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Abstract This paper concerns the stochastic Runge-Kutta (SRK) methods with high
strong order for solving the Stratonovich stochastic differential equations (SDEs)
with scalar noise. Firstly, the new SRK methods with strong order 1.5 or 2.0 for the
Stratonovich SDEs with scalar noise are constructed by applying colored rooted tree
analysis and the theorem of order conditions for SRK methods proposed by Rößler
(SIAM J. Numer. Anal. 48(3), 922–952, 2010). Secondly, a specific SRK method
with strong order 2.0 for the Stratonovich SDEs whose drift term vanishes is pro-
posed. And another specific SRK method with strong order 1.5 for the Stratonovich
SDEs whose drift and diffusion terms satisfy the commutativity condition is pro-
posed. The two specific SRK methods need only to use one random variable and
do not need to simulate the multiple Stratonovich stochastic integrals. Finally, the
numerical results show that performance of our methods is better than those of
well-known SRK methods with strong order 1.0 or 1.5.
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1 Introduction

In recent years, great progress has been made in the area of numerical methods for
solving stochastic differential equations (SDEs). Runge-Kutta (RK) methods are a
very important class of numerical methods for solving ordinary differential equations
(ODEs). Therefore, recently there has been much interest in developing stochastic
Runge-Kutta (SRK) methods for solving SDEs. For example, Some SRK meth-
ods converging in the strong sense or in the weak sense were proposed in [10, 13,
14]. And order conditions for these methods were obtained by comparing Taylor
series of the exact and the numerical solutions. In analogy to the deterministic case,
Burrage and Burrage [1–3] extended the classical rooted tree analysis in Butcher [5],
and introduced colored trees (or stochastic trees) to calculate the order conditions
of strong order SRK methods for the Stratonovich SDEs. Komori [11] applied the
stochastic tree analysis to calculate the order conditions of weak order SRK meth-
ods for the Stratonovich SDEs. Rößler [16, 17] applied the stochastic tree analysis
to calculate the order conditions of weak order SRK methods for both the Itô and
the Stratonovich SDEs, and Rößler [18] applied it to calculate the order conditions
of strong order SRK methods for both the Itô and the Stratonovich SDEs. Debrabant
and Kværnø [8] introduced a unifying approach for the construction of stochastic B-
series and gave order conditions of the weak and strong convergence for both the Itô
and the Stratonovich SDEs. Based on their work, the weak order SRK methods have
been constructed, see, e.g., [9, 10, 13], and the strong order SRK methods have been
constructed, see, e.g., [6, 7, 20]. However, up to now, it remains a challenging task to
construct specific SRK methods with high strong order. This is due to that the order
conditions of the high strong order SRK methods contain too many equations. The
aim of the present paper is to make efforts in this direction and to construct new SRK
methods with high strong order.

In this paper, new strong order SRK methods with several groups of independent
internal stages are constructed. This technique can reduce the number of the equa-
tions in order conditions when we construct the SRK methods with high strong order.
By applying the results of order conditions for the general class of strong order SRK
methods in [18], some SRK methods with strong order 1.5 or 2.0 for solving the
Stratonovich SDEs with scalar noise are constructed in Sections 3 and 4. In Section 5,
some methods for approximating the multiple Stratonovich stochastic integrals are
introduced because a multiple Stratonovich stochastic integral need to be approxi-
mated for the SRK methods with strong 2.0. In Section 6, two specific high strong
order SRK methods applied to two specific types of the Stratonovich SDEs are pro-
posed, and these methods do not need to simulate the multiple Stratonovich stochastic
integrals. In Section 7, some numerical results are reported to illustrate the theoretical
results.

We consider the Stratonovich autonomous SDE system with scalar noise

dy(t) = f (y(t))dt +g(y(t)) ◦ dW(t), y(t0) = yt0 , t0 ≥ 0, t ∈ [t0, T ], yt0 ∈ R
d ,

(1)
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where W(t) is a one-dimensional Wiener process, and the vector functions f, g ∈
R

d satisfy the uniform Lipschitz condition and guarantee the existence of a unique
solution of the SDE (1). The SDE (1) can be written in integral form as

y(t) = y(t0) +
∫ t

t0

f (y(s))ds +
∫ t

t0

g(y(s)) ◦ dW(s). (2)

For the numerical methods for solving SDE (1), there are mainly two ways of measur-
ing accuracy: strong convergence and weak convergence. In this paper, we consider
the strong convergence.

Definition 1.1 ([4]) If yN is the numerical approximation to y(tN ) after N steps with
constant stepsize h = tN−t0

N
, then yN is said to converge strongly to y(tN ) with strong

global order p if ∃C > 0 (independent of h) and δ0 suth that

(E(||y(tN ) − yN ||2))1/2 ≤ Chp, h ∈ (0, δ0). (3)

Here p can be fractional.

2 A general class of SRK methods and its order conditions

2.1 A general class of SRK methods

Let g0(y) = f (y), g1(y) = g(y). By [18], a general s-stage SRK methods for the
SDE (1) can be written as

yn+1 = yn +
s∑

i=1

1∑
k=0

∑
v∈M

z
(k),(v)
i gk(Hv

i ),

H
(v)
i = yn +

s∑
j=1

1∑
l=0

∑
u∈M

Z
(v),(l),(u)
ij gl(Hu

i ), i = 1, 2, . . . , s, v ∈ M , (4)

where, n = 0, 1, . . . , N −1, y0 = y(t0), M is an arbitrary finite set of multi-indices,
0 ∈ M , and for i, j = 1, 2, . . . , s,

z
(k),(v)
i =

∑
τ∈M

γ
(τ)(k),(v)

i θ (k)
τ (h), Z

(v),(l),(u)
i,j =

∑
τ∈M

C
(τ)(v),(l),(u)

ij θ (l)
τ (h),

here, γ
(τ)(k),(v)

i , C
(τ)(v),(l),(u)

ij ∈ R, and θ
(0)
0 (h) = h, θ

(k)
τ (h) ∈ L2(�), (k = 0, 1) are

some suitable random variables, and satisfy

E(

1∏
k=0

(θ(k)
τ1

(h))p
k
1 · . . . · (θ(k)

τq
(h))p

k
q ) = O(hp0

1+···+p0
q+(p1

1+···+p1
q )/2), (5)
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where q = |M | is the element number of finite set M , p0
i , p

1
i , i = 1, 2, . . . , q

are non-negative integers. Let z(k),(v) = (z
(k),(v)
i )1≤i≤s ∈ R

s , Z(v),(l),(u) =
(Z

(v),(l),(u)
i,j )1≤i,j≤s ∈ R

s×s . If C
(τ)(v),(l),(u)

ij = 0 (j ≥ i), then the method (4) is called
explicit SRK method, otherwise it is called implicit SRK method.

2.2 Order conditions for the SRK method (4)

We need to apply the order-condition results of the SRK method (4) for solving the
SDE (1) when we construct the new strong order SRK methods in the following
sections. Therefore, we introduce the following theorem, and the details can be found
in [8, 18].

Theorem 2.1 ([18]) Let f, g ∈ C2p+1(Rd ,Rd) and p ∈ 1
2N0 (N0 denotes non-

negative integer). Then the SRK method (4) has strong order p if (5) holds and the
following conditions are fulfilled for arbitrary t ∈ TS, ∀t, t + h ∈ [t0, T ]:

It;t,t+h = �S(t; t, t + h) P − a.s. ρ(t) ≤ p, (6)

E(It;t,t+h) = E(�S(t; t, t + h)) ρ(t) = p + 1

2
. (7)

Here, TS is the set of all stochastic trees, t denotes a stochastic tree in TS, ρ(t)
denotes the order of t, and It;t,t+h denotes the corresponding multiple Stratonovich
stochastic integral, �S(t; t, t + h) denotes the corresponding elementary weight.
Let t ∈ TS, t = [t1, t2, . . . , tk]l , l ∈ {0, 1}, where, the case l = 0 denotes that
t1, t2, . . . , tk are each joined by a single branch to deterministic node (•), and the
case l = 1 denotes that t1, t2, . . . , tk are each joined by a single branch to stochastic
node (◦). Then we can recursively define

	(v)(t; t, t + h) =
∑
u∈M

Z(v),(l),(u)

k∏
i=1

	(u)(ti; t, t + h) v ∈ M , (8)

�S(t; t, t + h) =
∑
v∈M

z(l),(v)T
k∏

i=1

	(v)(ti; t, t + h), (9)

It;t,t+h =
∫ t+h

t

k∏
i=1

Iti ;t,s ◦ dWl
s . (10)

Here, let ∅ denote the empty tree, 	(v)(∅; t, t + h) = e, e = (1, 1, . . . , 1)T ∈
R

s , �S(∅; t, t + h) = 1, ◦ dW 0
s = ds, ◦ dW 1

s = ◦dW(s), I∅;t,t+h = 1, and

τl = [∅]l , Iτl;t,t+h = ∫ t+h

t
◦dWl

s , l ∈ {0, 1}. By using the notation and formula in
[11]

Jj1,j2,··· ,jñ;t,t+h =
∫ t+h

t

∫ sñ

t

· · ·
∫ s2

t

◦dW
j1
s1 ◦ dW

j2
s2 · · · ◦ dW

jñ
sñ , (11)
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∫ t+h

t

Xs ◦ dWi
s

∫ t+h

t

Ys ◦ dW
j
s =

∫ t+h

t

Xs

(∫ s

t

Yu ◦ dW
j
u

)
◦ dWi

s

+
∫ t+h

t

(∫ s

t

Xu ◦ dWi
u

)
Ys ◦ dW

j
s , (12)

where, i, j , j1, j2, . . . , jñ ∈ {0, 1}. Then we can calculate each It;t,t+h. In particular,
for the stochastic trees

we have

It1;t,t+h =
∫ t+h

t

◦dW 0
s = J0;t,t+h,

It2;t,t+h =
∫ t+h

t

◦dW 1
s = J1;t,t+h,

It3;t,t+h =
∫ t+h

t

Iτ1;t,s ◦ dW 0
s =

∫ t+h

t

∫ s

t

◦ dW 1
s1

◦ dW 0
s = J10;t,t+h,

It4;t,t+h =
∫ t+h

t

(
Iτ1;t,sIτ1;t,s

) ◦ dW 1
s

=
∫ t+h

t

(∫ s

t

◦ dW 1
s1

∫ s

t

◦ dW 1
s1

)
◦ dW 1

s

=
∫ t+h

t

(∫ s

t

(∫ s1

t

◦dW 1
u

)
◦ dW 1

s1
+

∫ s

t

(∫ s1

t

◦dW 1
u

)
◦ dW 1

s1

)
◦ dW 1

s

=
∫ t+h

t

∫ s

t

∫ s1

t

◦dW 1
u ◦dW 1

s1
◦ dW 1

s +
∫ t+h

t

∫ s

t

∫ s1

t

◦dW 1
u ◦ dW 1

s1
◦ dW 1

s

= 2J111;t,t+h.

3 SRK methods with strong order 1.5 for the SDE (1)

Burrage and Burrage [3] constructed a class of SRK methods with strong order 1.5
for the SDE (1). However, the order conditions of the strong order SRK methods
in [3] are very complex. This leads to the fact that it is difficult to construct SRK
methods with higher strong order. In this section, a new class of SRK methods with
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strong order 1.5 and with two groups of independent internal stages is proposed. The
order conditions of the new methods are simpler than those of methods in [3], and
this advantage is reflected more obviously when we construct SRK methods with
strong order 2.0. For the SDE (1), we propose the SRK method

yn+1 = yn + h

s0∑
i0=1

α
(0)
i0

f (H
(0)
i0

) + J1

s0∑
i0=1

β
(0)
i0

g(H
(0)
i0

)

+h

s1∑
i1=1

α
(1)
i1

f (H
(1)
i1

) + J10

h

s1∑
i1=1

β
(1)
i1

g(H
(1)
i1

),

H
(0)
i0

= yn + h

s0∑
j=1

a
(0)
i0j

f (H
(0)
j ) + J1

s0∑
j=1

b
(0)
i0j

g(H
(0)
j ), i0 = 1, 2, . . . , s0, (13)

H
(1)
i1

= yn + h

s1∑
j=1

a
(1)
i1j

f (H
(1)
j ) + J10

h

s1∑
j=1

b
(1)
i1j

g(H
(1)
j ), i1 = 1, 2, . . . , s1,

where h denotes stepsize, n = 0, 1, . . . , N − 1, y0 = y(t0), and

J1 = J1;tn,tn+h =
∫ tn+h

tn

◦dWs, J10 = J10;tn,tn+h =
∫ tn+h

tn

∫ s

tn

◦dWs1ds.

