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Abstract In this paper, we extend the relaxed positive-definite and skew-
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1 Introduction

We are interested in finding the solution of large spare non-Hermitian saddle point
problems with the following two-by-two block form:

[
A B∗

−B C

] [
x

y

]
=

[
f

−g

]
, (1.1)

where A ∈ C
n×n is a non-Hermitian matrix and its Hermitian part H = 1

2 (A+A∗) is
positive definite, B ∈ C

m×n with rank(B) = m, that is, a matrix of full column rank,
C ∈ C

m×m is a Hermitian positive definite matrix, x, f ∈ C
n and y, g ∈ C

m are
given vectors with n ≥ m. The assumptions guarantee the existence and uniqueness
of the solution of the system (1.1).

The above linear system (1.1) is the so called generalized saddle point prob-
lems which frequently arise in various scientific and engineering applications such
as constrained optimization, fluid problems for incompressible fluids, incompress-
ible elastic materials, mixed finite element of elliptic PDEs, constrained least squares
problem, for general discussions, see [1–7]. For the classical example occurring in
elasticity, see [8], for the occurrence of locking , see [9, 10]. In general, matrices A

and B are large and sparse, the different iterative methods instead of direct methods
are considered for solving the saddle problem (1.1). So, it is very vital to investigate
various efficient iterative approaches [11–13]. When the matrix A is Hermitian pos-
itive definite and B is of full column rank, several efficient iterative methods have
been presented in the recent years. For instance, Uzawa method [14, 15], the precon-
ditioned Uzawa approach [16], SOR-like method [17], modified SSOR method[18],
GSOR method [19], HSS method [3, 20], accelerated HSS method [21], and so forth.
These approaches are stationary iterative methods, in general, which require much
less computer memory than the Krylov subspace methods. But the preconditioned
Krylov subspace methods are often very competitive than other methods, which leads
to various efficient preconditioners proposed for solving the saddle point problems
by many researches in recent works. As known, the favorable performance of con-
vergence is related to a clustering of most of the eigenvalues around 1 and away from
zero. So, a good preconditioner must be given as close as possible to the coefficient
matrix. The preconditioners for saddle problems mainly can be considered in these
cases, such as, block triangular preconditioners[2, 22], block diagonal precondition-
ers[23–25], fully factorized two-by-two block matrix precoditioners[26, 27], etc., see
[28–40] for more detailed investigations.

The linear system (1.1) can be rewritten as the simple form

Au = b, (1.2)

where

A =
[

A B∗
−B C

]
, u =

[
x

y

]
, b =

[
f

−g

]
.
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The above linear system (1.2) can be regarded as a classical saddle point problem
when C = 0. Cao et al., in [41], proposed the following shift-splitting preconditioner
for solving the classical saddle point problem:

P̂ = 1

2
(αI + A) = 1

2

[
αI + A B∗

−B αI

]
. (1.3)

Moreover, Chen and Ma, in [42], presented a generalized shift-splitting (GSS)
preconditioner

PGSS = 1

2

[
αI + A B∗

−B βI

]
(1.4)

with two parameters α and β. From the numerical examples in [42], we find the
eigenvalues distribution of the preconditioned matrix P−1

GSSA gather more closely
than those in [41], also the convergence performance is better.

To solve the saddle point problem (1.2) when C = 0, recently, Zhang et al. in
[43], obtained a relaxed positive-definite and skew-Hermitian splitting (RPSS) pre-
conditioner based on [5] proposed by Pan et al.. The RPSS preconditioner has the
following form

PRPSS =
[

A
(
I + 1

α
A

)
B∗

−B αI

]
. (1.5)

The basic ideas are derived from the HSS method given by Bai et al. [3] and the ADI
method introduced by Benner [44].

Inspired by [5, 43], in this paper, we construct an new preconditioner for solving
the generalized saddle point problem (1.1) when A is non-Hermitian with a positive
definite Hermitian part, which is refereed to the modified positive-definite and skew-
Hermitian splitting (MPSS) preconditioner.

