
Numer Algor (2016) 72:57–90
DOI 10.1007/s11075-015-0034-2

ORIGINAL PAPER

Combination of steepest descent and BFGS methods
for nonconvex nonsmooth optimization

Rohollah Yousefpour1

Received: 7 August 2014 / Accepted: 3 August 2015 / Published online: 19 August 2015
© Springer Science+Business Media New York 2015

Abstract In this paper, a method is developed for solving nonsmooth nonconvex
minimization problems. This method extends the classical BFGS framework. First,
we generalize the Wolfe conditions for locally Lipschitz functions and prove that this
generalization is well defined. Then, a line search algorithm is presented to find a step
length satisfying the generalized Wolfe conditions. Next, the Goldstein ε-subgradient
is approximated by an iterative method and a descent direction is computed using a
positive definite matrix. This matrix is updated using the BFGS method. Finally, a
minimization algorithm based on the BFGS method is described. The algorithm is
implemented in MATLAB and numerical results using it are reported.

Keywords Lipschitz functions · Wolfe conditions · Nonsmooth line search
method · Nonsmooth BFGS method

Mathematics Subject Classification (2010) 49J52 · 90C26

1 Introduction

Nonsmooth unconstrained optimization problems arise in many applications includ-
ing control theory, discrete minimax problems, complementarity problems and image
denoising. Several methods for solving nonsmooth nonconvex optimization prob-
lems have been developed based on the Clarke subdifferential. The subgradient-type
methods are the simplest methods for solving convex optimization problems [1]. The

� Rohollah Yousefpour
yousefpour@umz.ac.ir

1 Department of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s11075-015-0034-2-x&domain=pdf
mailto:yousefpour@umz.ac.ir

58 Numer Algor (2016) 72:57–90

bundle-type methods are developed for convex and nonconvex optimization prob-
lems [2–10]. The algorithms based on smoothing techniques are presented in [11,
12]. The discrete gradient (DG) algorithm is considered as a derivative free method
[13, 14]. In the most recent works in [15, 16], the gradient sampling (GS) algorithm
is proposed to solve nonconvex optimization problems.

In methods in which only first order derivative information is employed, the BFGS
method is one of the most efficient methods to solve smooth optimization prob-
lems. However, in the literature, few modifications of quasi-Newton methods have
been developed to solve the nonsmooth nonconvex problems and we review some of
them. In this paper, a new nonsmooth version of BFGS algorithm is developed for
minimizing locally Lipschitz functions.

Since the Moreau-Yosida regularization of a convex function is differentiable
[6], the a Quasi-Newton method can be applied to the Moreau-Yosida regulariza-
tion. In fact, a Quasi-Newton method is combined with the bundle method [6, 8].
Under second-order smoothness assumption, these algorithms converge superlinearly
[22]. However this assumption is strong and quite restrictive. Another drawback
of this class is that the derivative of the regularized function is computed by
convex nonsmooth minimization. More specifically, at each iteration of the Quasi-
Newton method, the bundle method is applied for approximating the gradient of the
regularized function, which is time consuming for the large scale functions.

In [28], the Quasi-Newton method is combined with the bundle method. The
search direction is computed by the aggregated subgradients and by this search direc-
tion, the inverse of Hessian matrix approximation is updated by the BFGS or SR1
method. This class of algorithms was improved for large scale problems in [29, 30]
by using the BFGS limited memory method. Recently, the behavior of the BFGS
method on nonsmooth functions was studied without any modification with exact and
inexact line search [31–33]. The numerical experiments show that the BFGS method
with inexact line search enjoys good behavior for some nonsmooth functions.

When the classical BFGS method is used to minimize a nonsmooth function, the
search direction is selected from the Clarke generalized gradient set. So, there is not
any guarantee that this direction is descent. In [28] and [29, 30], the search direction
is computed by using 3 subgradients and this does not guarantee that the computed
direction is descent. Thus, instead of the smooth BFGS method, the search direction
in the genralized nonsmooth BFGS may be not descent. So this is the main reason
that these methods have poor performance in some nonconvex minimization prob-
lems. For increasing the performance of a generalized BFGS method for nonconvex
minimization problems, the search direction is computed such that it is descent. In
this paper, we propose a minimization algorithm where a descent direction is com-
puted using Goldstein ε-subgradients and a positive definite matrix. Using an idea
similar to those from [13, 36], an algorithm is developed to iteratively approximate
Goldstein ε-subgradients. This procedure computes a descent direction after finite
many iterations. This is the first step for generalized the BFGS method for noncon-
vex functions. Instead of other generaliztion, the developed algorithm in this paper
computes a descent direction.