In the rest of this paper, we use the abbreviation

Jj1,j2,...,jñ
= Jj1,j2,...,jñ;tn,tn+h, j1, j2, . . . , jñ ∈ {0, 1} .

The SRK method (13) is a special case of the method (4) with M = {0, 1} and

z
(0)(0)
i0

= hα
(0)
i0

, z
(1)(0)
i0

= J1β
(0)
i0

, z
(0)(1)
i1

= hα
(1)
i1

, z
(1)(1)
i1

= J10

h
β

(1)
i1

,

Z
(0)(0)(0)
i0j

= ha
(0)
i0j

, Z
(0)(1)(0)
i0j

= J1b
(0)
i0j

, Z
(0)(0)(1)
i0j

= Z
(0)(1)(1)
i0j

= 0, (14)

Z
(1)(0)(1)
i1j

= ha
(1)
i1j

, Z
(1)(1)(1)
i1j

= J10

h
b

(1)
i1j

, Z
(1)(0)(0)
i1j

= Z
(1)(1)(0)
i1j

= 0.

Remark 3.1 In (13), s0 and s1 can be different numbers because the group H
(0)
i0

and

the group H
(1)
i1

are independent.
Now, some formulas and expectation values of multiple Stratonovich stochastic

integrals [11] are given in (15) and Table 1.
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hJ11 = J110 + J101 + J011, J1J10 = J101 + 2J110,

J1J01 = J101 + 2J011, hJ1 = J10 + J01,

J1···1 = 1

k!J
k
1 (k is the length of the multi-index), J1 = I1,

J10 = I10, J110 = I110 + 1

2
I00, (15)

J101 = I101, J011 = I011 + 1

2
I00,

I11 = 1

2
(I 21 − h), I111 = 1

6
(I 31 − 3hI1)

where Ij1,j2,...,jñ
, j1, j2, . . . , jñ ∈ {0, 1} denotes the multiple Itô stochastic integral

that corresponds to Jj1,j2,...,jñ
.

Now, we can obtain the following results by applying Theorem 2.1.

Theorem 3.2 Let f, g ∈ C4(Rd ,Rd). Then the SRK method (13) converges strongly
to solution of the SDE (1) with strong order 1.5 if the coefficients of the SRK method
(13) satisfy the system of the following equtions

1. α(0)T e0 + α(1)T e1 = 1, 2. β(0)T e0 = 1,

3. β(1)T e1 = 0, 4. α(0)T A(0)e0 + α(1)T A(1)e1 = 1
2 ,

5. α(0)T B(0)e0 = 0, 6. α(1)T B(1)e1 = 1,

7. β(0)T A(0)e0 = 1, 8. β(1)T A(1)e1 = −1,

9. β(0)T B(0)e0 = 1
2 , 10. β(1)T B(1)e1 = 0,

11. β(0)T (B(0)e0)
2 = 1

3 , 12. β(1)T (B(1)e1)
2 = 0,

13. β(0)T (B(0)(B(0)e0)) = 1
6 , 14. β(1)T (B(1)(B(1)e1)) = 0,

15. α(0)T (B(0)e0)
2 + 1

3α
(1)T (B(1)e1)

2 = 1
2 ,

16. α(0)T (B(0)(B(0)e0)) + 1
3α

(1)T (B(1)(B(1)e1)) = 1
4 ,

17. β(0)T (A(0)(B(0)e0)) + 1
3β

(1)T (A(1)(B(1)e1)) = 0,

18. β(0)T ((A(0)e0)(B
(0)e0)) + 1

3β
(1)T ((A(1)e1)(B

(1)e1)) = 1
4 ,

19. β(0)T (B(0)(A(0)e0)) + 1
3β

(1)T (B(1)(A(1)e1)) = 1
4 ,

20. 3β(0)T (B(0)e0)
3 + 1

3β
(1)T (B(1)e1)

3 = 3
4 ,

21. 3β(0)T ((B(0)(B(0)e0))(B
(0)e0)) + 1

3β
(1)T ((B(1)(B(1)e1))(B

(1)e1)) = 3
8 ,

22. 3β(0)T (B(0)(B(0)e0)
2) + 1

3β
(1)T (B(1)(B(1)e1)

2) = 1
4 ,

23. 3β(0)T (B(0)(B(0)(B(0)e0))) + 1
3β

(1)T (B(1)(B(1)(B(1)e1))) = 1
8 ,
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where

A(0) = (a
(0)
i0j

)s0×s0 , A(1) = (a
(1)
i1j

)s1×s1 , B(0) = (b
(0)
i0j

)s0×s0 , B(1) = (b
(1)
i1j

)s1×s1

α(0) = (α
(0)
1 , α

(0)
2 , . . . , α(0)

s0
)T , α(1) = (α

(1)
1 , α

(1)
2 , . . . , α(1)

s1
)T

β(0) = (β
(0)
1 , β

(0)
2 , . . . , β(0)

s0
)T , β(1) = (β

(1)
1 , β

(1)
2 , . . . , β(1)

s1
)T .

Proof First, for arbitrary t with ρ(t) ≤ 1.5, we prove that the following order
condition

It;t,t+h = �S(t; t, t + h) P − a.s.

holds. In fact, by (8)-(12), (14) and (15), we obtain that

for τ0, Iτ0;t,t+h = �S(τ0; t, t + h) ⇔ h = hα(0)T e0 + hα(1)T e1

⇔ α(0)T e0 + α(1)T e1 = 1;
for τ1, Iτ1;t,t+h = �S(τ1; t, t + h) ⇔ J1 = J1β

(0)T e0 + J10

h
β(1)T e1

⇔ β(0)T e0 = 1, β(1)T e1 = 0;
for [τ0]0, I[τ0]0;t,t+h = �S([τ0]0; t, t + h) ⇔ 1

2
h2 = h2α(0)T A(0)e0 + h2α(1)T A(1)e1

⇔ α(0)T A(0)e0 + α(1)T A(1)e1 = 1

2
;

for [τ1]0, I[τ1]0;t,t+h = �S([τ1]0; t, t + h) ⇔ J10 = hJ1α
(0)T B(0)e0 + h

J10

h
α(1)T B(1)e1

⇔ α(0)T B(0)e0 = 0, α(1)T B(1)e1 = 1;
for [τ0]1, I[τ0]1;t,t+h = �S([τ0]1; t, t + h) ⇔ J01 = hJ1β

(0)T A(0)e0 + h
J10

h
β(1)T A(1)e1

⇔ β(0)T A(0)e0 = 1, β(1)T A(1)e1 = −1;
for [τ1]1, I[τ1]1;t,t+h = �S([τ1]1; t, t + h) ⇔ J11 = J 2

1 β(0)T B(0)e0 + (
J10

h
)2β(1)T B(1)e1

⇔ β(0)T B(0)e0 = 1

2
, β(1)T B(1)e1 = 0;

for [τ1, τ1]1, I[τ1,τ1]1;t,t+h = �S([τ1, τ1]1; t, t + h)

⇔ 2J111 = J 3
1 β(0)T (B(0)e0)

2 + (
J10

h
)3β(1)T (B(1)e1)

2

⇔ β(0)T (B(0)e0)
2 = 1

3
, β(1)T (B(1)e1)

2 = 0;
for [[τ1]1]1, I[[τ1]1]1;t,t+h = �S([[τ1]1]1; t, t + h)

⇔ J111 = J 3
1 β(0)T (B(0)(B(0)e0)) + (

J10

h
)3β(1)T (B(1)(B(1)e1))

⇔ β(0)T (B(0)(B(0)e0)) = 1

6
, β(1)T (B(1)(B(1)e1)) = 0.

Next, for arbitrary t with ρ(t) = 2.0, we prove that the following order
condition

E(It;t,t+h) = E(�S(t; t, t + h))
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holds. In fact, by (8)-(12), (14) and (15) as well as Table 1, we obtain that

for [τ1, τ1]0, E[I[τ1,τ1]0;t,t+h] = E[�S([τ1, τ1]0; t, t + h)]
⇔ E[2J110] = E[hJ 2

1 α(0)T (B(0)e0)
2 + h(

J10

h
)2α(1)T (B(1)e1)

2]

⇔ α(0)T (B(0)e0)
2 + 1

3
α(1)T (B(1)e1)

2 = 1

2
;

for [[τ1]1]0, E[I[[τ1]1]0;t,t+h] = E[�S([[τ1]1]0; t, t + h)]
⇔ E[J110] = E[hJ 2

1 α(0)T (B(0)(B(0)e0)) + h(
J10

h
)2α(1)T (B(1)(B(1)e1))]

⇔ α(0)T (B(0)(B(0)e0)) + 1

3
α(1)T (B(1)(B(1)e1)) = 1

4
;

for [[τ1]0]1, E[I[[τ1]0]1;t,t+h] = E[�S([[τ1]0]1; t, t + h)]
⇔ E[J101] = E[hJ 2

1 β(0)T (A(0)(B(0)e0)) + h(
J10

h
)2β(1)T (A(1)(B(1)e1))]

⇔ β(0)T (A(0)(B(0)e0)) + 1

3
β(1)T (A(1)(B(1)e1)) = 0;

for [τ0, τ1]1, E[I[τ0,τ1]1;t,t+h] = E[�S([τ0, τ1]1; t, t + h)]
⇔ E[J101 + J011] = E[hJ 2

1 β(0)T ((A(0)e0)(B
(0)e0))

+ h(
J10

h
)2β(1)T ((A(1)e1)(B

(1)e1))]

⇔ β(0)T ((A(0)e0)(B
(0)e0)) + 1

3
β(1)T ((A(1)e1)(B

(1)e1)) = 1

4
;

for [[τ0]1]1, E[I[[τ0]1]1;t,t+h] = E[�S([[τ0]1]1; t, t + h)]
⇔ E[J011] = E[hJ 2

1 β(0)T (B(0)(A(0)e0))) + h(
J10

h
)2β(1)T (B(1)(A(1)e1))]

⇔ β(0)T (B(0)(A(0)e0)) + 1

3
β(1)T (B(1)(A(1)e1)) = 1

4
;

Table 1 Some expectation values of multiple Stratonovich stochastic integrals

expectation values expectation values expectation values

J1 0 J 4
1 3h2 J 3

101
1
30h6

J10 0 J 4
10

1
3h6 J001 0

J 2
1 h J 5

1 0 J010 0

J 2
10

1
3h3 J 4

1 J10 0 J100 0

J 3
1 0 J110

1
4h2 J0111 0

J 3
10 0 J101 0 J1011 0

J 2
1 J10 0 J011

1
4h2 J1101 0

J1J
2
10 0 J 2

101
1
12h4 J1110 0
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for [τ1, τ1, τ1]1, E[I[τ1,τ1,τ1]1;t,t+h] = E[�S([τ1, τ1, τ1]1; t, t + h)]
⇔ E[6J1111] = E[J 4

1 β(0)T (B(0)e0)
3 + (

J10

h
)4β(1)T (B(1)e1)

3]

⇔ 3β(0)T (B(0)e0)
3 + 1

3
β(1)T (B(1)e1)

3 = 3

4
;

for [[τ1]1, τ1]1, E[I[[τ1]1,τ1]1;t,t+h] = E[�S([[τ1]1, τ1]1; t, t + h)]
⇔ E[3J1111] = E[J 4

1 β(0)T ((B(0)(B(0)e0))(B
(0)e0))

+ (
J10

h
)4β(1)T ((B(1)(B(1)e1))(B

(1)e1))]
⇔ 3β(0)T ((B(0)(B(0)e0))(B

(0)e0))

+ 1

3
β(1)T ((B(1)(B(1)e1))(B

(1)e1)) = 3

8
;

for [[τ1, τ1]1]1, E[I[[τ1,τ1]1]1;t,t+h] = E[�S([[τ1, τ1]1]1; t, t + h)]
⇔ E[2J1111] = E[J 4

1 β(0)T (B(0)(B(0)e0)
2) + (

J10

h
)4β(1)T (B(1)(B(1)e1)

2)]

⇔ 3β(0)T (B(0)(B(0)e0)
2) + 1

3
β(1)T (B(1)(B(1)e1)

2) = 1

4
;

for [[[τ1]1]1]1, E[I[[[τ1]1]1]1;t,t+h] = E[�S([[[τ1]1]1]1; t, t + h)]
⇔ E[J1111] = E[J 4

1 β(0)T (B(0)(B(0)(B(0)e0)))

+ (
J10

h
)4β(1)T (B(1)(B(1)(B(1)e1)))]

⇔ 3β(0)T (B(0)(B(0)(B(0)e0))) + 1

3
β(1)T (B(1)(B(1)(B(1)e1))) = 1

8
.