The remainder of the paper is organized as follows. In Section 2, we first consider a
new splitting method and obtain a new preconditioner for the generalized saddle point
problem (1.1). In Section 3, we analyze the spectral properties of the preconditioner
and apply it to Krylov subspace methods in detailed. Some numerical experiments
are given to illustrate that the new preconditioner is efficient in Section 4. At last, we
end the paper with some conclusions in Section 5.

2 The MPSS preconditioner

As is known that the coefficient matrix A has the following splitting

A = M + N ,

where

M =
[

A 0
0 C

]
, N =

[
0 B∗

−B 0

]
, (2.1)
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meanwhile

A = (αI + M) − (αI − N ) = (αI + N ) − (αI − M), (2.2)

where I denotes the identity matrix with the appropriate dimension, and the shift
parameter α > 0. Analogously to the classical ADI method [44], we consider the
following splitting

A = (αI + M) − (αI − N ) = (βI + N ) − (βI − M),

where α and β are positive scalars. So the (1.2) can be written as{
(αI + M)uk+ 1

2 = (αI − N )uk + b,

(βI + N )uk+1 = (βI − M)uk+ 1
2 + b,

where u0 is the initial vector. By eliminating the intermediate vector uk+ 1
2 , one can

obtain

uk+1 = �uk + c, (2.3)

where

� = (βI + N )−1(βI − M)(αI + M)−1(αI − N ), (2.4)

c = (α + β)
(
βI + N )−1(αI + M)−1b.

It is well known that the preconditioner P can be chosen by the splitting A =
P − Q with a reversible matrix P . From the (2.4), by the simple computation, we
have

P = 1

α + β
(αI + M)(βI + N ) (2.5)

and

Q = 1

α + β
(βI − M)(αI − N ).

Notice that the relation (2.1), we get

P = 1

α + β

[
αI + A 0

0 αI + C

] [
βI B∗
−B βI

]
(2.6)

= 1

α + β

[
αβI + βA αB∗ + AB∗
−αB − CB αβI + βC

]
. (2.7)

Since the factor 1
α+β

has no effect on the preconditioned system

P−1Au = c,

then, we can modify the parameter 1
α+β

to make the preconditioner could be as close
as possible to the coefficient matrix A. To this end, we firstly consider

P = 1

α

[
αI + A 0

0 αI + C

] [
βI B∗
−B βI

]
=

[
βI + β

α
A B∗ + 1

α
AB∗

−B − 1
α
CB βI + β

α
C

]
, (2.8)
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moreover, the (1, 1)-block of (2.8) is relaxed as A, the (2, 1)-block of (2.8) is relaxed
as −B and the (2, 2)-block of (2.8) is relaxed as βI + C , it follows that

PMPSS =
[

A B∗ + 1
α
AB∗

−B βI + C

]
, (2.9)

then

Q = PMPSS − A =
[
0 1

α
AB∗

0 βI

]
. (2.10)

In fact, we find that the new preconditioner, the so-calling MPSS preconditioner,
can be regarded as a modified version of the PRSS proposed by Zhang et al. in [43].
If set β = α, then the MPSS is reduced to PRSS, so the MPSS is a generalized
situation for PSSS in (1.5). When α approaches 0+ (or +∞), it will lead to the (2, 2)-
block (or (1, 2)-block) of the precontitioner close toA, but the other block will away
from A as the relation of α and 1

α
, so the choice of the optimal parameter α for (1.5)

is very difficult just as the statement in [43]. Conversely, the MPSS precontitioner
can overcome these defects due to the independence of the parameters α and β, this
advantage will be shown in our numerical experiments part.

3 The spectral properties

In view of the eigenvalues distribution is closely related to convergence speed, we
will analyze the eigenvalue problem associated with the preconditioned matrixP−1A
(for convenience, denotes P instead of PMPSS from now on).

