value of the cost functional J between two succes-
sive controls vk and vk+1 is bounded below by:

J (vk) − J (vk+1) ≥ 1

2κ(Hk)

‖∇J (vk)‖4
c

‖∇J (vk)‖2
∇2J

. (30)

Proof Using (28) and (29), we can write:

J (vk) − J (vk+1) = 1

2
DT

k H−1
k Dk. (31)

From the definition of the Jacobian vector Dk we have

‖Dk‖2
2 =

n̂∑

n=1

〈∇J (vk),πn(∇J (vk))〉2
c,

=
n̂∑

n=1

〈πn(∇J (vk)), πn(∇J (vk))〉2
c,

=
n̂∑

n=1

‖en(∇J (vk))‖4
c,

= ‖∇J (vk)‖4
c .

Furthermore since Hk is an SPD matrix we have λmin(H
−1
k ) = 1

λmax(Hk)
. In

addition we have 1
λmin(Hk)

≥ 1
1
n̂

1T
n̂
Hk1n̂

, where we have used the fact that 1√
n̂

1n̂ =
1√
n̂
(1, . . . , 1)T is unit vector in R

n̂ and Rayleigh-Quotient property. Moreover, we

have:

DT
k H−1

k Dk = DT
k H−1

k Dk

‖Dk‖2
2

‖Dk‖2
2 ≥ λmin(H

−1
k )‖Dk‖2

2

= λmin(H
−1
k )λmin(Hk)

‖∇J (vk)‖4
c

λmin(Hk)

≥ λmin(Hk)

λmax(Hk)

‖∇J (vk)‖4
c

1
n̂

1T
n̂
Hk1n̂

= n̂

κ(Hk)
‖∇J (vk)‖−2

∇2J
‖∇J (vk)‖4

c .
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Since the partition number n̂ is greater than or equal to 1, we conclude that :

DT
k H−1

k Dk ≥ ‖∇J (vk)‖−2
∇2J

‖∇J (vk)‖4
c

κ(Hk)
. (32)

Hence, using (31) we get the stated result.

Theorem 4.2 Under the hypothesis of the well-posedness (in the sense of Hadamard)
of the optimal control problem, the control sequence (vk)k≥1 of Algorithm 3 con-
verges, for any partition n̂ of sub intervals, to the optimal control vk unique minimizer
of the quadratic functional J . Furthermore we have:

‖vk − v�‖2
∇2J

≤ rk‖v0 − v�‖2
∇2J

,

where the rate of convergence r :=
(

1 − 4κ

κ(Hk)(κ+1)2

)
satisfies 0 ≤ r < 1, where κ

stands for the spectral condition number of the hessian ∇2J .

Proof We denote by v� the optimal control that minimizes J . The equality

J (v) = J (v�) + 1

2
〈v − v�, v − v�〉∇2J = J (v�) + 1

2
‖v − v�‖2

∇2J
,

holds for any control v; in particular we have:

J (vk+1) = J (v�) + 1

2
‖vk+1 − v�‖2

∇2J
,

J (vk) = J (v�) + 1

2
‖vk − v�‖2

∇2J
.

Consequently, by subtracting the equations above, we obtain

J (vk+1) − J (vk) = 1

2
‖vk+1 − v�‖2

∇2J
− 1

2
‖vk − v�‖2

∇2J
. (33)

Since J is quadratic, we have ∇2J (vk − v�) = ∇J (vk), that is vk − v� =
(∇2J )−1∇J (vk). Therefore we deduce:

‖vk − v�‖2
∇2J

= 〈vk − v�, vk − v�〉∇2J (34)

= 〈vk − v�, ∇2J, vk − v�〉c
= 〈(∇2J )−1∇J (vk),∇2J, (∇2J )−1∇J (vk)〉c
= 〈∇J (vk), (∇2J )−1, ∇J (vk)〉c
= ‖∇J (vk)‖2

(∇2J )−1 .

Because of (31), we also have

J (vk+1) − J (vk) = −1

2
DT

k H−1
k Dk.