The proof is complete.

Remark 3.3 Compared to the SRK methods with strong order 1.5 in [3], the number
of the equations in Theorem 3.2 has been reduced by 5.

The SRK method (13) can be characterized by the extended Butcher tableau

α(0)T β(0)T

A(0) B(0)

A(1) B(1)

α(1)T β(1)T

By Theorem 3.2, a specific explicit method with strong order 1.5 is proposed, and
it is denoted by SRKS1.5, i.e.

1 -1 1 0 1
6

1
3

1
3

1
6

0 0
1
2 0 1

2 0
1 0 0 0 1

2 0
3 0 0 0 0 0 1 0
0 0
0 0 3

2 0
1 0 0 3

2 0 0
− 2

3
2
3 0 0 1 -1
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4 SRK methods with strong order 2.0 for the SDE (1)

The multiple Stratonovich stochastic integrals of order 2.0 contain
J1111,J110, J101,J011. As a result, compared to the SRK methods with strong order
1.5, the new random variable must be added when we construct the SRK methods
with strong order 2.0. By (15), we obtain

J1111 = 1

24
J1, J110 = 1

2
J1J10 − 1

2
J101, J011 = 1

2
hJ 2

1 − 1

2
J1J10 − 1

2
J101.

Thus, it suffices to add J101. Now three groups of independent internal stages are used
for reducing the number of the equations in order conditions, and the SRK method

yn+1 = yn + h

s0∑
i0=1

α
(0)
i0

f (H
(0)
i0

) + J1

s0∑
i0=1

β
(0)
i0

g(H
(0)
i0

)

+h

s1∑
i1=1

α
(1)
i1

f (H
(1)
i1

) + J1

s1∑
i1=1

β
(1)
i1

g(H
(2)
i1

) + J10

h

s1∑
i1=1

β
(2)
i1

g(H
(2)
i1

)

+h

s2∑
i2=1

α
(2)
i2

f (H
(3)
i2

) + J101

h3/2

s2∑
i2=1

β
(3)
i2

g(H
(4)
i2

),

H
(0)
i0

= yn + h

s0∑
j=1

a
(0)
i0j

f (H
(0)
j ) + J1

s0∑
j=1

b
(0)
i0j

g(H
(0)
j ), i0 = 1, 2, . . . , s0,(16)

H
(1)
i1

= yn + J1

s1∑
j=1

b
(1)
i1j

g(H
(2)
j ) + J10

h

s1∑
j=1

c
(0)
i1j

g(H
(2)
j ),

H
(2)
i1

= yn + h

s1∑
j=1

a
(1)
i1j

f (H
(1)
j ) + J1

s1∑
j=1

b
(2)
i1j

g(H
(2)
j ), i1 = 1, 2, . . . , s1,

H
(3)
i2

= yn + √
h

s2∑
j=1

b
(3)
i2j

g(H
(4)
j ) + J101

h3/2

s2∑
j=1

c
(1)
i2j

g(H
(4)
j ),

H
(4)
i2

= yn + h

s2∑
j=1

a
(4)
i2j

f (H
(3)
j ) + √

h

s2∑
j=1

b
(4)
i2j

g(H
(4)
j ), i2 = 1, 2, . . . , s2,

is proposed, where n = 0, 1, . . . , N − 1, y0 = y(t0).

Remark 4.1 In (16), s0, s1 and s2 can be different numbers because the group H
(0)
i0

,

the group H
(1)
i1

, H
(2)
i1

and the group H
(3)
i2

, H
(4)
i2

are independent.
The SRK method (16) is a special case of the method (4) withM = {0, 1, 2, 3, 4}

and
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z
(0)(0)
i0

= hα
(0)
i0

, z
(1)(0)
i0

= J1β
(0)
i0

,

z
(0)(1)
i1

= hα
(1)
i1

, z
(0)(2)
i1

= 0,

z
(1)(1)
i1

= 0, z
(1)(2)
i1

= J1β
(1)
i1

+ J10
h

β
(2)
i1

,

z
(0)(3)
i2

= hα
(2)
i2

, z
(0)(4)
i2

= 0,

z
(1)(3)
i2

= 0, z
(1)(4)
i2

= J101
h3/2

β
(3)
i2

,

Z
(0)(0)(0)
i0j

= ha
(0)
i0j

, Z
(0)(0)(k)
i0j

= 0, k = 1, 2, 3, 4,

Z
(0)(1)(0)
i0j

= J1b
(0)
i0j

, Z
(0)(1)(k)
i0j

= 0, k = 1, 2, 3, 4,

Z
(1)(0)(k)
i1j

= 0, k = 0, 1, 2, 3, 4,

Z
(1)(1)(2)
i1j

= J1b
(1)
i1j

+ J10
h

c
(0)
i1j

, Z
(1)(1)(k)
i1j

= 0, k = 0, 1, 3, 4,

Z
(2)(0)(1)
i1j

= ha
(1)
i1j

, Z
(2)(0)(k)
i1j

= 0, k = 0, 2, 3, 4,

Z
(2)(1)(2)
i1j

= J1b
(2)
i1j

, Z
(2)(1)(k)
i1j

= 0, k = 0, 1, 3, 4,

Z
(3)(0)(k)
i2j

= 0, k = 0, 1, 2, 3, 4,

Z
(3)(1)(4)
i2j

= √
hb

(3)
i2j

+ J101
h3/2

c
(1)
i2j

, Z
(3)(1)(k)
i2j

= 0, k = 0, 1, 2, 3,

Z
(4)(0)(3)
i2j

= ha
(2)
i2j

, Z
(4)(0)(k)
i2j

= 0, k = 0, 1, 2, 4,

Z
(4)(1)(4)
i2j

= √
hb

(4)
i2j

, Z
(4)(1)(k)
i2j

= 0, k = 0, 1, 2, 3.

(17)

We can obtain the following results by applying Theorem 2.1.

Theorem 4.2 Let f, g ∈ C5(Rd ,Rd). Then the SRK method (16) converges strongly
to the solution of the SDE (1) with strong order 2.0 if the coefficients of the SRK
method (16) satisfy the system of the following equtions

1. α(0)T e0 + α(1)T e1 + α(2)T e2 = 1, 2. β(0)T e0 + β(1)T e1 = 1,
3. β(2)T e1 = 0, 4. β(3)T e2 = 0,
5. α(0)T A(0)e0 = 1

2 , 6. α(0)T B(0)e0 + α(1)T B(1)e1 = 0,

7. α(1)T C(0)e1 = 1, 8. α(2)T B(3)e2 = 0,
9. α(2)T C(1)e2 = 0, 10. β(0)T A(0)e0 + β(1)T A(1)e1 = 1,
11. β(2)T A(1)e1 = −1, 12. β(3)T A(2)e2 = 0,
13. β(0)T B(0)e0 + β(1)T B(2)e1 = 1

2 , 14. β(2)T B(2)e1 = 0,

15. β(3)T B(4)e2 = 0,
16. β(0)T (B(0)e0)

2 + β(1)T (B(2)e1)
2 = 1

3 ,

17. β(2)T (B(2)e1)
2 = 0, 18. β(3)T (B(4)e2)

2 = 0,
19. β(0)T (B(0)(B(0)e0)) + β(1)T (B(2)(B(2)e1)) = 1

6 ,

20. β(2)T (B(2)(B(2)e1)) = 0,
21. β(3)T (B(4)(B(4)e2)) = 0,
22. α(0)T (B(0)e0)

2 + α(1)T (B(1)e1)
2 = 0,

23. α(1)T ((B(1)e1)(C
(0)e1)) = 1

2 , 24. α(1)T (C(0)e1)
2 = 0,

25. α(2)T (B(3)e2)
2 = 0,
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26. α(2)T ((B(3)e2)(C
(1)e2)) = − 1

2 ,

27. α(2)T (C(1)e2)
2 = 0,

28. α(0)T (B(0)(B(0)e0)) + α(1)T (B(1)(B(2)e1)) = 0,

29. α(1)T (C(0)(B(2)e1)) = 1
2 ,

30. α(2)T (B(3)(B(4)e2)) = 0,

31. α(2)T (C(1)(B(4)e2)) = − 1
2 ,

32. β(0)T (A(0)(B(0)e0)) + β(1)T (A(1)(B(1)e1)) = 0,

33. β(1)T (A(1)(C(0)e1)) + β(2)T (A(1)(B(1)e1)) = 0,

34. β(2)T (A(1)(C(0)e1)) = 0,

35. β(3)T (A(2)(B(3)e2)) = 1,

36. β(3)T (A(2)(C(1)e2)) = 0,

37. β(0)T ((A(0)e0)(B
(0)e0)) + β(1)T ((A(1)e1)(B

(2)e1)) = 1
2 ,

38. β(2)T ((A(1)e1)(B
(2)e1)) = − 1

2 ,

39. β(3)T ((A(2)e2)(B
(4)e2)) = 1

2 ,

40. β(0)T (B(0)(A(0)e0)) + β(1)T (B(2)(A(1)e1)) = 1
2 ,

41. β(2)T (B(2)(A(1)e1)) = − 1
2 ,

42. β(3)T (B(4)(A(2)e2)) = − 1
2 ,

43. β(0)T (B(0)e0)
3 + β(1)T (B(2)e1)

3 = 1
4 ,

44. β(2)T (B(2)e1)
3 = 0,

45. β(3)T (B(4)e2)
3 = 0,

46. β(0)T ((B(0)(B(0)e0))(B
(0)e0)) + β(1)T ((B(2)(B(2)e1))(B

(2)e1)) = 1
8 ,

47. β(2)T ((B(2)(B(2)e1))(B
(2)e1)) = 0,

48. β(3)T ((B(4)(B(4)e2))(B
(4)e2)) = 0,

49. β(0)T (B(0)(B(0)e0)
2) + β(1)T (B(2)(B(2)e1)

2) = 1
12 ,

50. β(2)T (B(2)(B(2)e1)
2) = 0,

51. β(3)T (B(4)(B(4)e2)
2) = 0,

52. β(0)T (B(0)(B(0)(B(0)e0))) + β(1)T (B(2)(B(2)(B(2)e1))) = 1
24 ,

53. β(2)T (B(2)(B(2)(B(2)e1))) = 0,

54. β(3)T (B(4)(B(4)(B(4)e2))) = 0,

55. α(2)T (B(3)(A(2)e2)) = 0,

56. α(2)T (B(3)e2)
3 + 1

4α
(2)T ((B(3)e2)((C

(1)e2)
2)) + 1

30α
(2)T (C(1)e2)

3 = 0,

57. α(2)T ((B(3)(B(4)e2))(B
(3)e2)) + 1

12α
(2)T ((C(1)(B(4)e2))(C

(1)e2)) = 0,

58. α(2)T (B(3)(B(4)e2)
2) = 0,

59. α(2)T (B(3)(B(4)(B(4)e2))) = 0,

60. β(3)T ((A(2)(C(1)e2))(B
(4)e2)) = 0,

61. 1
6β

(3)T (A(2)((B(3)e2)(C
(1)e2))) + 1

30β
(3)T (A(2)(C(1)e2)

2) = 0,

62 β(3)T (A(2)(C(1)(B(4)e2))) = 0,

63 β(3)T (B(4)(A(2)(C(1)e2))) = 0.
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The proof of Theorem 4.2 is analogous to the proof of Theorem 3.2, and the
details can be found in Appendix A.