Numer Algor (2016) 72:57–90 59

In the second step, a line search algorithm must be applied along the computed
direction such that the Wolfe conditions are satisfied. In this paper, the Wolfe condi-
tions are generalized based on the Goldstein ε-subgradient and it will be proven that
there exist step lengths satisfying this generalization for each descent direction. We
modify the smooth line search algorithm [38] for finding a step length satisfying the
generalized Wolfe conditions. The modified line search algorithm also returns two
subgradients for updating the approximation of Hessian matrix by the BFGS method.
The proposed algorithm is implemented in MATLAB and the results are compared
with those obtained using other methods.

In Section 2 some preliminaries are provided. In Section 3, the generalized Wolfe
conditions and a line search algorithm are presented. A procedure for computing
a descent direction is discussed in Section 4. Next, based on BFGS algorithm, a
minimization algorithm is presented. In Section 5, the numerical results are reported.

2 Preliminaries

In this section, some preliminaries are given which will be used throughout the paper.

2.1 Notations

In this paper, Rn is the n-dimensional Euclidian Space. We use B(x, r) as the open
ball around x with radius r . The inner product is denoted by 〈., .〉. ‖x‖ is the norm
of vector x and defined by

√〈x, x〉 and for the positive definite matrix H , we define
‖x‖H = 〈Hx, x〉. Since H is a positive definite matrix, then all of its eigenvalues are
positive [46]. Let λn and λ1 be the largest and smallest eigenvalue of H . Then, we
have [46]

λ1 ‖x‖2 ≤ ‖x‖H ≤ λn ‖x‖2 . (1)
conv(A) is convex hull of a set A.

2.2 Nonsmooth analysis

Let f : R
n → R be a locally Lipschitz function and L be the Lipschitz constant

in some neighborhood of x. The Clarke generalized directional derivative of f at x

in the direction of v, denoted by f ◦(x, v), is defined by

f ◦(x, v) := lim sup
y→x,t↓0

f (y + tv) − f (x)

t
,

and based on this generalization, in [39], the Clarke generalized subdifferential
is defined as follows:

∂f (x) := {
ξ ∈ R

n : f ◦(x, v) ≥ 〈ξ, v〉, ∀v ∈ R
n
}
.

We have [39]
‖ξ‖ ≤ L, ∀ξ ∈ ∂f (x), (2)

60 Numer Algor (2016) 72:57–90

and
f ◦(x, g) = sup

v∈∂f (x)

〈g, v〉. (3)

If f is differentiable at x, then ∇f (x) ∈ ∂f (x) [39]. Furthermore, if F is con-
tinuously differentiable at x, then we have ∂F (x) = {∇F(x)}. By Rademacher’s
Theorem [39], a Lipschitz function is differentiable almost everywhere and, thus the
gradient exists almost everywhere. If x is a minimal point of f , then 0 ∈ ∂f (x).
For each ε > 0, in [35], the Goldstein ε-subdifferential is defined by:

∂εf (x) := conv {ξ : ξ ∈ ∂f (y), y ∈ B(x, ε)} .

If 0 ∈ ∂εf (x), then x is said to be an ε-stationary point. Moreover, let f ◦
ε (x, g) =

supv∈∂εf (x)〈g, v〉 and thus we have f ◦(x, g) ≤ f ◦
ε (x, g). If f ◦(x, g) < 0, then g is

a descent direction, i.e., there exists α > 0, such that

f (x + tg) − f (x) < 0, ∀t ∈ (0, α).

Suppose that f ◦
ε (x, g) < 0 for some ε > 0 and ‖g‖ ≤ 1. Then, by the Lebourg’s

Mean Value Theorem [39], for all t ∈ (0, ε] there exist θ ∈ (0, 1) and ξ ∈ ∂f (x+tθg)

such that
f (x + tg) − f (x) = t〈ξ, g〉 ≤ tf ◦

ε (x, g). (4)

This inequality shows that, when f ◦
ε (x, g) is positive or slightly negative, then it

cannot be guaranteed to reduce f along g. If 0 �∈ ∂εf (x), then we can find a descent
direction. Now, consider the following problem

min‖g‖≤1
f ◦

ε (x, g) = min‖g‖≤1
max

ξ∈∂εf (x)
〈ξ, g〉. (5)