Using (33) and the above, we find that:

‖vk+1 − v�‖2
∇2J

= ‖vk − v�‖2
∇2J

− DT
k H−T

k Dk.
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Moreover, according to (32–34), we obtain the following upper bound:

‖vk+1 − v�‖2
∇2J

≤ ‖vk − v�‖2
∇2J

− 1

κ(Hk)

‖∇J (vk)‖4
c

‖∇J (vk)‖2
∇2J

≤ ‖vk − v�‖2
∇2J

(
1− 1

κ(Hk)

‖∇J (vk)‖4
c

‖∇J (vk)‖2
∇2J

‖∇J (vk)‖2
(∇2J )−1

)
.

(35)

Using the Kantorovich inequality [4, 31]:

‖∇J (vk)‖4
c

‖∇J (vk)‖2
∇2J

‖∇J (vk)‖2
(∇2J )−1

≥ 4λmaxλmin

(λmax + λmin)2
. (36)

Then

1 − 1

κ(Hk)

‖∇J (vk)‖4
c

‖∇J (vk)‖2
∇2J

‖∇J (vk)‖2
(∇2J )−1

≤ 1 − 4κ

κ(Hk)(κ + 1)2
.

Finally we obtain the desired results for any partition to n̂ subdivision, namely

‖vk − v�‖2
∇2J

≤
(

1 − 4κ

κ(Hk)(κ + 1)2

)k‖v0 − v�‖2
∇2J

.

The proof is therefore complete.

Remark 4.1 Remark that for n̂ = 1, we immediately get the condition num-
ber κ(Hk) = 1 and we recognize the serial steepest gradient method, which has
convergence rate

( κ−1
κ+1

)2.

It is difficult to pre-estimate the spectral condition number κ(Hk)(n̂) (is a function
of n̂) that play an important role and contribute to the evaluation of the rate of con-
vergence as our theoretical rate of convergence stated. We present in what follows
numerical results that demonstrate the efficiency of our algorithm. Tests consider
examples of well-posed and ill-posed control problem.

5 Numerical experiments

We shall present the numerical validation of our method in two stages. In the first
stage, we consider a linear algebra framework where we construct a random matrix-
based quadratic cost function that we minimize using Algorithm 2. In the second
stage, we consider the two optimal control problems presented in Sections 3.1 and
in 3.2 for the distributed- and Dirichlet boundary- control respectively. In both cases



Numer Algor (2016) 72:635–666 649

we minimize a quadratic cost function properly defined for each handled control
problem.

5.1 Linear algebra program

This subsection treat basically the implementation of Algorithm 2. The program
was implemented using the scientific programming language Scilab [51]. We con-
sider the minimization of a quadratic form q where the matrix A is an SPD m-by-m
matrix and a real vector b ∈ R

m ∩ rank(A) are generated by hand (see below for
their constructions). We aim at solving iteratively the linear system Ax = b, by
minimizing

q(x) = 1

2
xT Ax − xT b. (37)

Let us denote by n̂ the partition number of the unknown x ∈ R
m. The partition is

supposed to be uniform and we assume that n̂ divides m with a null rest.
We give in Table 1 a SCILAB function that builds the vector step-length �k

n̂
as

stated in (4). In the practice we randomly generate an SPD sparse matrix A =
(α + γm)IRm + R, where 0 < α < 1, γ > 1, IRm is the m-by-m identity matrix
and R is a symmetric m-by-m random matrix. This way the matrix A is symmet-
ric and diagonally dominant, hence SPD. It is worthy noticing that the role of α is
regularizing when rapidly vanishing eigenvalues of A are generated randomly. This
technique helps us to manipulate the coercivity of the handled problem hence its
spectral condition number.

Table 1 Scilab function to build the vector step length, for the linear algebra program
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Fig. 1 Performance in term of iteration number: Several decomposition on n̂. Results from the linear
algebra Scilab program

For such matrix A we proceed to minimize the quadratic form defined in (37) with
several n̂-subdivisions.