Now consider the eigenvalue problem P−1Au = λu, i.e. Au = λPu, then we get[
A B∗

−B C

] [
x

y

]
= λ

[
A B∗ + 1

α
AB∗

−B βI + C

] [
x

y

]
. (3.1)

In fact, P also can be factorized as

P =
[

A 0
0 I

][
I

(
A−1 + 1

α
I
)

B∗

−B βI + C

]
:= P1P2, (3.2)

where

P1 =
[

A 0
0 I

]
, P2 =

[
I

(
A−1 + 1

α
I
)

B∗

−B βI

]
. (3.3)

Since [
I 0
B I

]
P2

[
I −

(
A−1 + 1

α
I
)

B∗

0 I

]
=

[
I 0
0 L

]
, (3.4)

where

L := B

(
A−1 + 1

α
I

)
B∗ + βI + C, (3.5)
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we obtain

P−1 = P−1
2 P−1

1 =
[

I −
(
A−1 + 1

α
I
)

B∗

0 I

][
I 0
0 L−1

] [
I 0
B I

] [
A−1 0
0 I

]
(3.6)

=
[

A−1 −
(
A−1 + 1

α
I
)
B∗L−1BA−1 −

(
A−1 + 1

α
I
)
B∗L−1

L−1BA−1 L−1

]
.

By utilizing (3.6), we show Algorithm 3.1 to compute the vector z = (zT
1 , zT

2 )T ,
where z1 ∈ C

n, z2 ∈ C
m as following.

Algorithm 3.1 Computation of z = P−1r .

1. Solve Aw1 = r1 for w1 and Aqi = B∗(:; i) for qi , i = 1, 2, · · · , m. Q :=
(q1, q2, · · · , qm), where B∗(:; i) denotes ith column of matrix B∗.

2. Solve
(
BQ + 1

α
BB∗ + βI + C

)
w2 = Bw1 + r2 for w2, and z2 = w2.

3. Solve Aw3 = B∗w2 for w3.
4. Compute z1 = w1 − w3 − 1

α
B∗w2.

Remark 3.1 The parameters α and β can be chosen with α → ∞ and β → 0 from
the above Algorithm 3.1. In this way, the preconditioner P will be sufficiently close
to the coefficient matrix A. Hence when the preconditioner matrix is applied to the
Krylov subspace method, such as restarted GMRES method, we expect to obtain the
rapid convergence of Algorithm 3.1.

Theorem 3.1 The algebraic multiplicity of the unit eigenvalues of the preconditioned
matrix P−1A has at least n. The remaining eigenvalues μi are determined by the
matrix L−1BA−1B∗ and

μi = αa + αb

αa + d + αβ + αb
,

where

a := y∗B∗A−1By, b := y∗Cy, d := y∗B∗By.

Furthermore, the eigenvalues μi are of the form

μi = σi

1 + σi

,

where the σi satisfy the generalized eigenvalue problem

BA−1B∗zi = σi

(
βI + 1

α
BB∗ + C

)
zi .
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Proof From the above (3.6), it has

P−1A = P−1(P − Q) = I − P−1Q (3.7)

= I −
[

A−1 −
(
A−1 + 1

α
I
)

B∗L−1BA−1 −
(
A−1 + 1

α
I
)

B∗L−1

L−1BA−1 L−1

][
0 1

α
AB∗

0 βI

]

=
[

I − 1
α
B∗ + 1

α

(
A−1 + 1

α
I
)

B∗L−1BB∗ + β
(
A−1 + 1

α
I
)

B∗L−1

0 I − 1
α
L−1BB∗ − βL−1

]

:=
[

I K1
0 K2

]
,

it follows from (3.5) that

K2 = L−1BA−1B∗. (3.8)

Multiplying both side of (3.1) from left with[
I 0

BA−1 I

]
,

we have[
A B∗
0 BA−1B∗ + C

] [
x

y

]
= λ

[
A B∗ + 1

α
AB∗

0 BA−1B∗ + 1
α
BB∗ + βI + C

] [
x

y

]
, (3.9)

which implies that{
Ax + B∗y = λAx + λ

(
I + 1

α
A

)
B∗y,

(BA−1B∗ + C)y = λBA−1B∗y + λ
α
BB∗y + λβy + λCy.