This problem has a solution, which can be computed by solving the following
problem [7],

min
ξ∈∂εf (x)

‖ξ‖ . (6)

If ξ0 is the solution of (6), then g = − ξ0‖ξ0‖ is the solution of (5) and f ◦
ε (x, g) =

− ‖ξ0‖. Let H be a positive definite matrix. In (6), we replace ‖x‖ with ‖x‖H and
thus problem (6) is reduced to:

min
ξ∈∂εf (x)

‖ξ‖H . (7)

The following proposition shows that a descent direction can be computed by
solving Problem (7).

Proposition 2.1 Suppose that ξ0 be the solution of (7) and g = −Hξ0. Then, we
have f ◦

ε (x, g) = −‖ξ0‖H , and there exists α > 0 such that

f (x + tg) − f (x) ≤ tf ◦
ε (x, g), ∀t ∈ (0, α).

Proof Let H = RT R be the Cholesky factorization of H . For all v ∈ R∂εf (x),
there exists ξ ∈ ∂εf (x) such that v = Rξ . So we have ‖v‖2 = 〈Rξ, Rξ〉 = 〈ξ,Hξ〉.
Thus, the following problem

min ‖v‖2 s.t. v ∈ R∂εf (x), (8)

Numer Algor (2016) 72:57–90 61

is equivalent to (7). If ξ0 is the solution of (7), then Rξ0 is the solution of (8). Since
R∂εf (x) is convex, then we have [6]

〈Rξ, Rξ0〉 ≥ 〈Rξ0, Rξ0〉, ∀ξ ∈ ∂εf (x),

and thus
〈ξ,Hξ0〉 ≥ 〈ξ0, Hξ0〉, ∀ξ ∈ ∂εf (x). (9)

Since ξ0 ∈ ∂εf (x), then (9) shows that f ◦
ε (x, g) = − ‖ξ0‖H . Now, suppose that

α = ε
‖g‖ . So, we have x + tg ∈ B(x, ε) for all t ∈ (0, α]. The rest of theorem follows

from the Lebourge’s mean value Theorem.

In subgradient based algorithms, it is assumed that at each point one subgradient
is available. In this paper, we use the same assumption to design an algorithm. If
it is not possible to compute such a subgradient then the algorithm terminates. Let
φ(α) := f (x + αg). We have [39] ∂φ(α) ⊂ 〈∂f (x + αg), g〉, where

〈∂f (x + αg), g〉 = {〈ξ, g〉 : ξ ∈ ∂f (x + αg)} .

The equality holds if f is regular and in general the equality does not hold if f is
not regular. If for all v ∈ R

n, the one-side directional derivative f ′(x, v) exists and
f ′(x, v) = f ◦(x, v), then f is regular at x. In such a case the above formula cannot
be used to compute subgradients of φ. However, according to the above mentioned
assumption we assume that one subgradient of φ is available at any α ≥ 0.

2.3 The BFGS method

Suppose that F is continuously differentiable. Let Hk be a positive definite matrix
and the approximation of its inverse Hessian and ∇F(xk) be its gradient at xk . We
know that g = −Hk∇F(xk) is a descent direction. The approximation of inverse
Hessian can be updated by the BFGS method, when the computed step length sat-
isfies in the Wolfe conditions. For given constants 0 < c1 < c2 < 1 the Wolfe
conditions are formulated as:

F(x + αg) − F(x) ≤ c1α〈∇F(xk), gk〉 (10)

〈∇F(xk + αkgk), gk〉 ≥ c2〈∇F(xk), gk〉. (11)

Consider the following notations:

sk = xk+1 − xk, yk = ∇F(xk+1) − ∇F(xk).

If the step length αk satisfies in the Wolfe conditions, then we have 〈yk, sk〉 > 0.
This inequality is known as secant inequality. If the secant inequality holds, then Hk

can be updated by the BFGS method

Hk+1 = (I − ρksky
T)Hk(I − ρkyks

T
k) + ρksks

T
k ,

where ρk = 1
〈yk,sk〉 .