The SRK method (16) can be characterized by the extended Butcher tableau
A(0) B(0)

B(1) C(0)

A(1) B(2)

B(3) C(1)

A(2) B(4)

α(0)T β(0)T

α(1)T β(1)T β(2)T

α(2)T β(3)T

By Theorem 4.2, a specific explicit SRK method with strong order 2.0 is proposed
and it is denoted by SRKS2.0, which has coefficients

α(0)T = [1
6
,
1

3
,
1

3
,
1

6
], β(0)T = [1

6
,
1

3
,
1

3
,
1

6
],

A(0) =

⎡
⎢⎢⎣
0
1
2 0
0 1

2 0
0 0 1 0

⎤
⎥⎥⎦ , B(0) =

⎡
⎢⎢⎣
0
1
2 0
0 1

2 0
0 0 1 0

⎤
⎥⎥⎦ ,

α(1)T = [− 1

12
,
1

12
, −1, 1, 0], β(1)T = [−5

6
,
1

3
,
1

6
, −1

3
,
2

3
],

β(2)T = [1, −1, 0, 1, −1],

B(1) =

⎡
⎢⎢⎢⎢⎣

0
−1 0
17
24 0 0
15
24 − 1

3 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , C(0) =

⎡
⎢⎢⎢⎢⎣

0
0 0
− 1

2 0 0
− 1

2 1 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

A(1) =

⎡
⎢⎢⎢⎢⎣

0
0 0
0 1 0
−1 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , B(2) =

⎡
⎢⎢⎢⎢⎣

0
1
2 0
0 0 0
1
2 0 0 0
− 1

2 0 1
2 0 0

⎤
⎥⎥⎥⎥⎦ ,

α(2)T = [−4
√
13

13
,
4
√
13

13
,
4

3
, −4

3
], β(3)T = [1, −1, −1, 1],

B(3) =

⎡
⎢⎢⎢⎣

0√
13
4 0

3
√
13−10
24

1
24 0

3
√
13+8
24

1
24 0 0

⎤
⎥⎥⎥⎦ , C(1) =

⎡
⎢⎢⎣
0
0 0
− 1

4
3
4 0

1
2 0 0 0

⎤
⎥⎥⎦ ,
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A(2) =

⎡
⎢⎢⎣
0
0 0
−1 0 0
−1 − 4√

13
4√
13

0 0

⎤
⎥⎥⎦ , B(4) =

⎡
⎢⎢⎣
0
− 1

2 0
0 0 0
−1 0 1

2 0

⎤
⎥⎥⎦ .

5 Approximation of multiple Stratonovich stochastic integrals

Three Stratonovich stochastic integral variables J1, J10 and J101 are used in the
SRK methods (13) and (16). We know that J1 can be simulated by a N(0, h) dis-
tributed random variable and J10 can be simulated by J10 = 1

2h(J1 + 1√
3
ξ), where

ξ is a N(0, h) distributed random variable and is independent of J1. However, mul-
tiple stochastic integrals J101 can not be simulated exactly. Therefore, in practical
computation, we need to approximate J101.

Lemma 5.1 ([14]) Suppose that the one-step approximation

X̄t,x(t + h) = x + A(t, x, h; w(θ) − w(t), t ≤ θ ≤ t + h) (18)
generates a method with accuracy order p, and the function A in (18) contains the
term of the form Q(t, x) · ξ(w(θ) − w(t), t ≤ θ ≤ t + h), where ‖Q(t, x)‖ ≤
K(1 + ‖x‖2) 1

2 (0 < K is a constant ), and ξ is a random variable depending on the
Wiener processes on the interval [t, t +h]. Let ξ = η + ζ , where η and ζ are random
variables depending on the same Wiener processes on the same interval, and

|Eζ | ≤ Khp+1, (Eζ 2)1/2 ≤ Khp+ 1
2 . (19)

Then the method based on the one-step approximation (18) and with Q · ξ replaced
by Q · η has accuracy order p.

To the authors’ knowledge, there are mainly two ways to approximate multi-
ple Stratonovich stochastic integrals. One way is to use random Fourier series for
Browian bridge processes based on the given Wiener processes [11]. Another way
is to transform the integrals into a simple SDE, then the SDE is approximated by a
simpler numerical method [14, 15]. In this paper, the second way is used.

Since

J101 =
∫ tn+h

tn

∫ s

tn

∫ s1

tn

◦dWs2ds1 ◦ dWs, (20)

where W(s) is a standard Wiener process. From the definition of the standard Wiener
process, without loss of generality, we only need to consider the case with tn = 0.
Since ∫ h

0

∫ s

0

∫ s1

0
◦dWs2ds1 ◦ dWs = W(h)

∫ h

0
W(s)ds −

∫ h

0
W 2(s)ds, (21)

we only need to consider the following three random variables

W(h),

∫ h

0
W(s)ds,

∫ h

0
W 2(s)ds. (22)
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Let

V (s) = W(sh)√
h

, 0 ≤ s ≤ 1. (23)

It is obvious that V (s) is a standard Wiener process, and

W(h) = h
1
2 V (1),

∫ h

0
W(s)ds = h

3
2

∫ 1

0
V (s)ds,

∫ h

0
W 2(s)ds = h2

∫ 1

0
V 2(s)ds.

(24)
It is obvious that three random variables V (1),

∫ 1
0 V (s)ds and

∫ 1
0 V 2(s)ds are the

solution of the system of the equtions

dx = dV (s), x(0) = 0,
dy = xds, y(0) = 0,
dz = x2ds, z(0) = 0

(25)

at the moment s = 1.
Two approximation methods for (25) are given by Milstein [14]: the Euler method

and the Taylor method with strong order 1.5.
Applying the Euler method with a constant stepsize h1 to (25), we have

xk+1 = xk + �Vk,

yk+1 = yk + xkh1, (26)

zk+1 = zk + x2
k h1,

where 0 = s0 < s1 < · · · < sN = 1, sk+1 − sk = h1 = 1
N

, �Vk = V (sk+1) −
V (sk), k = 0, 1, . . . , N − 1, and it is easy to obtain

|E(V (1) − xN)| = 0, E(V (1) − xN)2 = 0,∣∣∣E(
∫ 1
0 V (s)ds − yN)

∣∣∣ = 0, E(
∫ 1
0 V (s)ds − yN)2 = h21

3 ,∣∣∣E(
∫ 1
0 V 2(s)ds − zN)

∣∣∣ = h1
2 , E(

∫ 1
0 V 2(s)ds − zN)2 = 11

12h
2
1 − h31

3 .

(27)

Applying the Taylor method with strong order 1.5 with a constant stepsize h1 to (25),
we have

xk+1 = xk + �Vk,

yk+1 = yk + xkh1 +
∫ sk+1

sk

(V (s) − V (sk))ds, (28)

zk+1 = zk + x2
k h1 + 2xk

∫ sk+1

sk

(V (s) − V (sk))ds + h21

2
,

where ∫ sk+1

sk

(V (s) − V (sk))ds = 1

2
h1(�Vk + 1√

3
ηk). (29)
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Here ηk, k = 0, 1, . . . , N − 1 are some independent N(0, h1) distributed random
variables and are independent of �Vk, k = 0, 1, . . . , N − 1. It is not difficult to
obtain

|E(V (1) − xN)| = 0, E(V (1) − xN)2 = 0,∣∣∣∣∣E(

∫ 1

0
V (s)ds − yN)

∣∣∣∣∣ = 0, E(

∫ 1

0
V (s)ds − yN)2 = 0, (30)

∣∣∣∣∣E(

∫ 1

0
V 2(s)ds − zN)

∣∣∣∣∣ = 0, E(

∫ 1

0
V 2(s)ds − zN)2 = h31

3
.

From (30), we only need to take h1 = O(h
1
3 ) so that (E(

∫ 1
0 V 2(s)ds − zN)2)

1
2 =

O(h
1
2 ). However, we need to take h1 = O(h) so that (E(

∫ 1
0 V (s)ds − yN)2)

1
2 =

O(h) for (27). This shows that the method (28) is more efficient than the method
(26).

Theorem 5.2 For the method SRKS2.0 with strong order 2.0, if the random variables

J1, J10, J101 are replaced by h
1
2 xN, h

3
2 yN and h

1
2 xNh

3
2 yN − h2zN respectively,

where xN, yN, zN can be found recurrently from (28) with the stepsize h1 = O(h
1
3 ),

then the strong order of accuracy of the method SRKS2.0 remains 2.0.

6 Two specific types of the SDE (1)

For some specific types of the SDE (1), the SRK methods with high strong order can
be constructed even if we use only one random variable J1. Thus we do not need to
simulate the multiple Stratonovich stochastic integrals J10, J101, and the efficiency
of the SRK methods can be greatly improved.

6.1 SDE (1) with f (y(t)) ≡ 0

Since f (y(t)) ≡ 0, the SDE (1) can be written as

dy(t) = g(y(t)) ◦ dW(t), y(t0) = yt0 , 0 ≤ t0, t ∈ [t0, T ], yt0 ∈ R
d . (31)

In this case, we need only to consider the stochastic trees with all nodes being
stochastic node (◦) (such as τ1, [τ1]1, [τ1, τ1]1, [[τ1]1]1). Thus we consider the SRK
method

yn+1 = yn + J1

s∑
i=1

βig(Hi),

Hi = yn + J1

s∑
j=1

bij g(Hj ), i = 1, 2, . . . , s, (32)

where n = 0, 1, · · · , N − 1, y0 = y(t0). It is not difficult to obtain the following
result.
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Theorem 6.1 Let g ∈ C5(Rd ,Rd). Suppose that for the ODE corresponding to the
SDE (31)

dy(t) = g(y(t))dt, y(t0) = yt0 , (33)

the deterministic RK method corresponding to the SRK method (32)

yn+1 = yn + h

s∑
i=1

βig(Hi),

Hi = yn + h

s∑
j=1

bij g(Hj ), i = 1, 2, . . . , s (34)

is of order p, then the strong order of the SRK method (32) for the SDE (31) is no
less than p′∗, here {

p′ = p
2 , p is even,

p′ = p−1
2 , p is odd.

Proof Let M = {0}, and
z
(0)(0)
i = 0, z

(1)(0)
i = J1βi,

Z
(0)(0)(0)
ij = 0, Z

(0)(1)(0)
ij = J(1)bij .

Then the SRK method (32) is a special case of the method (4), and we can apply
Theorem 2.1. Since

J1···1 = 1

k!J
k
1 (k is the length of themulti-index),

the Stratonovich stochastic integral has the same chain rule as the deterministic case.
Thus it is not difficult to show that the order condition (6) is fulfilled for each stochas-
tic tree t with ρ(t) ≤ p

2 and all nodes being the stochastic node (◦) if the order of the
RK method (34) is p.

For each stochastic tree t with ρ(t) = p+1
2 and all nodes being the stochastic node

(◦), since
E[J 2k+1

1 ] = 0, E[J 2k
1 ] = 2k!

k!2k
hk,

and the corresponding multiple Stratonovich stochastic integral It;tn,tn+h and the cor-

responding elementary weight �S(t; tn, tn +h) both contain the random factor J
p+1
1 .