The improvement quality of the algorithm against the serial case n̂ = 1 in term of
iteration number is presented in Fig. 1. In fact, the left hand side of Fig. 1 presents
the cost function minimization versus the iteration number of the algorithm where
several choices of partition on n̂ are carried out. In the right hand side of the Fig. 1

we give the logarithmic representation of the relative error ‖xk−x�‖2‖x�‖2
, where x� is the

exact solution of the linear system at hand.

5.2 Heat optimal control program

We discuss in this subsection the implementation results of Algorithm 3 for the opti-
mization problems presented in Section 3. Our tests deal with the 2D-heat equation
on the bounded domain � = [0, 1] × [0, 1]. We consider, three types of test prob-
lems in both cases of distributed and Dirichlet controls. Tests vary according to the
theoretical difficulty of the control problem [7, 11, 17]. Indeed, we vary the regular-
ization parameter α and also change the initial and target solutions in order to handle
more severe control problems as has been tested for instance in [11].

Numerical tests concern the minimization of the quadratic cost functionals J (v)

and J�(v�) using Algorithm 3. It is well known that in the case α vanishes the control
problem becomes an “approximated” controllability problem. Therefore the control
variable tries to produce a solution that reaches as close as it “can” the target solution.
With this strategy, we accentuate the ill-conditioned degree of the handled problem.
We also consider an improper-posed problems for the controllability approximation,
where the target solution doesn’t belong to the space of the reachable solutions. No
solution exists thus for the optimization problem i.e. no control exists that enables
reaching the given target!

For reading conveniences and in order to emphasize the role of the parameter α

on numerical tests, we tag problems that we shall consider as Pα
i where the index i

refers to the problem among {1, 2, 3, 4}. The table below resumes all numerical test
that we shall experiences
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– Minimize J (v) distributed control Minimize J�(v�) boundary control

Moderate α = 1 × 10−02 well-posed problem ill-posed problem
corresponding data in (Pα

1 ), (Pα
2 ) corresponding data in (Pα

3 )

Vanishing α = 1 × 10−08 ill-posed problem sever ill-posed problem
corresponding data in (Pα

1 ) , (Pα
2 ) corresponding data in (Pα

3 )

Solution does not exist sever ill-posed problem sever ill-posed problem
corresponding data in (Pα

4 ) corresponding data in (Pα
4 )

We suppose from now on that the computational domain � is a polygonal domain
of the plane R

2. We then introduce a triangulation Th of �; the subscript h stands
for the largest length of the edges of the tringles that constitute Th. The solu-
tion of the heat equation at a given time t belongs to H 1(�). The source terms
and other variables are elements of L2(�). Those infinite dimensional spaces are
therefore approximated with the finite-dimensional space Vh, characterized by P1
the space of the polynomials of degree ≤ 1 in two variables (x1, x2). We have
Vh := {uh| uh ∈ C0(�), uh|K ∈ P1, for all K ∈ Th}. In addition, Dirichlet boundary
conditions (where the solution is in H 1

0 (�) i.e. vanishing on boundary ∂�) are taken
into account via penalization of the vertices on the boundaries. The time dependence
of the solution is approximated via the implicit Euler scheme. The inversion opera-
tions of matrices is performed by the UMFPAK solver. We use the trapezoidal method
in order to approximate integrals defined on the time interval.

The numerical experiments were run using a parallel machine with 24 CPU’s
AMD with 800 MHz in a Linux environment. We code two FreeFem++ [45] scripts
for the distributed and Dirichlet control. We use MPI library in order to achieve
parallelism.

Tests that concern the distributed control problem are produced with control that
acts on �c ⊂ �, with �c = [0, 1

3 ] × [0, 1
3 ], whereas Dirichlet boundary control

problem, the control acts on � ⊂ ∂�, with � = {(x1, x2) ∈ ∂�, |x2 = 0}. The time
horizon of the problem is fixed to T = 6.4 and the small time step is τ = 0.01,
the finite element triangulation has a size h = 1./20 as elements edge length. In
order to have a better control of the time evolution we put the diffusion coefficient
σ = 0.01.

Remark 5.1 Regarding these parameters of discretization, we have the number of
degree of freedom for the spacial variable is 400 = 202 and the temporal degree of
freedom is T/τ = 640.