In nonsmooth case, suppose

wk = arg min
v∈∂εf (xk)

‖v‖Hk
, (12)

62 Numer Algor (2016) 72:57–90

and gk = −Hkwk , where Hk is a positive definite matrix. Let αk be a step length
and xk+1 = xk + αkgk be the next iteration. To update Hk by the BFGS method, we
must select vk ∈ ∂f (xk) and vk+1 ∈ ∂f (xk+1) such that 〈yk, sk〉 > 0, where yk =
vk+1 − vk . We use an approach proposed in [40] where the authors generalized the
Wolfe conditions for nonsmooth convex functions using subgradients. For a convex
function f , since f is regular, then the step length α satisfies the Wolfe conditions if
the following inequalities hold for constants c1 ∈ (0, 1) and c2 ∈ (c1, 1)

f (x + αg) − f (x) ≤ c1α sup
v∈∂f (x)

〈v, g〉 = c1αf
′(x, g),

and

sup
v∈∂f (x+αg)

〈v, g〉 ≥ c2 sup
v∈∂f (x)

〈v, g〉.

In this paper, we generalize the Wolfe conditions for the locally Lipschitz func-
tions by the ε-subdifferential. If ε = 0, then this generalization is the Yu et al.’s
generalization [40]. Then, a line search algorithm is developed based on the gen-
eralized Wolfe conditions which coincide with the Wolfe conditions for smooth
optimization when the objective function is smooth. The proposed line search
algorithm require computation of only one subgradient from ∂f (x) and the full
computation of this set is not necessary.

In this paper, we use the following lemmas from [36].

Lemma 2.1 Let h : R → R be a locally Lipschitz function around r . If h is decreas-
ing in a neighborhood of r , then ξ ≤ 0 for all ξ ∈ ∂h(r), and if ξ < 0 for all
ξ ∈ ∂h(r), then h is decreasing in a neighborhood of r .

Lemma 2.2 If h : R → R is locally Lipschitz and h(b) > h(a) such that a < b,
then there exists θ0 ∈ [a, b] such that h is increasing in a neighborhood of θ0.

3 Line search algorithm

In this section, an approximation of Goldstein ε-subdifferential is used to generalize
the Wolfe conditions for locally Lipschitz functions. Then, we show that there exist
step lengths satisfying these conditions. Finally, an algorithm is presented to find
such step lengths.

3.1 Generalized Wolfe conditions

In this paper, we suppose that H is a positive definite matrix and f : Rn → R is a
locally Lipschitz function. Let W ⊂ ∂εf (x) and

w = arg min
v∈convW ‖v‖H . (13)

Define g = −Hw. Since convW is an approximation of ∂εf (x), then w can be
considered as approximation of (7). Suppose that ξ0 is a solution of (7). Thus by

Numer Algor (2016) 72:57–90 63

Proposition 2.1, − ‖w‖H can be considered as an approximation of f ◦
ε (x, −Hξ0).

Based on an approximation of ∂εf (x), we generalize the Armijo condition.

Definition 3.1 Let f : Rn → R be locally Lipschitz,W ⊂ ∂εf (x),w be the solution
of (13) and g = −Hw. Iff the following inequality holds for a step length α and
fixed constant c1 ∈ (0, 1)

f (x + αg) − f (x) ≤ −c1α ‖w‖H ,

then α satisfies in the generalized Armijo condition (GAC).

If f ◦(x+αg, g) is only slightly negative or even positive, then by (4) f cannot suf-
ficiently be decreased along g with lager step length. This leads to the generalization
of the curvature condition for locally Lipschitz functions as follows.

Definition 3.2 Let f : Rn → R be locally Lipschitz, W ⊂ ∂εf (x), w be the solu-
tion of (13) and g = −Hw. The step length α satisfies in the nonsmooth curvature
inequality, iff the following inequality holds for constant c2 ∈ (c1, 1),

f ◦(x + αg, g) ≥ −c2 ‖w‖H . (14)

Lemma 3.1 Let f : Rn → R be locally Lipschitz, W ⊂ ∂εf (x), w be the solution
of (13) and g = −Hw. If there exists ξ ∈ ∂f (x +αg) such that 〈ξ, g〉 ≥ −c2 ‖w‖H ,
then the nonsmooth curvature inequality holds.

Proof By (3), we have f ◦(x + αg, g) ≥ −c2 ‖w‖H .

Now, we present the generalized Wolfe Conditions (GWC).