(3.10)

If y = 0, then from the first formula of (3.10) one get Ax = λAx, hence λ = 1.
We now suppose that y �= 0, without loss of generality, we suppose ‖y‖2 = 1.
Multiplying both side of (3.10) from left with y∗, we obtain

λ = y∗BA−1B∗y + y∗Cy

y∗BA−1B∗y + 1
α
y∗BB∗y + β + y∗Cy

, (3.11)

= αa + αb

αa + d + αβ + αb
. (3.12)

Note that the Hermitian part of A is positive definite and C is a Hermitian positive
definite matrix, it leads to

a > 0, b > 0, d > 0,

Table 1 Numerical results for MPSS

p IT CPU RES

16 1(2) 8.4921e − 002 1.6983e − 012

24 1(2) 5.2938e − 001 2.1800e − 012

32 1(2) 2.8168e + 000 3.0896e − 012

40 1(2) 8.8542e + 001 4.1780e − 012
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Table 2 Numerical results for Example 4.1 with ν=0.1

p GMRES RPSS GSS MPSS

16 IT 13(17) 1(3) 1(3) 1(2)

CPU 3.2643e − 001 9.9150e − 002 1.0114e − 001 6.9734e − 002

RES 9.8892e − 007 1.0854e − 007 1.1711e − 007 2.4161e − 011

24 IT 25(8) 1(3) 1(3) 1(2)

CPU 2.5810e + 000 8.2307e − 001 7.9690e − 001 5.9164e − 001

RES 9.6872e − 007 9.2053e − 008 9.8568e − 008 5.2263e − 011

32 IT 41(1) 1(3) 1(3) 1(2)

CPU 1.2089e + 001 3.3295e + 000 3.2791e + 000 2.6445e + 000

RES 9.9907e − 007 7.6883e − 008 8.2414e − 008 9.3254e − 011

40 IT 59(13) 1(3) 1(3) 1(2)

CPU 6.6671e + 001 2.5422e + 001 2.4465e + 001 9.0135e + 000

RES 9.8916e − 007 6.4781e − 008 6.9934e − 008 1.4495e − 010

so one can get in this case

0 < λ < 1.

To sum up

λ = 1 or λ = αa + αb

αa + d + αβ + αb
.

Moreover, we let the non-unit eigenvalues ofP−1A satisfy the eigenvalue problem

L−1BA−1B∗zi = μizi,

Table 3 Numerical results for Example 4.1 with ν=0.01

p GMRES RPSS GSS MPSS

16 IT 48(8) 1(3) 1(3) 1(2)

CPU 9.9440e − 001 9.1679e − 002 1.0144e − 001 7.9235e − 002

RES 9.9697e − 007 1.8310e − 009 2.9710e − 008 2.0346e − 012

24 IT 76(15) 1(3) 1(3) 1(2)

CPU 9.5826e + 000 8.1288e − 001 8.3005e − 001 6.0878e − 001

RES 9.9702e − 007 1.8373e − 009 2.6079e − 008 3.1103e − 012

32 IT 90(18) 1(3) 1(3) 1(2)

CPU 3.9226e + 001 4.8638e + 000 3.9461e + 000 2.8644e + 000

RES 9.9903e − 007 1.7335e − 009 2.3877e − 008 5.5362e − 012

40 IT 103(16) 1(3) 1(3) 1(2)

CPU 7.3612e + 001 1.1832e + 001 1.2637e + 001 8.8247e + 000

RES 9.9352e − 007 1.6013e − 009 2.2405e − 008 9.2630e − 012
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i.e.

K2zi = μizi,

then

BA−1B∗zi = μiLzi = μi

(
βI + 1

α
BB∗ + BA−1B∗ + C

)
zi,

by transposition leads to

BA−1B∗zi = μi

1 − μi

(
βI + 1

α
BB∗ + C

)
zi,

we denote

σi := μi

1 − μi

, then μi = σi

1 + σi

. (3.13)

From the above relation of (2.9), (3.6) and (3.7), we know that iterative matrix

� = P−1Q =
[
0 −K1
0 I − K2

]
,

evidently, the ρ(�) < 1 as (3.8) and (3.13), this means to the unconditional
convergence of the iterative method.