5.2.1 First test problem: moderate Tikhonov regularization parameter α

We consider an optimal control problem on the heat equation. The control is con-
sidered first to be distributed and then Dirichlet. For the distributed optimal control
problem we first use the functions

y0(x1, x2) = exp
( − γ 2π

(
(x1 − .7)2 + (x2 − .7)2

))

ytarget (x1, x2) = exp
( − γ 2π

(
(x1 − .3)2 + (x2 − .3)2

))
,

(Pα
1 )
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Fig. 2 First test problem, for Pα
1 : Normalized and shifted cost functional values versus iteration number

(left) and versus computational time (right) for several values of n̂ (i.e. the number of processors used)

as initial condition and target solution respectively. The real valued γ is introduced
to force the Gaussian to have support strictly included in the domain and verify the
boundary conditions. The aim is to minimize the cost functional defined in (6).

The decay of the cost function with respect to the iterations of our algorithm is
presented in Fig. 2 on the left side, and the same results are given with respect to
the computational CPU’s time (in sec) on the right side. We show that the algorithm

Fig. 3 Snapshots in n̂ = 1, 16 of the distributed optimal control on the left columns and its corresponding
controlled final state at time T: y(T ) on the right columns. The test case corresponds to the control problem
Pα

1 , where α is taken as α = 1 × 10−02. Same result apply for different choice of n̂
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Fig. 4 First test problem, for Pα
2 : Normalized cost functional values versus computational CPU time for

several values of n̂ (i.e. the number of processors used)

accelerates with respect to the partition number n̂ and also preserves the accuracy
of the resolution. Indeed, all tests independently of n̂ always converge to the unique
solution. This is in agreement with Theorem 4.2, which proves the convergence of
the algorithm to the optimal control (in the well-posedness framework [37]) for an
arbitrary partition choice n̂ (Figs. 2 and 3).

We test a second problem with an a priori known solution of the heat equation.
The considered problem has

y0(x1, x2) = sin(πx1) sin(πx2)

ytarget (x1, x2) = exp(−2π2σT ) sin(πx1) sin(πx2),
(Pα

2 )

as initial condition and target solution respectively. Remark that the target solution is
taken as a solution of the heat equation at time T . The results of this test are presented
in Fig. 4, which shows the decay in values of the cost functional versus the iterations
of the algorithm on the left side and versus the computational CPU’s time (in sec) on
the right side.

We give in Figs. 3 and 5 several rows value snapshots (varying the n̂) of the con-
trol and its corresponding controlled final solution y(T ). Notice the stability and the
accuracy of the method with any choice of n̂. In particular the shape of the result-
ing optimal control is unique as well as the controlled solution y(T ) doesn’t depend
on n̂.

For the Dirichlet boundary control problem we choose the following functions as
source term, initial condition and target solution:

f (x1, x2, t) = 3π3σexp(2π2σ t)(sin(πx1) + sin(πx2))

y0(x1, x2) = π(sin(πx1) + sin(πx2))

ytarget (x1, x2) = πexp(2π2σ)(sin(πx1) + sin(πx2)),

(Pα
3 )
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Fig. 5 Snapshots in n̂ = 1, 16 of the distributed optimal control on the left columns and its corresponding
controlled final state at time T: y(T ) on the right columns. The test case corresponds to the control problem
Pα

2 , where α = 1 × 10−02. Same results apply for different choice of n̂

respectively. Because of the ill-posed character of this problem, its optimization
leads to results with hight contrast in scale. We therefore preferred to summarize the
optimizations results in Table 3 instead of Figures (Fig. 6).

Remark 5.2 Because of the linearity and the superposition property of the heat equa-
tion, it can be shown that problems (Pα

2 and Pα
3 ) mentioned above are equivalent to

a control problem which has null target solution.

5.2.2 Second test problem: vanishing Tikhonov regularization parameter α

In this section, we are concerned with the “approximate” controllability of the heat
equation, where the regularization parameter α vanishes, practically we take α =
1 × 10−08. In this case, problems Pα

2 and Pα
3 , in the continuous setting are supposed

to be well posed (see for instances [16, 44]). However, may not be the case in the
discretized settings; we refer for instance to [17] (and reference therein) for more
details (Figs. 7 and 8).