Definition 3.3 Let f : Rn → R be locally Lipschitz,W ⊂ ∂εf (x),w be the solution
of (13) and g = −Hw. For constants 0 < c1 < c2 < 1, iff there exist ξ ∈ ∂f (x+αg)

such that 〈ξ, g〉 ≥ −c2 ‖w‖H and the GAC satisfies in α along direction g at x, then
we say that the step length α satisfies the GWC along direction g at x.

Now, we prove that for each descent direction, there exist intervals containing step
lengths satisfying the GWC. Before its proof, we define the following function,

W(α) := f (x + αg) − f (x) + c2α ‖w‖H , (15)

and prove the following lemma.

Lemma 3.2 Let f : Rn → R be locally Lipschitz, W ⊂ ∂εf (x), w be the solution
of (13) and g = −Hw. If W(·) is not decreasing on neighborhood of α, then the
nonsmooth curvature inequality holds at α.

Proof Suppose that W(·) is not decreasing in the neighborhood of α, by Lemma 2.1,
there exists v ∈ ∂W(α) such that v ≥ 0. Since, we have

∂W(α) ⊆ 〈∂f (x + αg), g〉 + c2 ‖w‖H , (16)

64 Numer Algor (2016) 72:57–90

then there exists ξ ∈ ∂f (x + αg) such that v = 〈ξ, g〉 + c2 ‖w‖H . So, 〈ξ, g〉 ≥
−c2 ‖w‖H . Thus, by Lemma 3.1, the nonsmooth curvature inequality holds for all
step lengths which W(·) is not decreasing on their neighborhood.

Proposition 3.1 Let f : R
n → R be locally Lipschitz, W ⊂ ∂εf (x), w be the

solution of (13) and g = −Hw. Suppose that f be bounded below along the ray
{x + αg|α > 0} and there exists a step which satisfied the GAC along the direction
g at x. If 0 < c1 < c2 < 1, then there exist open intervals of step lengths satisfying
the GWC.

Proof Let φ(α) = f (x + αg) and l(α) = f (x) − c1α ‖w‖H . By (4), we have

φ(α) < l(α), for all α ∈ (0, ε). (17)

Since − ‖w‖H < 0 and c1 > 0, then l(α) is unbounded below. On the other hand,
φ(α) is bounded below for all α > 0. Thus, there exists α0 > 0 such that

φ(α) > l(α), for all α ≥ α0. (18)

By (17) and (18), there exists some α > 0 such that φ(α) = l(α). Let α1 > 0
be the smallest value such that φ(α1) = l(α1). Therefore, we have, f (x + α1g) =
f (x) − c1α1 ‖w‖H . Thus, the GAC is satisfied for all α ∈ (0, α1) and we have
f (x + αg) − f (x) ≤ −c1α ‖w‖H . By the similar way, let α2 > 0 be the smallest
value such that W(α2) = 0. Since c1 < c2, then we have α2 < α1. Since W(t) < 0
for all t ∈ (0, α2) and W(0) = W(α2) = 0, then W takes its minimum on (0, α2).
Therefore, there exist some open subintervals in (0, α2) such that W is increasing and
thus v ≥ 0 for all v ∈ ∂W(·) on them. By Lemma 3.2, for some ξ ∈ ∂f (x + αg),
we have 〈ξ, g〉 ≥ −c2 ‖w‖H . Since α2 < α1, then all step length in that subinterval
satisfy the GAC and GWC.

3.2 Nonsmooth line search algorithm

The main idea of the nonsmooth line search algorithm is similar to the smooth version
[38] and it converts to the smooth version, when f is continuously differentiable.
The first stage starts with a trial estimate of α1 and keeps increasing until it finds
either an acceptable step length or an interval that contains acceptable step lengths.
The second stage is started by calling Algorithm 2. This algorithm reduces the size
of the interval until a step length satisfying the GWC is found. Now, we present
the nonsmooth line search algorithm. In the presented algorithms in this subsection,
let W ⊂ ∂εf (x), w be the solution of (13) and g = −Hw. Also assume that ε is
satisfied the GAC along direction g at x. In Section 4, we present Algorithm 4 to
compute such an approximation. To simplify the notations, we define the following
one variable function,

A(α) := f (x + αg) − f (x) + c1α ‖w‖H .