It is obvious that the order condition (7) is fulfilled when p is even, and the strong
order of the SRK method (32) is p

2 . However, when p is odd, (7) is not fulfilled. Thus

the strong order of the SRK method (32) is not p
2 , and it is no less than p−1

2 .
The proof is complete.

The SRK method (32) can be characterized by the extended Butcher tableau
B

βT

By Theorem 6.1, a specific explicit method with strong order 2.0 for the SDE (31) is
proposed, and it is denoted by SRKST1, i.e.
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0
1
2 0
0 1

2 0
0 0 1 0
1
6

1
3

1
3

1
6

6.2 SDE (1) satisfying the commutativity condition between the drift and
diffusion terms

Consider the SDE (1) satisfying the commutativity condition

d∑
k=1

∂fj

∂yk

(y(t))gk(y(t)) =
d∑

k=1

∂gj

∂yk

(y(t))fk(y(t)), j = 1, 2, . . . , d. (35)

In fact, the SDE (1) satisfying (35) exists, for example, the linear SDE

dy(t) = σ1y(t)dt + σ2y(t) ◦ dW(t), y(t0) = yt0 , 0 ≤ t0, t ∈ [t0, T ], yt0 ∈ R
d ,

and the nonlinear SDE

dy(t) = σ1(1 + y(t)2)dt + σ2(1 + y(t)2) ◦ dW(t), y(t0)

= yt0 , 0 ≤ t0, t ∈ [t0, T ], yt0 ∈ R
d ,

where, σ1, σ2 ∈ R.
We consider the SRK method

yn+1 = yn + h

s∑
i=1

αif (Hi) + J1

s∑
i=1

βig(Hi),

Hi = yn + h

s∑
j=1

ai,j f (Hj ) + J1

s∑
j=1

bi,j g(Hj ), i = 1, 2, . . . , s, (36)

where n = 0, 1, . . . , N − 1, y0 = y(t0).

The SRK method (36) is a special case of the method (4) with M = {0} and

z
(0)(0)
i = hαi, z

(1)(0)
i = J1βi, Z

(0)(0)(0)
ij = haij , Z

(0)(1)(0)
ij = J1bij . (37)

By [19], the strong order of the SRK method (36) for the SDE (1) can not exceed 1.5
when (35) is not true. However, it is not difficult to obtain the following result when
(35) holds.
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Theorem 6.2 Let f, g ∈ C4(Rd ,Rd) and (35) holds. Then the SRK method (36)
converges strongly to solution of the SDE (1) with strong order 1.5 if the coefficients
of the SRK method (36) satisfy the system of the following equtions

1. αT e = 1, 2. βT e = 1,
3. αT Ae = 1

2 , 4. αT Be + βT Ae = 1,
5. βT Be = 1

2 , 6. βT (Be)2 = 1
3 ,

7. βT (B(Be)) = 1
6 , 8. αT (Be)2 = 1

2 ,

9. αT (B(Be)) = 1
4 , 10. βT (A(Be)) = 0,

11. βT ((Ae)(Be)) = 1
4 , 12. βT (B(Ae)) = 1

4 ,

13. βT (Be)3 = 1
4 , 14. βT ((B(Be))(Be)) = 1

8 ,

15. βT (B(Be)2) = 1
12 , 16. βT (B(B(Be))) = 1

24 .

Proof Since (35) holds, it is not difficult to show that the two order conditions in
Theorem 2.1 for the stochastic trees [τ1]0, [τ0]1

I[τ1]0;t,t+h = �S([τ1]0; t, t + h), I[τ0]1;t,t+h = �S([τ0]1; t, t + h), (38)

can be reduced to

I[τ1]0;t,t+h + I[τ0]1;t,t+h = �S([τ1]0; t, t + h) + �S([τ0]1; t, t + h). (39)

More proof details can be found in Appendix B.

Remark 6.3 If (35) holds, then the multiple random integration variable J10 in the
SRK methods (13) and (16) is no longer the key factor to improve the strong order
of the methods. In fact, I[τ1]0;t,t+h = J10;t,t+h, I[τ0]1;t,t+h = J01;t,t+h, J10;t,t+h +
J01;t,t+h = J1;t,t+h, thus the left side of the equality (39) becomes J1;t,t+h, and the
right side of the equality (39) need only to contain J1 and does not need to contain
J10.

The SRK method (36) can be characterized by the extended Butcher tableau

A B

αT βT

By Theorem 6.2, a specific explicit method with strong order 1.5 is proposed and it
is denoted by SRKST2, i.e.

0 0
1 0 1

2 0
2
3 − 1

6 0 0 1
2 0

− 1
3

1
3 0 0 0 0 1 0

2
3 0 0 0 0 0 0 0 0 0
− 1

4 0 0 1
2

3
4

1
6

1
3

1
3

1
6 0
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7 Numerical results

In this section, we compare the SRK methods SRKS1.5, SRKS2.0, SRKST1 and
SRKST2 with the other three explicit methods which has been widely used. The three
SRKmethods are strong order 1.0 SRKmethod PL [3], strong order 1.5 SRKmethod
G5 [3], and strong order 1.5 SRK method SRI1W1 [18]. Here, PL and G5 are two
methods for solving the Stratonovich SDEs, and SRI1W1 is a method for solving the
Itô SDEs.

We apply the SRK methods PL, G5, SRKS1.5, SRKS2.0, SRKST1 and SRKST2
to the Stratonovich SDEs and apply SRI1W1 to the corresponding Itô SDEs.

By (15), we know that the four Itô stochastic integral variables I1, I11, I111, I10
being used in SRI1W1 can be expressed by the two Stratonovich stochastic inte-
gral variables J1, J10. Thus, it suffices to simulate the three Stratonovich stochastic
integrals J1, J10, J101 in practical computation.

We use Err to denote global errors, i.e.

Err = 1

m

m∑
i=1

|yiN − yi(tN )|, (40)

here, yi(tN ) denotes the exact solution of a SDE at the endpoint t = tN in the ith
trajectory, yiN denotes the numerical approximation of yi(tN ), m denotes the number
of the trajectories used in each numerical simulation. In this paper, m = 5000.

By (3), for the SRK method with strong order p, we have

Err ≤ Chp,

and

log2(Err) ≈ log2(C) + p log2(h). (41)

Taking different values of the stepsize h, we can obtain a sequence of discrete points
(log2(h), log2(Err)). By (41), it is not difficult to know that these discrete points
(log2(h), log2(Err)) will approximately obey the linear distribution with slope p.
Then, we can apply the least-square method to obtain the approximation value of p.

In order to investigate computational efficiency, the computational effort of each
method must be considered.

In Table 2, h1 is the stepsize of the method (28). Nf denotes the number of evalu-
ations of the drift coefficient f in per step, Ng denotes the number of evaluations of
the diffusion coefficient g in per step, and Nr denotes the number of necessary ran-
dom variables which have to be simulated in per step. In this paper, we take the sum

Table 2 The computational complexity of each method

Methods PL G5 SRI1W SRKST1 SRKST2 SRKS1.5 SRKS2.0

Nf 1 5 2 0 4 4 12

Ng 2 5 4 4 4 6 13

Nr 1 2 2 1 1 2 2
h1
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of the number of evaluations of the drift and diffusion coefficients as well as the num-
ber of necessary random variables which have to be simulated as the computational
effort. Let Ŝ denotes the computational effort for each trajectory, then

Ŝ = (Nf + Ng + Nr) × N,

where N is the number of steps.

Example 1 Consider the Stratonovich SDE with f (y(t)) ≡ 0

dy(t) = σ1(1 − (y(t))2) ◦ dW(t), y(0) = 0, t ∈ [0, T ]. (42)

The corresponding Itô SDE can be written as

dy(t) = −σ 2
1 y(t)(1 − (y(t))2)dt + σ1(1 − (y(t))2)dW(t). (43)

By [11], the exact solution can be written as

y(t) = (1 + y(0))exp(2σ1W(t)) + y(0) − 1

(1 + y(0))exp(2σ1W(t)) + 1 − y(0)
. (44)

Take h = 2−7, 2−8, . . . , 2−11. Because the stochastic integral J101 need to be used
in the method SRKS2.0. We apply the method (28) to approximate the stochastic

integral J101. By Theorem 5.2, we take h1 = 1
G(h)

, where G(h) =
⌈
h− 1

3

⌉
(��� is

the ceiling function). The results with the corresponding step sizes are presented in
Table 3 and Fig. 1. In Table 3 and the following tables, a(b) = a × 10b.

By Table 3, we know that the order of accuracy of the method SRKST1 reaches
2.0353, and this confirms the theoretical result. From the right-hand side of Fig. 1,
we can show that the method SRKST1 is far more efficient than other methods. The
accuracy of SRKS1.5 and SRKS2.0 is exactly the same as that of SRKST1, and this
is due to the fact that the coefficients β(0)T , B(0) in SRKS1.5 and SRKS2.0 are the
same as the coefficients βT , B in SRKST1.

Example 2 Consider the Stratonovich SDE

dy(t) = −σ1(1 − y(t)2)dt + σ2(1 − y(t)2) ◦ dW(t), y(0) = 0, t ∈ [0, T ]. (45)

Table 3 The global errors for (42) or (43) with σ1 = 2.0, T = 1

h PL G5 SRI1W1 SRKST1 SRKS1.5 SRKS2.0

2−7 0.0492 0.0085 0.0058 0.0014 0.0014 0.0014

2−8 0.0248 0.0023 0.0019 3.3805(-4) 3.3805(-4) 3.3805(-4)

2−9 0.0124 6.4648(-4) 6.9396(-4) 8.6269(-5) 8.6269(-5) 8.6269(-5)

2−10 0.0057 1.8049(-4) 2.2825(-4) 1.9822(-5) 1.9822(-5) 1.9822(-5)

2−11 0.0029 5.8792(-5) 8.2451(-5) 4.9965(-6) 4.9965(-6) 4.9965(-6)

p 1.0290 1.8023 1.5330 2.0353 2.0353 2.0353
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Fig. 1 Stepsize h vs. errors Err (left) and computational effort Ŝ vs. errors Err (right) for SDE (42) or
(43)

It is obvious that (35) holds. The corresponding Itô SDE can be written as

dy(t) = −(σ1 + (σ2)
2y(t))(1 − y(t)2)dt + σ2(1 − y(t)2)dW(t). (46)

By [11], the exact solution can be written as

y(t) = (1 + y(0))exp(−2σ1t + 2σ2W(t)) + y(0) − 1

(1 + y(0))exp(−2σ1t + 2σ2W(t)) + 1 − y(0)
. (47)

Take h = 2−3, 2−4, . . . , 2−11 and take h1 = 1
G(h)

. The results with the corresponding
step sizes are presented in Table 4 and Fig. 2.