Fig. 1 The eigenvalues distribution of the preconditioned matrix for Example 4.1 with ν=0.1
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Table 4 Numerical results for Example 4.2 with ν=1 (Q2–Q1)

Grids GMRES RPSS GSS MPSS

8 × 8 IT 24(1) 1(20) 2(5) 1(4)

CPU 7.5478e − 002 2.1054e − 002 2.5908e − 002 3.9638e − 003

RES 9.9222e − 007 8.0022e − 007 7.3844e − 007 1.2012e − 008

16 × 16 IT 111(17) 2(14) 3(3) 1(4)

CPU 1.6366e + 000 5.9999e − 001 7.2946e − 001 7.0112e − 002

RES 9.9883e − 007 5.9626e − 007 7.2799e − 007 3.9153e − 007

Theorem 3.2 Let the MPSS preconditioner be defined in (2.9). Then the degree of
minimal polynomial of preconditioned matrix P−1A is at most m + 1. Moreover, the
dimension of the Krylov subspace K(P−1A, b) is at most m + 1.

Proof From [11], the dimension of the Krylov subspace is closely related with the
degree of the minimal polynomial. By the P−1A in (3.7) and the eigenvalue distri-
bution described in Theorem 3.1, the characteristic polynomial of the preconditioned
matrix P−1A is

(P−1A − I )n	m
i=1(P−1A − μiI).

As μi are the eigenvalues of the matrix K2 (i = 1, 2, · · · , m), by the Hamilton-
Cayley theorem, we obtain

	m
i=1(K2 − μiI) = 0.

So the polynomial

Pm+1(P−1A)

= (P−1A − I )	m
i=1(P−1A − μiI)

=
[
0 K1	

m
i=1(K2 − μiI)

0 (K2 − I )	m
i=1(K2 − μiI)

]
= 0,

Table 5 Numerical results for Example 4.2 with ν=1 (Q2–P1)

Grids GMRES RPSS GSS MPSS

8 × 8 IT 10(1) 1(11) 1(13) 1(3)

CPU 3.0841e − 002 1.0769e − 002 1.2583e − 002 3.4997e − 003

RES 9.8244e − 007 8.7131e − 007 2.5980e − 007 1.4031e − 009

16 × 16 IT 23(17) 1(17) 2(2) 1(3)

CPU 4.7843e − 001 4.0845e − 001 5.4501e − 001 7.3779e − 002

RES 9.8412e − 007 7.8812e − 007 6.1722e − 007 2.1638e − 007
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that is, the degree of the minimal polynomial of P−1A is at most m + 1. Therefore,
the dimension of the corresponding Krylov subspace K(P−1A, b) is at most m + 1
[11].

4 Numerical experiments

In this section, we report some numerical results to illustrate the effectiveness of the
MPSS preconditioner for solving the generalized saddle point problem arising from
a model Stokes equation in the sense of iteration step (denoted as ’IT’), elapsed CPU
time in seconds (denoted as ’CPU’), and relative residual error (denoted as ’RES’)
defined by

RES :=
√

‖f − Axk − B∗yk‖22 + ‖g − Bxk‖22√
‖f ‖22 + ‖g‖22

.

The MPSS preconditioner is applied to restarted GMRES method with restarting
frequency 20, i.e., GMRES(20). The experiments have been carried out by MAT-
LAB R2011b (7.13), Intel(R) Core(TM) i7-2670QM, CPU 2.20GHZ, RAM 8.GB
PC Environment. Especially, when C = 0, i.e., the 2-by-2 block of the coefficient
of (1.1) is zero, we compare the MPSS preconditioner with the RPSS in [43], GSS
in[42] and no preconditioning situation.