Table 2 contains the summarized results for the convergence of the distributed
control problem. On the one hand, we are interested in the error given by our algo-
rithm for several choices of partition number n̂. On the other hand, we give the
L2(0, T ; L2(�c)) of the control. We notice the improvement in the quality of the
algorithm in terms of both time of execution and control energy consumption, namely
the quantity

∫
(0,T )

‖vk‖2
cdt . In fact, for the optimal control framework (Pα

1 and Pα
2

with α = 1×10−02), we see that, for a fixed stopping criterion, the algorithm is faster
and consume the same energy independently of n̂. In the approximate controllability
framework (Pα

2 with α = 1×10−08 vanishes), we note first that the general accuracy
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Fig. 6 Several rows value snapshots in n̂ of the Dirichlet optimal control on the left columns and its
corresponding controlled final state at time T: y(T ) on the right columns. The test case corresponds to the
control problem Pα

3 , where α = 1 × 10−02

of the controlled solution (see the error ‖Yk(T ) − ytarget‖2/‖ytarget‖2) is improved
as α = 1 × 10−08 compered with α = 1 × 10−02. Second, we note that the error
diminishes when increasing n̂, the energy consumption rises however. The scalability
in CPU’s time and number of iteration shows the enhancement of our method when
it is applied (i.e. for n̂ > 1).

Table 3 contains the summarized results at the convergence of the Dircichlet
boundary control problem. This problem is known in the literature for its ill-
posedness, where it may be singular in several cases see [7] and references therein.
In fact, it is very sensitive to noise in the data. We show in Table 3 that for a big value
of the regularization parameter α our algorithm behaves already as the distributed
optimal control for a vanishing α, in the sense that it consumes more control energy
to produce a more accurate solution with smaller execution CPU’s time. It is worth
noting that the serial case n̂ = 1 fails to reach an acceptable solution, whereas the
algorithm behaves well as n̂ rises.
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Fig. 7 Normalized and shifted cost functional values versus computational CPU time for several values
of n̂ (i.e. the number of processors used), Distributed control problem Pα

2 whith α = 1 × 10−08

We give in Figs. 6 and 9 several rows value snapshots (varying n̂) of the Dirichlet
control on �. We present in the first column its evolution during [0, T ] and on the
second column its corresponding controlled final solution y(T ) at time T ; we scaled
the plot of the z-range of the target solution in both Figs. 6 and 9.

In each row one sees the control and its solution for a specific partition n̂. The
serial case n̂ = 1 leads to a controlled solution which doesn’t have the same rank as
ytarget , whereas as n̂ rises, we improve the behavior of the algorithm.

In a sequential simulation of the optimal control problem, it is worth noting that
(based on observations) the optimal control is relatively “lazy” during a long period
of the simulation time and meets its maximum in magnitude only around the final
horizon time T . This observation is very apparent in Figs. 6 and 9 (see the first
row i.e. case n̂ = 1). The nature of our algorithm, which is based on time domain
decomposition, obliges the control to act in subintervals. Hence, the control acts more
often and earlier in time (before T ) and leads to a better controlled solution y(T ).

5.2.3 Third test problem: sever Ill-posed problem (no solution)

In this test case, we consider a severely ill-posed problem where we are not in the
frame of the hypothesis of Theorem 4.2. In fact, the target solution is piecewise Lip-
schitz continuous, so that it is not regular enough compared with the solution of
the heat equation. This implies that in our control problem, both the distributed and
the Dirchlet boundary control has no solution. The initial condition and the target
solution are given by

y0(x1, x2) = π(sin(πx1) + sin(πx2))

ytarget (x1, x2) = min
(
x1, x2, (1 − x1), (1 − x2)

)
,

(Pα
4 )

respectively. A plots of the initial condition and the target solutions are given in
Fig. 10.
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Fig. 8 Several rows value snapshots in n̂ of the distributed optimal control on the left columns and its
corresponding controlled final state at time T: (Y(T ) on the right columns. The test case corresponds to
the control problem Pα

2 , where α = 1 × 10−08

In Figs. 11 and 12 we plot the controlled solution at time T for the distributed and
Dirichlet control problems respectively. We remark that for the distributed control
problem the controlled solution is smooth except in �c, where the control is able to
fit with the target solution.