Table 4 The global errors for (45) or (46) with σ1 = 2.0, σ2 = 0.5, T = 1

h PL G5 SRI1W1 SRKST2 SRKS1.5 SRKS2.0

2−3 0.0226 0.0190 0.0059 0.0015 0.0067 0.0013

2−4 0.0114 0.0034 0.0015 3.3681(-4) 0.0014 2.6633(-4)

2−5 0.0057 7.8522(-4) 4.6826(-4) 8.7998(-5) 3.2800(-4) 6.0797(-5)

2−6 0.0029 2.9136(-4) 1.5780(-4) 2.1627(-5) 8.2599(-5) 1.4629(-5)

2−7 0.0014 1.4296(-4) 5.0028(-5) 5.1235(-6) 2.1103(-5) 3.5749(-6)

2−8 7.0593(-4) 7.5256(-5) 1.8042(-5) 1.2968(-6) 5.6557(-6) 8.6513(-7)

2−9 3.5585(-4) 3.9194(-5) 6.1007(-6) 3.2021(-7) 1.6142(-6) 2.1273(-7)

2−10 1.7978(-4) 1.9790(-5) 2.1465(-6) 8.1065(-8) 5.0539(-7) 5.3278(-8)

2−11 8.8998(-5) 1.0198(-5) 7.4956(-7) 2.0659(-8) 1.6593(-7) 1.3574(-8)

p 0.9993 1.2722 1.5961 2.0153 1.9119 2.0575
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Fig. 2 Stepsize h vs. errors Err (left) and computational effort Ŝ vs. errors Err (right) for SDE (45) or
(46)

For the Example 2, the order of accuracy of the method SRKST2 reaches 2.0153,
which is higher than the theoretical order of the method SRKST2. However, the order
of accuracy of the method G5 is lower than 1.5. In fact, Burrage and Burrage [3] take
E[J110] = E[J011] = 0 when the method G5 is constructed. But by (15), we have
J110 = I110 + 1

2I00, J011 = I011 + 1
2I00, then E[J110] = E[ 12I00] = E[J011] = 1

4 .
This means that the exact order of the method G5 is lower than 1.5. From the right-
hand side of Fig. 2, we can show that the method SRKST2 is far more efficient than
other methods.

Example 3 Consider two Stratonovich SDEs

dy(t) = (σ1y(t) − (y(t))2)dt + σ2y(t) ◦ dW(t), y(0) = 2, t ∈ [0, T ], (48)

dy(t) = σ1cos2(y(t))tan(y(t))dt + √
2cos2(y(t)) ◦ dW(t), y(0) = 2, t ∈ [0, T ].

(49)
The corresponding It ô SDEs can be written as

dy(t) = ((σ1 + 1

2
(σ2)

2)y(t) − (y(t))2)dt + σ2y(t)dW(t), (50)

dy(t) = ((
σ1

2
− 1

2
)sin(2y(t)) − 1

4
sin(4y(t)))dt + √

2cos2(y(t))dW(t), (51)

respectively. By [11], the exact solutions can be written as
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Table 5 The global errors for (48) or (50) with σ1 = −3.0, σ2 = 1, T = 1

h PL G5 SRI1W1 SRKS1.5 SRKS2.0

2−3 0.0499 0.0333 0.0137 0.0055 0.0027

2−4 0.0257 0.0111 0.0038 0.0014 5.5453(-4)

2−5 0.0132 0.0038 0.0012 3.3874(-4) 1.2791(-4)

2−6 0.0067 0.0022 4.0053(-4) 8.6304(-5) 3.1132(-5)

2−7 0.0033 0.0011 1.2368(-4) 2.0257(-5) 6.9325(-6)

2−8 0.0017 5.8253(-4) 4.1943(-5) 5.3794(-6) 1.7157(-6)

2−9 8.1537(-4) 2.9221(-4) 1.5691(-5) 1.2781(-6) 4.2454(-7)

2−10 4.1203(-4) 1.5136(-4) 5.4569(-6) 3.5489(-7) 1.0237(-7)

2−11 2.0218(-4) 7.3722(-5) 1.6944(-6) 9.2745(-8) 2.4610(-8)

p 0.9948 1.0531 1.6004 1.9894 2.0806

y(t) = y(0)exp(σ1t + σ2W(t))

1 + y(0)
∫ t

0 exp(σ1s + σ2W(s))ds
, (52)

y(t) = arctan(eσ1t tan(y(0)) + √
2eσ1t

∫ t

0
e−σ1sdW(s)), (53)

respectively.

Because the exact solutions (52) and (53) contain the stochastic integrals, the
numerical solutions of SRI1W1 with h = 2−18 are used as the ’exact solutions’. And
then we take h = 2−3, 2−4, . . . , 2−11 and take h1 = 1

G(h)
. By comparing the numer-

ical solutions of each SRK method with the ’exact solutions’, we obtain the results
with the corresponding step sizes. And they are presented in Tables 5, 6 and Figs. 3, 4.

Table 6 The global errors for (49) or (51) with σ1 = −3.0, T = 1

h PL G5 SRI1W1 SRKS1.5 SRKS2.0

2−3 0.0558 0.0563 0.0686 0.0405 0.0202

2−4 0.0291 0.0190 0.0230 0.0109 0.0051

2−5 0.0155 0.0083 0.0085 0.0029 0.0012

2−6 0.0074 0.0037 0.0027 7.8181(-4) 3.2160(-4)

2−7 0.0040 0.0019 0.0011 2.3100(-4) 8.3539(-5)

2−8 0.0019 9.5050(-4) 3.5872(-4) 6.2501(-5) 2.0668(-5)

2−9 9.7960(-4) 4.6569(-4) 1.3228(-4) 2.0916(-5) 5.3080(-6)

2−10 4.7689(-4) 2.3801(-4) 4.5845(-5) 7.0530(-6) 1.3199(-6)

2−11 2.5017(-4) 1.1584(-4) 1.6422(-5) 2.3854(-6) 3.2880(-7)

p 0.9821 1.0821 1.4992 1.7644 1.9829
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Fig. 3 Stepsize h vs. errors Err (left) and computational effort Ŝ vs. errors Err (right) for SDE (48) or
(50)

In Tables 5 and 6, the order of accuracy of the method SRKS1.5 reaches 1.9894
and 1.7644 respectively, which are better than the theoretical result. And the order of
accuracy of the method SRKS2.0 reaches 2.0806 and 1.9829 respectively, which are
consistent with the theoretical result. From the right-hand sides of Figs. 3 and 4, we
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(51)
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can show that the method SRKS1.5 is more efficient than other methods for almost all
step sizes. Although the order of accuracy of the method SRKS2.0 is higher than the
method SRKS1.5, the method SRKS1.5 performs better than the method SRKS2.0.
This is due to that the method SRKS2.0 needs to approximate the stochastic integral
J101. By Theorem 5.2, the computational effort to approximate the stochastic inte-

gral J101 is O(h
1
3 ) per step. Therefore, the effective order of the method SRKS2.0

is only 1.5 as h → 0 after considering the overall computational work. Clearly,
if a more efficient approximation method for the stochastic integral J101 would be
available, then the effective order of the method SRKS2.0 may be improved up
to 2.0.

8 Conclusions

In this paper, new high strong order SRK methods with several groups of indepen-
dent internal stages for the Stratonovich SDEs with scalar noise are constructed.
The advantage of independent internal stages is that they can reduced the complex-
ity of order conditions of high strong order SRK methods. For two specific types
of the Stratonovich SDEs, two explicit high strong order SRK methods SRKST1
and SRKST2 are constructed. These methods do not need to simulate the multiple
Stratonovich stochastic integrals. From the right-hand sides of Figs. 1 and 2, it is not
difficult to show that performance of the method SRKST1 is much better than other
methods for the SDE (1) with f (y(t)) ≡ 0 and performance of the method SRKST2
is much better than other methods for the SDE (1) with (35). From the right-hand
sides of Figs. 3 and 4, it is easy to show that the method SRKS1.5 performs best for
the general SDE (1). Finally, it is worth mentioning that advantage of the method
SRKS2.0 may be reflected more obviously if a more efficient approximation method
for the multiple Stratonovich stochastic integrals would be available.
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Appendix A: Proof of Theorem 4.2

Proof First, we prove that for arbitrary t with ρ(t) ≤ 2.0,

It;t,t+h = �S(t; t, t + h) P − a.s.
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holds. In fact, by (8)-(12), (15) and (17), we obtain that

for τ0, Iτ0;t,t+h = �S(τ0; t, t + h) ⇔ h = hα(0)T e0 + hα(1)T e1 + hα(2)T e2

⇔ α(0)T e0 + α(1)T e1 + α(2)T e2 = 1;

for τ1, Iτ1;t,t+h = �S(τ1; t, t + h)

⇔ J1 = J1(β
(0)T e0 + β(1)T e1) + J10

h
β(2)T e1 + J101

h3/2
β(3)T e2

⇔ β(0)T e0 + β(1)T e1 = 1, β(2)T e1 = 0, β(3)T e2 = 0;

for [τ0]0, I[τ0]0;t,t+h = �S([τ0]0; t, t + h) ⇔ 1

2
h2 = h2α(0)T A(0)e0

⇔ α(0)T A(0)e0 = 1

2
;

for [τ1]0, I[τ1]0;t,t+h = �S([τ1]0; t, t + h)

⇔ J10 = hJ1(α
(0)T B(0)e0 + α(1)T B(1)e1) + h

J10

h
α(1)T C(0)e1 + h

√
hα(2)T B(3)e2

+ h
J101

h3/2
α(2)T C(1)e2

⇔ α(0)T B(0)e0 + α(1)T B(1)e1 = 0, α(1)T C(0)e1 = 1, α(2)T B(3)e2 = 0,

α(2)T C(1)e2 = 0;

for [τ0]1, I[τ0]1;t,t+h = �S([τ0]1; t, t + h)

⇔ J01 = hJ1(β
(0)T A(0)e0 + β(1)T A(1)e1) + h

J10

h
β(2)T A(1)e1 + h

J101

h3/2
β(3)TA(2)e2

⇔ β(0)T A(0)e0 + β(1)T A(1)e1 = 1, β(2)T A(1)e1 = −1, β(3)T A(2)e2 = 0;

for [τ1]1, I[τ1]1;t,t+h = �S([τ1]1; t, t + h)

⇔ J11=J 2
1 (β(0)TB(0)e0 +β(1)TB(2)e1) + J1

J10

h
β(2)T B(2)e1 +√

h
J101

h3/2
β(3)TB(4)e2

⇔ β(0)T B(0)e0 + β(1)T B(2)e1 = 1

2
, β(2)T B(2)e1 = 0, β(3)T B(4)e2 = 0;

for [τ1, τ1]1, I[τ1,τ1]1;t,t+h = �S([τ1, τ1]1; t, t + h)

⇔ 2J111 = J 3
1 (β(0)T (B(0)e0)

2 + β(1)T (B(2)e1)
2) + J 2

1
J10

h
β(2)T (B(2)e1)

2

+ (
√

h)2
J101

h3/2
β(3)T (B(4)e2)

2

⇔ β(0)T (B(0)e0)
2 + β(1)T (B(2)e1)

2 = 1

3
, β(2)T (B(2)e1)

2 = 0,

β(3)T (B(4)e2)
2 = 0;



Numer Algor (2016) 72:259–296 287

for [[τ1]1]1, I[[τ1]1]1;t,t+h = �S([[τ1]1]1; t, t + h)

⇔ J111 = J 3
1 (β(0)T (B(0)(B(0)e0)) + β(1)T (B(2)(B(2)e1)))

+ J 2
1

J10

h
β(2)T (B(2)(B(2)e1)) + (

√
h)2

J101

h3/2
β(3)T (B(4)(B(4)e2))

⇔ β(0)T (B(0)(B(0)e0)) + β(1)T (B(2)(B(2)e1)) = 1

6
,

β(2)T (B(2)(B(2)e1)) = 0, β(3)T (B(4)(B(4)e2)) = 0;
for [τ1, τ1]0, I[τ1,τ1]0;t,t+h = �S([τ1, τ1]0; t, t + h)

⇔ 2J110 = hJ 2
1 (α(0)T (B(0)e0)

2 + α(1)T (B(1)e1)
2)

+ 2hJ1
J10

h
α(1)T ((B(1)e1)(C

(0)e1)) + h(
J10

h
)2α(1)T (C(0)e1)

2

+ h(
√

h)2α(2)T (B(3)e2)
2 + 2h

√
h

J101

h3/2
α(2)T ((B(3)e2)(C

(1)e2))

+ h(
J101

h3/2
)2α(2)T (C(1)e2)

2

⇔ α(0)T (B(0)e0)
2 + α(1)T (B(1)e1)

2 = 0,

α(1)T ((B(1)e1)(C
(0)e1)) = 1

2
, α(1)T (C(0)e1)