Fig. 2 The eigenvalues distribution of the preconditioned matrix for Example 4.2 with 8×8 grids (Q2–Q1)
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Example 4.1 Nonsingular saddle point problem arising from a model Stokes equa-
tion [4], the coefficient matrix have the following form

A=
[

I ⊗ T + T ⊗ I 0
0 I ⊗ T + T ⊗ I

]
∈ R2p2×2p2

, BT =
[

I ⊗ F

F ⊗ I

]
∈ R2p2×p2

,

where

T = υ

h2
tridiag(−1, 2, −1) ∈ Rp×p, F = 1

h
tridiag(−1, −1, 0) ∈ Rp×p,

with ⊗ being the Kronecker product and h = 1
1+p

being the discretization mesh size.

In order to test the generalized saddle point problem (1.1), we choose the C =
A(1 : p2, 1 : p2), the numerical results are listed in Table 1.

In fact, if we set C = 0 in (1.1), we can compare MPSS preconditioner with
RPSS , GSS and no preconditioning situation. In the following test problems, we
only consider C = 0. Now, we test two υ, i.e. υ=0.1, 0.01. For each υ, four differ-
ent q are chosen, i.e., q=16, 24, 32, 40, the relative parameters α, β ∈ [0.0001, 1].
The numerical results are listed in Tables 2 and 3 with the IT, CPU, RES, where IT
including inner iteration and outer iteration, particularly, the numbers in the brackets
denote the inner iteration numbers. Figure 1 shows the eigenvalues of the precondi-
tioned matrix P−1A of MPSS are clustered more closely than those of other three
preconditioned matrices (no preconditioning situation can be regard as an identity

Fig. 3 The eigenvalues distribution of the preconditioned matrix for Example 4.2 with 16 × 16 grids
(Q2–Q1)
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Fig. 4 The eigenvalues distribution of the preconditioned matrix for Example 4.2 with 8×8 grids (Q2–P1)

Fig. 5 The eigenvalues distribution of the preconditioned matrix for Example 4.2 with 16 × 16 grids
(Q2–P1)



256 Numer Algor (2016) 72:243–258

preconditioner). We can find that the eigenvalues of the MPSS are almost located in
the interval (0.994, 1), so the convergence performance is very ideal.

Example 4.2 We test the problem which is obtained from the linearization of the
steady-state Navier-Stokes equation with suitable boundary condition on ∂�:{ −νu + w · ∇u + ∇p = f,

∇ · u = 0, in �,

where ν > 0, , u, p, denote viscosity, Laplace operator, velocity and pressure of
fluid, respectively.

The test grid generation in channel domain which is discretized with Q2-Q1 and
Q2-P1 finite elements, respectively. the IFISS software package [45] is used in the
example, the relative parameters α, β ∈ [0.0001, 1]. From the Tables 4 and 5, and
Figs. 2, 3, 4 and 5, we can furthermore show that the MPSS preconditioner is more
favorable than the other three preconditioners.

5 Conclusion

In this paper, we have furthermore modified the PRSS preconditioner by introducing
an additional parameter β and presented a modified positive-definite and skew-
Hermitian splitting (MPSS) preconditioner for solving the generalized saddle point
problems. It is a type of generalization of the RPSS preconditioner, if we chose
β = α, the MPSS preconditioner is reduced to the RPSS preconditioner. It is readily
seen that the selection of the proper parameters can lead to the new preconditioner
matrix closer to coefficient matrixA than the PRSS preconditioner, then the eigenval-
ues distribution of the preconditioned matrix must be gathered more closely in some
interval . The spectral properties of the new preconditioner are analyzed in detail.
We apply the new preconditioner to Krylov subspace method (here, the restarted
GMRES(m) is employed). The unconditioned convergence property of the MPSS
iterative has been derived. Numerical experiments of the model linearized Navier-
Stokes equations are implemented to demonstrate the effectiveness of the proposed
preconditioner.

Acknowledgments The authors would like to thank the anonymous referees for their helpful sugges-
tions, which greatly improved this paper.