Remark 5.3 Out of curiosity, we tested the case where the control is distributed on
the whole domain. We see that the control succeeds to fit the controlled solution to
the target even if it is not C1(�). This is impressive and shows the impact on the
results of the regions where the control is distributed.

We note the stability of the method of the distributed test case. However, the
Dirichlet problem test case presents hypersensitivity. In fact, in the case of n̂ = 1 the
algorithm succeeds to produce a similar shape of the controlled solution, although
still have a big error. We note that the time domain decomposition leads to a control
which gives a good shape of the controlled solution that has a small error comparing
to the target solution.
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Fig. 9 Several rows value snapshots in n̂ of the Dirichlet optimal control on the left columns and its
corresponding controlled final state at time T: Y�(T ) on the right columns. The test case corresponds to
the control problem Pα

3 , where α = 1 × 10−08

Fig. 10 Graph of initial and target solution for both distributed and Dirichlet boundary control problem
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Fig. 11 Several snapshots in n̂ of final state at time T: Y(T ). The test case corresponds to Distributed
control sever Ill-posed problem Pα

4

In this severely ill-posed problem, we see that some partitions may fail to produce
a control that fit the controlled solution to the target. There is an exemption for the
case of n̂ = 8 partitions, where we have a good reconstruction of the target. The
summarized results are given in Table 4.

5.2.4 Regularization based on the optimal choice of partition

The next discussion concerns the kind of situation where the partition leads to
multiple solutions, which is common in ill-posed problems. In fact, we discuss a reg-
ularization procedure used as an exception handling tool to choose the best partition,
giving the best solution of the handled control problem.

It is well known that ill-posed problems are very sensitive to noise, which could
be present due to numerical approximation or to physical phenomena. In that case,
numerical algorithm may blow-up and fail. We present several numerical tests for the
Dirichlet boundary control, which is a non trivial problem numerically. The results
show that in general time domain decomposition may improve the results in several
cases. But scalability is not guaranteed as it is for the distributed control. We propose
a regularization procedure in order to avoid the blow-up and also to guarantee the
optimal choice of partition of the time domain. This procedure is based on a test of the
monotony of the cost function. In fact, suppose that we possess 64 processors to run
the numerical problem. Once we have assembled the Hessian Hk and the Jacobian
Dk for the partition n̂ = 64, we are actually able to get for free the results of the
Hessian and the Jacobian for all partitions n̂ that divide 64. Hence, we can use the
quadratic property of the cost functional in order to predict and test the value of the



662 Numer Algor (2016) 72:635–666

Fig. 12 Several snapshots in n̂ of final state at time T: Y�(T ). The test case corresponds to Dirichlet
control sever Ill-posed problem Pα

4

cost function for the next iteration without making any additional computations. The
formulae is given by:

J (vk+1) = J (vk) − 1

2
DT

k H−1
k Dk.

We present in Algorithm 4 the technique that enables us to reduce in rank and
compute a series of Hessians and Jacobians for any partition n̂ that divide the avail-
able number of processors. An exemple of the applicability of these technique, on a
4-by-4 SPD matrix, is given in Appendix.
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6 Conclusion

We have presented in this article a new optimization technique to enhance the steep-
est descent algorithm via domain decomposition in general and we applied our new
method in particular to time-parallelizing the simulation of an optimal heat control
problem. We presented its performance (in CPU time and number of iterations) ver-
sus the traditional steepest descent algorithm in several and various test problems.
The key idea of our method is based on a quasi-Newton technique to perform effi-
cient real vector step-length for a set of descent directions regarding the domain
decomposition. The originality of our approach consists in enabling parallel compu-
tation where its vector step-length achieves the optimal descent direction in a high
dimensional space. Convergence property of the presented method is provided. Those
results are illustrated with several numerical tests using parallel resources with MPI
implementation.
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