In Algorithm 1, the step lengths {αi} are monotonically increasing, until a step
length or an interval containing a step length satisfying the GWC is found. Suppose
that A(αi) ≥ 0. Since A(αi−1) ≤ 0, then A(αi−1) ≤ A(αi). So, by Lemma 2.2,

Numer Algor (2016) 72:57–90 65

Algorithm 1 Line Search Algorithm

α0 ← 0
α1 ← 1
i ← 1
repeat
if A(αi) ≥ 0 then

α∗ ← Wolfe(αi, αi−1)

STOP
end if
compute ξ ∈ ∂f (x + αig)

such that 〈ξk, g〉 + c2 ‖w‖H ∈ ∂W(tk).
if 〈ξ, g〉 + c2 ‖w‖H ≥ 0 then

α∗ ← αi

STOP
else

αi+1 ← 2αi

end if
end repeat

[αi−1, αi] contains an interval such that A is negative and increasing on this interval.
So, in this interval, the GWC is satisfied and Algorithm 1 invokes Wolfe algorithm.
The following proposition shows that Algorithm 1 is terminated after finitely many
iterations.

Proposition 3.2 Let f : R
n → R be locally Lipschitz, W ⊂ ∂εf (x), w be the

solution of (13) and g = −Hw. Also assume that ε is satisfied the GAC along
direction g at x. If f is bounded below along the ray {x + αg|α > 0}, then Algorithm
1 terminates after finitely many iterations.

Proof Since f (x+αg) is bounded below and f (x)−c1α ‖w‖H is unbounded below,
then there exits ᾱ such that

f (x + αg) > f (x) − c1α ‖w‖H , ∀α > ᾱ,

i.e. A(α) > 0 for all α > ᾱ. Thus, Algorithm 1 terminates after finitely many
iterations.

Now we present the second stage of algorithm.
The following proposition describes the behavior of Algorithm 2.

Proposition 3.3 Let f : R
n → R be locally Lipschitz, W ⊂ ∂εf (x), w be the

solution of (13) and g = −Hw. Also assume that ε is satisfied the GAC along
direction g at x. Either Algorithm 2 terminates after finitely many iterations, or it
generates a sequence of intervals [ak, bk], such that each one contains some subin-
tervals satisfying the GWC and ak and bk converge to a step length t0 > 0. Also,

66 Numer Algor (2016) 72:57–90

Algorithm 2Wolfe Algorithm

k ← 1
ak ← αi−1
bk ← αi

repeat
tk ← ak+bk

2
if A(tk) ≥ 0 then

bk+1 ← tk
ak+1 ← ak

else
compute ξk ∈ ∂f (x + tkg)

such that 〈ξk, g〉 + c2 ‖w‖H ∈ ∂W(tk).
if 〈ξk, g〉 + c2 ‖w‖H ≥ 0 then

α∗ ← t

STOP
else

bk+1 ← bk

ak+1 ← tk
end if

end if
k ← k + 1

end repeat

there exist ζ1, ζ2, ζ3 ∈ ∂f (x + t0g) such that 〈ζ1, g〉 ≤ −c2 ‖w‖H , 〈ζ2, g〉 ≥
−c2 ‖w‖H and 〈ζ3, g〉 ≥ −c1 ‖w‖H .

Proof If the algorithm terminates after finitely many iterations, then there is nothing
to prove. Suppose that the algorithm does not terminate after finitely many iterations.
Since ak and bk are monotone sequence thus they are convergent. On the other hand,
we have bk − ak = b1−a1

2k−1 , thus limk→∞ bk − ak = 0. Therefore, these sequences are
convergent to same point such as t0. We suppose that L is the Lipshitz constance for
f over {x + αg : α ∈ [a1, b1]}.

We prove that ak will be positive after finitely many iterations. Suppose that a1 =
0. Since g is a descent direction, then there exists α > 0, such that A(s) < 0 for
all s ∈ (0, α). If am = 0, then we must have A(tk) > 0 for all k = 1, . . . , m. In
these iterations, we have bk+1 = tk , ak+1 = ak = 0 and tk+1 = bk

2 = αi

2k for all
k = 1, . . . , m. Therefore, after finitely many iterations tk ≤ α. In this iteration, since
A(tk) ≤ 0, then ak+1 = tk .

Let S be all the iterations such that ak+1 = tk . Therefore, 〈ξk, g〉 < −c2 ‖w‖H

for all k ∈ S. We have ‖ξk‖ ≤ L for all k ∈ S. Thus, the sequence {ξk} contains
a convergent subsequence. Therefore, without loss of generality, we can assume this

Numer Algor (2016) 72:57–90 67

sequence is convergent and ζ1 = limk∈S,k→∞ ξk . By the upper semicontinuously of
∂f (·) and tk → t0, we have ζ1 ∈ ∂f (x + t0g) and 〈ζ1, g〉 ≤ −c2 ‖w‖H .