References

1. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–
137 (2005)

2. Bai, Z.-Z., Golub, G.H., Lu, L.-Z., Yin, J.-F.: Block triangular and skew-Hermitian splitting methods
for positive-definite linear systems. SIAM J. Sci. Comput. 26, 844–863 (2004)

3. Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-
Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603–626 (2003)



Numer Algor (2016) 72:243–258 257

4. Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods
for non-Hermitian positive semidefinite linear systems. Numer. Math. 98, 1–32 (2004)

5. Pan, J.-Y., Ng, M.K., Bai, Z.-Z.: New preconditioners for saddle point problems. Appl. Math. Comput.
172, 762–771 (2006)

6. Bai, Z.-Z., Ng, M.K., Wang, Z.-Q.: Constraint preconditioners for symmetric indefinite matrices.
SIAM J. Matrix Anal. Appl. 31, 410–433 (2009)

7. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric
linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

8. Axelsson, O.: On iterative solvers in structural mechanics, separate displacement orderings and mixed
variable methods. Math. Computers Simulation 50, 11–30 (1999)

9. Phillips, P.J., Wheeler, M.F.: Overcoming the problem of locking in linear elasticity and poroelasticity:
an heuristic approach. Comput. Geosci. 13, 5–12 (2009)

10. Axelsson, O., Blaheta, R., Byczanski, P.: Stable discretization of poroelasticity problems and efficient
preconditioning for arising saddle point matrices. Computing and Visualisation in Science 15, 191–
207 (2012)

11. Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia (2003)
12. Axelsson, O.: Iterative Solution Methods. Cambridge University Press (1996)
13. Varga, R.S.: Matrix Iterative Analysis, Ser. Comput. Math., second revised and expanded ed., vol. 27.

Springer, Berlin (2000)
14. Lu, J.-F., Z.-Y. Z.: A modified nonlinear inexact Uzawa algorithm with a variable relaxation parameter

for the stabilized saddle point problem. SIAM J. Matrix Anal. Appl. 31, 1934–1957 (2010)
15. Bai, Z.-Z., Wang, Z.-Q.: On parameterized inexact Uzawa methods for generalized saddle point

problems. Linear Algebra Appl. 428, 2900–2932 (2008)
16. Elman, H.C., Golub, G.H.: Inexact and preconditioned Uzawa algorithms for saddle point problems.

SIAM J. Numer. Anal. 31, 1645–1661 (1994)
17. Golub, G.H., Wu, X., Yuan, J.-Y.: SOR-like methods for augmented systems. BIT 55, 71–85

(2001)
18. Bai, Z.-Z.: Modified block SSOR preconditioners for symmetric positive definite linear systems. Ann.

Oper. Res. 103, 263–282 (2001)
19. Bai, Z.-Z., Parlett, B.N., Wang, Z.-Q.: On generalized successive overrelaxation methods for

augmented linear systems. Numer. Math. 102, 1–38 (2005)
20. Bai, Z.-Z., Golub, G.H., Li, C.-K.: Optimal parameter in Hermitian and skew-Hermitian splitting

method for certain two-by-two block matrices. SIAM J. Sci. Comput. 28, 583–603 (2006)
21. Bai, Z.-Z., Golub, G.H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for

saddle-point problems. IMA J. Numer. Anal. 27, 1–23 (2007)
22. Jiang, M.-Q., Cao, Y., Yao, L.-Q.: On parameterized block triangular preconditioners for generalized

saddle point problems. Appl. Math. Comput. 216, 1777–1789 (2010)
23. Sturler, E.D., Liesen, J.: Block-diagonal and constraint preconditioners for nonsymmetric indefinite

linear systems. SIAM J. Sci. Comput. 26, 1598–1619 (2005)
24. Cao, Z.-H.: Positive stable block triangular preconditioners for symmetric saddle point problems.