2 = 0,

α(2)T (B(3)e2)
2 = 0, α(2)T ((B(3)e2)(C

(1)e2)) = −1

2
,

α(2)T (C(1)e2)
2 = 0;

for [[τ1]1]0, I[[τ1]1]0;t,t+h = �S([[τ1]1]0; t, t + h)

⇔ J110 = hJ 2
1 (α(0)T (B(0)(B(0)e0)) + α(1)T (B(1)(B(2)e1)))

+ hJ1
J10

h
α(1)T (C(0)(B(2)e1)) + h(

√
h)2α(2)T (B(3)(B(4)e2))

+ h
√

h
J101

h3/2
α(2)T (C(1)(B(4)e2))

⇔ α(0)T (B(0)(B(0)e0)) + α(1)T (B(1)(B(2)e1)) = 0,

α(1)T (C(0)(B(2)e1)) = 1

2
, α(2)T (B(3)(B(4)e2)) = 0,

α(2)T (C(1)(B(4)e2)) = −1

2
;

for [[τ1]0]1, I[[τ1]0]1;t,t+h = �S([[τ1]0]1; t, t + h)

⇔ J101 = hJ 2
1 (β(0)T (A(0)(B(0)e0)) + β(1)T (A(1)(B(1)e1)))

+ hJ1
J10

h
(β(1)T (A(1)(C(0)e1)) + β(2)T (A(1)(B(1)e1)))

+ h(
J10

h
)2β(2)T (A(1)(C(0)e1)) + h

√
h

J101

h3/2
β(3)T (A(2)(B(3)e2))

+ h(
J101

h3/2
)2β(3)T (A(2)(C(1)e2))

⇔ β(0)T (A(0)(B(0)e0)) + β(1)T (A(1)(B(1)e1)) = 0,

β(1)T (A(1)(C(0)e1)) + β(2)T (A(1)(B(1)e1)) = 0,

β(2)T (A(1)(C(0)e1)) = 0, β(3)T (A(2)(B(3)e2)) = 1,

β(3)T (A(2)(C(1)e2)) = 0;
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for [τ1, τ0]1, I[τ1,τ0]1;t,t+h = �S([τ1, τ0]1; t, t + h)

⇔ J011 + J101 = hJ 2
1 (β(0)T ((A(0)e0)(B

(0)e0)) + β(1)T ((A(1)e1)(B
(2)e1)))

+ hJ1
J10

h
β(2)T ((A(1)e1)(B

(2)e1))

+ h
√

h
J101

h3/2
β(3)T ((A(2)e2)(B

(4)e2))

⇔ β(0)T ((A(0)e0)(B
(0)e0)) + β(1)T ((A(1)e1)(B

(2)e1)) = 1

2
,

β(2)T ((A(1)e1)(B
(2)e1)) = −1

2
, β(3)T ((A(2)e2)(B

(4)e2)) = 1

2
;

for [[τ0]1]1, I[[τ0]1]1;t,t+h = �S([[τ0]1]1; t, t + h)

⇔ J011 = hJ 2
1 (β(0)T (B(0)(A(0)e0)) + β(1)T (B(2)(A(1)e1)))

+ hJ1
J10

h
β(2)T (B(2)(A(1)e1)) + h

√
h

J101

h3/2
β(3)T (B(4)(A(2)e2))

⇔ β(0)T (B(0)(A(0)e0)) + β(1)T (B(2)(A(1)e1)) = 1

2
,

β(2)T (B(2)(A(1)e1)) = −1

2
, β(3)T (B(4)(A(2)e2)) = −1

2
;

for [τ1, τ1, τ1]1, I[τ1,τ1,τ1]1;t,t+h = �S([τ1, τ1, τ1]1; t, t + h)

⇔ 6J1111 = J 4
1 (β(0)T (B(0)e0)

3 + β(1)T (B(2)e1)
3) + J 3

1
J10

h
β(2)T (B(2)e1)

3

+ (
√

h)3
J101

h3/2
β(3)T (B(4)e2)

3

⇔ β(0)T (B(0)e0)
3 + β(1)T (B(2)e1)

3 = 1

4
, β(2)T (B(2)e1)

3 = 0,

β(3)T (B(4)e2)
3 = 0;

for [[τ1]1, τ1]1, I[[τ1]1,τ1]1;t,t+h = �S([[τ1]1, τ1]1; t, t + h)

⇔ 3J1111 = J 4
1 (β(0)T ((B(0)(B(0)e0))(B

(0)e0))

+ β(1)T ((B(2)(B(2)e1))(B
(2)e1)))

+ J 3
1

J10

h
β(2)T ((B(2)(B(2)e1))(B

(2)e1))

+ (
√

h)3
J101

h3/2
β(3)T ((B(4)(B(4)e2))(B

(4)e2))

⇔ β(0)T ((B(0)(B(0)e0))(B
(0)e0))

+ β(1)T ((B(2)(B(2)e1))(B
(2)e1)) = 1

8
,

β(2)T ((B(2)(B(2)e1))(B
(2)e1)) = 0,

β(3)T ((B(4)(B(4)e2))(B
(4)e2)) = 0;
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for [[τ1, τ1]1]1, I[[τ1,τ1]1]1;t,t+h = �S([[τ1, τ1]1]1; t, t + h)

⇔ 2J1111 = J 4
1 (β(0)T (B(0)(B(0)e0)

2) + β(1)T (B(2)(B(2)e1)
2))

+J 3
1

J10

h
β(2)T(B(2)(B(2)e1)

2) +(
√

h)3
J101

h3/2
β(3)T(B(4)(B(4)e2)

2)

⇔ β(0)T (B(0)(B(0)e0)
2) + β(1)T (B(2)(B(2)e1)

2) = 1

12
,

β(2)T (B(2)(B(2)e1)
2) = 0, β(3)T (B(4)(B(4)e2)

2) = 0;

for [[[τ1]1]1]1, I[[[τ1]1]1]1;t,t+h = �S([[[τ1]1]1]1; t, t + h)

⇔ J1111 = J 4
1 (β(0)T (B(0)(B(0)(B(0)e0))) + β(1)T (B(2)(B(2)(B(2)e1))))

+ J 3
1

J10

h
β(2)T (B(2)(B(2)(B(2)e1)))

+ (
√

h)3
J101

h3/2
β(3)T (B(4)(B(4)(B(4)e2)))

⇔ β(0)T (B(0)(B(0)(B(0)e0))) + β(1)T (B(2)(B(2)(B(2)e1))) = 1

24
,

β(2)T (B(2)(B(2)(B(2)e1))) = 0, β(3)T (B(4)(B(4)(B(4)e2))) = 0.

Next, we prove that for arbitrary t with ρ(t) = 2.5,

E(It;t,t+h) = E(�S(t; t, t + h))

holds. In fact, by (8)-(12), (15) and (17) as well as Table 1, we obtain that

for [τ0, τ0]1, E[I[τ0,τ0]1;t,t+h] = E[�S([τ0, τ0]1; t, t + h)]
⇔ E[2J001] = E[h2J1(β(0)T (A(0)e0)

2 + β(1)T (A(1)e1)
2)

+ h2
J10

h
β(2)T (A(1)e1)

2 + h2
J101

h3/2
β(3)T (A(2)e2)

2]
⇔ 0 = 0;

for [τ0, τ1]0, E[I[τ0,τ1]0;t,t+h] = E[�S([τ0, τ1]0; t, t + h)]
⇔ E[J010 + J100] = E[h2J1α(0)T ((A(0)e0)(B

(0)e0))]
⇔ 0 = 0;

for [[τ1]0]0, E[I[[τ1]0]0;t,t+h] = E[�S([[τ1]0]0; t, t + h)]
⇔ E[J100] = E[h2J1α(0)T (A(0)(B(0)e0))]
⇔ 0 = 0;
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for [[τ0]1]0, E[I[[τ0]1]0;t,t+h] = E[�S([[τ0]1]0; t, t + h)]
⇔ E[J010] = E[h2J1(α(0)T (B(0)(A(0)e0)) + α(1)T (B(1)(A(1)e1)))

+ h2
J10

h
α(1)T (C(0)(A(1)e1)) + h2

√
hα(2)T (B(3)(A(2)e2))

+ h2
J101

h3/2
α(2)T (C(1)(A(2)e2))]

⇔ α(2)T (B(3)(A(2)e2)) = 0;
for [[τ0]0]1, E[I[[τ0]0]1;t,t+h] = (E[�S [[τ0]0]1; t, t + h])

⇔ E[J001] = E[h2J1β(0)T (A(0)(A(0)e0))]
⇔ 0 = 0;

for [τ1, τ1, τ1]0, E[I[τ1,τ1,τ1]0;t,t+h] = E[�S([τ1, τ1, τ1]0; t, t + h)]
⇔ E[6J1110] = E[hJ 3

1 (α(0)T(B(0)e0)
3)+hα(1)T(J1(B

(1)e1) + J10

h
(C(0)e1))

3

+ hα(2)T (
√

h(B(3)e2) + J101

h3/2
(C(1)e2))

3]

⇔ α(2)T (B(3)e2)
3 + 1

4
α(2)T ((B(3)e2)((C

(1)e2)
2))

+ 1

30
α(2)T (C(1)e2)

3 = 0;

for [[τ1]1, τ1]0, E[I[[τ1]1,τ1]0;t,t+h] = E[�S([[τ1]1, τ1]0; t, t + h)]
⇔ E[3J1110] = E[hJ 3

1 (α(0)T ((B(0)(B(0)e0))(B
(0)e0))

+ α(1)T ((B(1)(B(2)e1))(B
(1)e1)))

+ hJ 2
1

J10

h
(α(1)T ((C(0)(B(2)e1))(B

(1)e1))

+ α(1)T ((B(1)(B(2)e1))(C
(0)e1)))

+ hJ1(
J10

h
)2α(1)T ((C(0)(B(2)e1))(C

(0)e1))

+ h(
√

h)3α(2)T ((B(3)(B(4)e2))(B
(3)e2))

+ h(
√

h)2
J101

h3/2
(α(2)T ((C(1)(B(4)e2))(B

(3)e2))

+ α(2)T ((B(3)(B(4)e2))(C
(1)e2)))

+ h
√

h(
J101

h3/2
)2α(2)T ((C(1)(B(4)e2))(C

(1)e2))]
⇔ α(2)T ((B(3)(B(4)e2))(B

(3)e2))

+ 1

12
α(2)T ((C(1)(B(4)e2))(C

(1)e2)) = 0;
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for [[τ1, τ1]1]0, E[I[[τ1,τ1]1]0;t,t+h] = E[�S([[τ1, τ1]1]0; t, t + h)]
⇔ E[2J1110] = E[hJ 3

1 (α(0)T (B(0)(B(0)e0)
2) + α(1)T (B(1)(B(2)e1)

2))

+ hJ 2
1

J10

h
α(1)T (C(0)(B(2)e1)

2)

+ h(
√

h)3α(2)T (B(3)(B(4)e2)
2)

+ h(
√

h)2
J101

h3/2
α(2)T (C(1)(B(4)e2)

2)]
⇔ α(2)T (B(3)(B(4)e2)

2) = 0;

for [[[τ1]1]1]0, E[I[[[τ1]1]1]0;t,t+h] = E[�S([[[τ1]1]1]0; t, t + h)]
⇔ E[J1110] = E[hJ 3

1 (α(0)T (B(0)(B(0)(B(0)e0)))

+ α(1)T (B(1)(B(2)(B(2)e1))))

+ hJ 2
1

J10

h
α(1)T (C(0)(B(2)(B(2)e1)))

+ h(
√

h)3α(2)T (B(3)(B(4)(B(4)e2)))

+ h(
√

h)2
J101

h3/2
α(2)T (C(1)(B(4)(B(4)e2)))]

⇔ α(2)T (B(3)(B(4)(B(4)e2))) = 0;
for [τ0, τ1, τ1]1, E[I[τ0,τ1,τ1]1;t,t+h] = E[�S([τ0, τ1, τ1]1; t, t + h)]