Since ak < bk , A(ak) < 0 and A(ak) < A(bk), then by Lemma 2.2, A(·) contains
a step length rk such that A(·) is increasing on its neighborhood and A(rk) < 0. On
the other hand, c1 < c2, therefore W(·) is also increasing in a neighborhood of rk .
Therefore, the GWC is satisfied at rk . If 〈κk, g〉 + c2 ‖w‖H ∈ ∂W(rk) for some κk ∈
∂f (x + rkg), then by lemma 2.1 〈κk, g〉 + c2 ‖w‖H ≥ 0. Since {κk} has a convergent
subsequence, then without loss of generality, suppose that ζ2 = limk→∞ κk . Since
∂f (·) is upper semicontinuous and rk → t0, then ζ2 ∈ ∂f (x + t0g) and we have
〈ζ2, g〉 ≥ −c2 ‖w‖H . Since A(·) is increasing on a neighborhood of rk , then v ≥ 0
for all v ∈ ∂A(rk). Thus, we have 〈ηk, g〉 ≥ −c1 ‖w‖H , for all ηk ∈ ∂f (x + rkg)

such that 〈ηk, g〉 + c1 ‖w‖H ∈ ∂A(rk). Since {ηk} has a convergent subsequence,
then without loss of generality, suppose that ζ3 = limk→∞ ηk . Since rk → t0, then
ζ3 ∈ ∂f (x + t0g) and we have 〈ζ3, g〉 ≥ −c1 ‖w‖H .

Corollary 3.1 Assume that all assumptions of Proposition 3.3 are satisfied and f

is continuously differentiable almost everywhere. If Algorithm 2 does not terminate
after finitely many iterations and the sequence {tk} converges the step length t0, then
t0 belongs to a set with zero measure.

Proof Suppose that Algorithm 2 does not terminate after finitely many iterations
and converges to t0. If f is continuously differentiable at t0, then

∂f (x + t0g) = {〈∇f (x + t0g)} . (19)

So, by Proposition 3.3 and (19), we have

〈∇f (x + t0g), g〉 ≥ −c1 ‖w‖H and 〈∇f (x + t0g), g〉 ≤ −c2 ‖w‖H .

These relations are in contradiction with c1 < c2. So, if Algorithm 2 does not
terminate after finitely many iterations, then f is not continuously differentiable
at t0. On the other hand, f is not continuously differentiable in a set with zero
measure.

Now, we show that Wolfe algorithm terminates after finitely many iterations for
semismooth functions.

Corollary 3.2 Assume that all assumptions of Proposition 3.3 are satisfied and f is a
semismooth function. Then Wolfe algorithm terminates after finitely many iterations.

Proof Suppose that Wolfe algorithm does not terminate after finitely many iterations
and converges to t0. In each iterations, we have A(ak) < 0 and A(bk) ≥ 0. On the
other hand, ak and bk converge to t0. Thus

A(t0) = 0. (20)

68 Numer Algor (2016) 72:57–90

Let S be the set of all indices such that ak+1 = tk . We show that S is an infinite set.
By contrary, if S is finite, then there exist k0 such that ak0+1 = tk0 and bk+1 = tk for
all k > k0. Thus, we have t0 = limk→∞ tk = ak0+1. Therefore, A(t0) = A(ak0+1) <

0 and this is in contradiction with (20). Therefore, S is an infinite set. Since f is
semismooth, then f is directionally differentiable and f ′(x, g) = f ◦(x, g) [9]. Also,
we have

lim
k → ∞

vk ∈ ∂f (x + lk g)

lk ↓ 0

〈vk, g〉 = f ′(x, g). (21)

The nonsmooth curvature does not satisfy at tk . Thus, we have 〈ξk, g〉 <

−c2 ‖w‖H for all k ∈ S where ξk ∈ ∂f (x + tkg). Since ak ≤ t0, then by (21) we have
limk∈S,k→∞〈ξk, g〉 = f ′(x + t0g, −g). Thus

f ′(x + t0g, −g) ≤ −c2 ‖w‖H . (22)

Since A(ak) < 0 and A(t0) = 0, then by Lemma 2.2 there exists rk ∈ (ak, t0) such
that A(·) is increasing on its neighborhood. Therefore, by Lemma 2.1, ξ > 0 for all
ξ ∈ ∂A(rk). Hence, for some ηk ∈ ∂f (x + rkg), we have 〈ηk, g〉 ≥ c1 ‖w‖H . Since
rk ≤ t0, then by (21) we have limk→∞〈ηk, g〉 = f ′(x + t0g, −g). Thus

f ′(x + t0g, −g) ≥ −c1 ‖w‖H . (23)

This is in contradiction with (22). Since c1 < c2. Therefore, Wolfe algorithm
must be terminated after finitely many iterations.