Appl. Numer. Math. 57, 899–910 (2007)
25. Perugia, I., Simoncini, V.: Block-diagonal and indefinite symmetric preconditioners for mixed finite

element formulations. Numer. Linear Algebra Appl. 7, 585–616 (2000)
26. Benzi, M., Ng, M.K., Niu, Q., Wang, Z.: A relaxed dimensional factorization preconditioner for the

incompressible Navier-Stokes equations. J. Comput. Phys. 230, 6185–6202 (2011)
27. Cao, Y., Du, J., Niu, Q.: Shift-splitting preconditioners for saddle point problems. J. Comput. Appl.

Math. 272, 239–250 (2014)
28. Keller, C., Gould, N.I.M., Wathen, A.J.: Constraint preconditioning for indefinite linear systems.

SIAM J. Matrix Anal. Appl. 21, 1300–1317 (2000)
29. Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems.

SIAM J. Sci. Comput. 21, 1969–1972 (2000)
30. Ipsen, I.C.F.: A note on preconditioning nonsymmetric matrices. SIAM J. Sci. Comput. 23, 1050–

1051 (2001)
31. Benzi, M., Golub, G.H.: A preconditioner for generalized saddle point problems. SIAM J. Matrix

Anal. Appl. 26, 20–41 (2004)
32. Bai, Z.-Z., Ng, M.K.: On inexact preconditioners for nonsymmetric matrices. SIAM J. Sci. Comput.

26, 1710–1724 (2005)



258 Numer Algor (2016) 72:243–258

33. Dollar, H.S., Wathen, A.J.: Approximate factorization constraint preconditioners for saddle-point
matrics. SIAM J. Sci. Comput. 27, 1555–1572 (2006)

34. Bai, Z.-Z.: Structured preconditioners for nonsingular matrices of block two-by-two structures. Math.
Comput. 75, 791–815 (2006)

35. Bai, Z.-Z., Golub, G.H., Li, C.-K.: Convergence properties of preconditioned Hermitian and skew-
Hermitian splitting methods for non-Hermitian positive semidefinite matrices. Math. Comput. 76,
287–298 (2007)

36. Dollar, H.S.: Constraint-style preconditioners for regularized saddle-point problems. SIAM J. Matrix
Anal. Appl. 29, 672–684 (2007)

37. Bai, Z.-Z.: Optimal parameters in the HSS-like methods for saddle-point problems, Numer. Linear
Algebra Appl. 16, 447–479 (2009)

38. Benzi, M., Guo, X.-P.: A dimensional split preconditioner for Stokes and linearized Navier-Stokes
equations. Appl. Numer. Math. 61, 66–76 (2011)

39. Huang, N., Ma, C.-F., Xie, Y.-J., An inexact relaxed, D.P.S.S.: preconditioner for saddle point problem.
Appl. Math. Comput. 265, 431–447 (2015)

40. Tang, J., Xie, Y.-J., Ma, C.-F.: A modified product preconditioner for indefinite and asymmetric
generalized saddle-point matrices. Appl. Math. Comput. 43, 49–55 (2015). 268(2015) 303–310

41. Cao, Y., Du, J., Niu, Q.: Shift-splitting preconditioners for saddle point problems. J. Comput. Appl.
Math. 272, 239–250 (2014)

42. Chen, C.-R., Ma, C.-F.: A generalized shift-splitting preconditioner for saddle point problems. Appl.
Math. Lett. 43, 49–55 (2015)

43. Zhang, J.-L., Gu, C.-Q., Zhang, K.: A Relaxed positive-definite and skew-Hermitian splitting
preconditioner for saddle poing problems. Appl. Math. Comput. 249, 468–479 (2014)

44. Benner, P., Li, R.-C., Truhar, N.: On the ADI method for Sylvester equations. J. Comput. Appl. Math.
233, 1035–1045 (2009)

45. Elman, H.C., Ramage, A., Silvester, D.J.: IFISS: a Matlab toolbox for modelling incompressible flow.
ACM Trans. Math. Software 33 (2007). (Article 14)


	A modified positive-definite and skew-Hermitian splitting preconditioner for generalized saddle point problems from the Navier-Stokes equation
	Abstract
	Introduction
	The MPSS preconditioner
	The spectral properties
	Numerical experiments
	Conclusion
	Acknowledgments
	References