⇔ E[2J0111 + 2J1101 + 2J1011] = E[hJ 3
1 (β(0)T ((A(0)e0)(B

(0)e0)
2)

+ β(1)T ((A(1)e1)(B
(2)e1)

2))

+ hJ 2
1

J10

h
β(2)T ((A(1)e1)(B

(2)e1)
2)

+ h(
√

h)2
J101

h3/2
β(3)T ((A(2)e2)(B

(4)e2)
2)]

⇔ 0 = 0;

for [[τ1]0, τ1]1, E[I[[τ1]0,τ1]1;t,t+h] = E[�S([[τ1]0, τ1]1; t, t + h)]
⇔ E[2J1101 + J1011] = E[hJ 3

1 (β(0)T ((A(0)(B(0)e0))(B
(0)e0))

+ β(1)T ((A(1)(B(1)e1))(B
(2)e1)))

+ hJ 2
1

J10

h
(β(1)T ((A(1)(C(0)e1))(B

(2)e1))

+ β(2)T ((A(1)(B(1)e1))(B
(2)e1)))

+ hJ1(
J10

h
)2β(2)T ((A(1)(C(0)e1))(B

(2)e1))

+ h(
√

h)2
J101

h3/2
β(3)T ((A(2)(B(3)e2))(B

(4)e2))

+ h
√

h(
J101

h3/2
)2β(3)T ((A(2)(C(1)e2))(B

(4)e2))]
⇔ β(3)T ((A(2)(C(1)e2))(B

(4)e2)) = 0;
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for [[τ0]1, τ1]1, E[I[[τ0]1,τ1]1;t,t+h] = E[�S([[τ0]1, τ1]1; t, t + h)]
⇔ E[2J0111 + J1011] = E[hJ 3

1 (β(0)T ((B(0)(A(0)e0))(B
(0)e0))

+ β(1)T ((B(2)(A(1)e1))(B
(2)e1)))

+ hJ 2
1

J10

h
β(2)T ((B(2)(A(1)e1))(B

(2)e1))

+ h(
√

h)2
J101

h3/2
β(3)T ((B(4)(A(2)e2))(B

(4)e2))]
⇔ 0 = 0;

for [[τ1]1, τ0]1, E[I[[τ1]1,τ0]1;t,t+h] = E[�S([[τ1]1, τ0]1; t, t + h)]
⇔ E[J1101 + J0111 + J1011] = E[hJ 3

1 (β(0)T ((B(0)(B(0)e0))(A
(0)e0))

+ β(1)T ((B(2)(B(2)e1))(A
(1)e1)))

+ hJ 2
1

J10

h
β(2)T ((B(2)(B(2)e1))(A

(1)e1))

+ h(
√

h)2
J101

h3/2
β(3)T ((B(4)(B(4)e2))(A

(2)e2))]
⇔ 0 = 0;

for [[τ1, τ0]1]1, E[I[[τ1,τ0]1]1;t,t+h] = E[�S([[τ1, τ0]1]1; t, t + h)]
⇔ E[J1011 + J0111] = E[hJ 3

1 (β(0)T (B(0)((A(0)e0)(B
(0)e0)))

+ β(1)T (B(2)((A(1)e1)(B
(2)e1))))

+ hJ 2
1

J10

h
β(2)T (B(2)((A(1)e1)(B

(2)e1)))

+ h(
√

h)2
J101

h3/2
β(3)T (B(4)((A(2)e2)(B

(4)e2))))]
⇔ 0 = 0;

for [[τ1, τ1]0]1, E[I[[τ1,τ1]0]1;t,t+h] = E[�S([[τ1, τ1]0]1; t, t + h)]
⇔ E[2J1101] = E[hJ 3

1 (β(0)T (A(0)(B(0)e0)
2) + β(1)T (A(1)(B(1)e1)

2))

+ hJ 2
1

J10

h
(2β(1)T (A(1)((B(1)e1)(C

(0)e1)))

+ β(2)T (A(1)(B(1)e1)
2))

+ hJ1(
J10

h
)2(β(1)T (A(1)(C(0)e1)

2)

+ 2β(2)T (A(1)((B(1)e1)(C
(0)e1))))

+ h(
J10

h
)3β(2)T (A(1)(C(0)e1)

2)

+ h(
√

h)2
J101

h3/2
β(3)T (A(2)(B(3)e2)

2)

+ 2h
√

h(
J101

h3/2
)2β(3)T (A(2)((B(3)e2)(C

(1)e2)))

+ h(
J101

h3/2
)3β(3)T (A(2)(C(1)e2)

2)]

⇔ 1

6
β(3)T (A(2)((B(3)e2)(C

(1)e2))) + 1

30
β(3)T (A(2)(C(1)e2)

2) = 0;
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for [[[τ1]1]0]1, E[I[[[τ1]1]0]1;t,t+h] = E[�S([[[τ1]1]0]1; t, t + h)]
⇔ E[J1101] = E[hJ 3

1 (β(0)T (A(0)(B(0)(B(0)e0)))

+ β(1)T (A(1)(B(1)(B(2)e1))))

+ hJ 2
1

J10

h
(β(1)T (A(1)(C(0)(B(2)e1)))

+ β(2)T (A(1)(B(1)(B(2)e1))))

+ hJ1(
J10

h
)2β(2)T (A(1)(C(0)(B(2)e1)))

+ h(
√

h)2
J101

h3/2
β(3)T (A(2)(B(3)(B(4)e2))))

+ h
√

h(
J101

h3/2
)2β(3)T (A(2)(C(1)(B(4)e2))))]

⇔ β(3)T (A(2)(C(1)(B(4)e2))) = 0;

for [[[τ1]0]1]1, E[I[[[τ1]0]1]1;t,t+h] = E[�S([[[τ1]0]1]1; t, t + h)]
⇔ E[J1011] = E[hJ 3

1 (β(0)T (B(0)(A(0)(B(0)e0)))

+ β(1)T (B(2)(A(1)(B(1)e1))))

+ hJ 2
1

J10

h
(β(1)T (B(2)(A(1)(C(0)e1)))

+ β(2)T (B(2)(A(1)(B(1)e1))))

+ hJ1(
J10

h
)2β(2)T (B(2)(A(1)(C(0)e1)))

+ h(
√

h)2
J101

h3/2
β(3)T (B(4)(A(2)(B(3)e2))))

+ h
√

h(
J101

h3/2
)2β(3)T (B(4)(A(2)(C(1)e2)))]

⇔ β(3)T (B(4)(A(2)(C(1)e2))) = 0;

for [[[τ0]1]1]1, E[I[[[τ0]1]1]1;t,t+h] = E[�S([[[τ0]1]1]1; t, t + h)]
⇔ E[J0111] = E[hJ 3

1 (β(0)T (B(0)(B(0)(A(0)e0)))

+ β(1)T (B(2)(B(2)(A(1)e1))))

+ hJ 2
1

J10

h
β(2)T (B(2)(B(2)(A(1)e1)))

+ h(
√

h)2
J101

h3/2
β(3)T (B(4)(B(4)(A(2)e2))))]

⇔ 0 = 0.
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For each stochastic tree t with ρ(t) = 2.5 and all nodes being stochastic node
(◦) (such as [τ1, τ1, τ1, τ1]1, [[τ1, τ1, τ1]1]1), since E[J11111] = 0, E[J 5

1 ] =
E[J 4

1
J10
h

] = E[(√h)4
J101
h3/2

] = 0, it is not difficult to obtain that

E[(It;t,t+h)] = E[(�S(t; t, t + h))] ⇔ 0 = 0.

The proof is complete.

Appendix B: Proof of Theorem 6.2

Proof First, we prove that for arbitrary t with ρ(t) ≤ 1.5

It;t,t+h = �S(t; t, t + h) P − a.s.

holds. In fact, by (8)-(12), (15) and (37), we obtain that

for τ0, Iτ0;t,t+h = �S(τ0; t, t + h) ⇔ h = hαT e ⇔ αT e = 1;
for τ1, Iτ1;t,t+h = �S(τ1; t, t + h) ⇔ J1 = J1β

T e ⇔ βT e = 1;
for [τ0]0, I[τ0]0;t,t+h = �S([τ0]0; t, t + h) ⇔ 1

2
h2 = h2αT Ae ⇔ αT Ae = 1

2
;

for [τ1]0and[τ0]1, I[τ1]0;t,t+h + I[τ0]1;t,t+h = �S(τ1]0; t, t + h) + �S(τ0]1; t, t + h)

⇔ J10 + J01 = hJ1α
T Be + hJ1β

T Ae ⇔ αT Be + βT Ae = 1;
for [τ1]1, I[τ1]1;t,t+h = �S([τ1]1; t, t + h) ⇔ J11 = J 2

1 βT Be ⇔ βT Be = 1

2
;

for [τ1, τ1]1, I[τ1,τ1]1;t,t+h = �S([τ1, τ1]1; t, t + h) ⇔ 2J111 = J 3
1 βT (Be)2

⇔ βT (Be)2 = 1

3
;

for [[τ1]1]1, I[[τ1]1]1;t,t+h = �S([[τ1]1]1; t, t + h) ⇔ J111 = J 3
1 βT (B(Be))

⇔ βT (B(Be)) = 1

6
.

Next, we prove that for arbitrary t with ρ(t) = 2.0,

E(It;t,t+h) = E(�S(t; t, t + h))
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holds. In fact, by (8)-(12), (15) and (37) as well as Table 1, we obtain that

for [τ1, τ1]0, E[I[τ1,τ1]0;t,t+h] = E[�S([τ1, τ1]0; t, t + h)] ⇔ E[2J110] = E[hJ 2
1 αT (Be)2]

⇔ αT (Be)2 = 1

2
;

for [[τ1]1]0, E[I[[τ1]1]0;t,t+h] = E[�S([[τ1]1]0; t, t + h)] ⇔ E[J110] = E[hJ 2
1 αT (B(Be))]

⇔ αT (B(Be)) = 1

4
;

for [[τ1]0]1, E[I[[τ1]0]1;t,t+h] = E[�S([[τ1]0]1; t, t + h)] ⇔ E[J101] = E[hJ 2
1 βT (A(Be))]

⇔ βT (A(Be)) = 0;
for [τ0, τ1]1, E[I[τ0,τ1]1;t,t+h] = E[�S([τ0, τ1]1; t, t + h)]

⇔ E[J101 + J011] = E[hJ 2
1 βT ((Ae)(Be))] ⇔ βT ((Ae)(Be)) = 1

4
;

for [[τ0]1]1, E[I[[τ0]1]1;t,t+h] = E[�S([[τ0]1]1; t, t + h)] ⇔ E[J011]=E[hJ 2
1 βT (B(Ae)))]

⇔ βT (B(Ae))) = 1

4
;

for [τ1, τ1, τ1]1, E[I[τ1,τ1,τ1]1;t,t+h] = E[�S([τ1, τ1, τ1]1; t, t + h)]
⇔ E[6J1111] = E[J 4

1 βT (Be)3] ⇔ βT (Be)3 = 1

4
;

for [[τ1]1, τ1]1, E[I[[τ1]1,τ1]1;t,t+h] = E[�S([[τ1]1, τ1]1; t, t + h)]
⇔ E[3J1111] = E[J 4

1 βT ((B(Be))(Be))]
⇔ βT ((B(Be))(Be)) = 1

8
;

for [[τ1, τ1]1]1, E[I[[τ1,τ1]1]1;t,t+h] = E[�S([[τ1, τ1]1]1; t, t + h)]
⇔ E[2J1111] = E[J 4

1 βT (B(Be)2)] ⇔ βT (B(Be)2) = 1

12
;

for [[[τ1]1]1]1, E[I[[[τ1]1]1]1;t,t+h] = E[�S([[[τ1]1]1]1; t, t + h)]
⇔ E[J1111] = E[J 4

1 βT (B(B(Be)))] ⇔ βT (B(B(Be))) = 1

24
.

The proof is complete.
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