If Wolfe algorithm does not terminate after finitely many iterations, then W(·) has
infinite number of extremum point in [a1, b1]. Otherwise by Proposition 3.5, Wolfe
algorithm terminates after finitely many iterations. Similar situation may happen in
the smooth case, for example [41, Theorem 2.3] and [42, Theorem 2.1]. Let F :
R

n → R be a continuously differentiable function and g be a descent direction at x.
Define ψ(α) = F(x + αg) − F(x) − c2α〈∇F(x), g〉. If the line search algorithm
does not terminate after finitely many iterations, then the sign of ψ ′(α) is changed
in infinite number of times, i.e., ψ(α) has infinite number of the local extremum.
The line search algorithm converges to α∗ such that ψ ′(α∗) = 0. A similar result for
locally Lipschitz functions is proven in Proposition 3.4. But here by Corollary 3.1,
we prove that in smooth functions, the line search algorithm must be terminated after
finitely many iterations.

Proposition 3.4 Assume that all assumptions of Proposition 3.3 are satisfied and
Algorithm 2 does not terminate after finitely many iterations and converges to t0.
Then 0 ∈ 〈∂f (x + t0g), g〉 + c2 ‖w‖H .

Proof By Proposition 3.3 there exist η1, η2 ∈ ∂f (x + t0g) such that 〈ζ1, g〉 ≤
−c2 ‖w‖H and 〈ζ2, g〉 ≥ −c2 ‖w‖H . Let s1 = 〈ζ2, g〉 + c1 ‖w‖H and s2 = 〈ζ3, g〉 +

Numer Algor (2016) 72:57–90 69

c1 ‖w‖H . We have s1, s2 ∈ 〈∂f (x + t0g), g〉 + c2 ‖w‖H . Since s1 ≤ 0, s2 ≥ 0 and
〈∂f (x + t0g), g〉 + c2 ‖w‖H is convex, then 0 ∈ 〈∂f (x + t0g), g〉 + c2 ‖w‖H .

If f does not has an infinite number of local extremal points in any bounded
set, then there exist finitely many subintervals such that W(·) is increasing on there.
Commonly, functions have this property. By this assumption, we can prove that
this algorithm terminates after finitely many iterations for any locally Lipschitz
function.

Proposition 3.5 Assume that all assumptions of Proposition 3.3 are satisfied and
W(·) has a finite number of local extremal points in any bounded set, then Algorithm
2 terminates after finitely many iterations.

Proof Since W has a finite number of local extremal points on (αi, αi+1], then
it is increasing on a finite number of subintervals in (αi, αi+1]. Let dε > 0 be
the shortest length of subinterval in (αi, αi+1] on which W is increasing. In each
iteration, the length of [ak, bk] is divided in two, so after k iterations we have
bk − ak = αi−αi−1

2k−1 . Since W(bk) > W(ak) and bk > ak , then (ak, bk) includes at
least a subinterval on which W is increasing. After finitely many iterations, such as
k, we have bk − ak ≤ dε. On the other hand, dε is the shortest length of subinter-
val on which W is increasing. Therefore, at iteration k, W is increasing on tk . Thus,
by Lemma 2.1, 〈ξk, g〉 + c2 ‖w‖H ≥ 0. Hence, the algorithm terminates after k

iterations.

In [9] based on the smooth line search algorithm, a line search algorithm is devel-
oped for semismooth functions. In this algorithm, two parameters are updated in each
iterations. If the step length satisfies the Armijo condition the first parameter, tL, is
updated. The second parameter, tR , is updated, when the step length satisfied the cur-
vature condition. Thus tR and tL will be equal if the step length satisfied the Wolfe
conditions.This algorithm terminates, when tR − tL is less than a threshold. By this
condition, the finite termination of the line search algorithm is proved for semis-
mooth functions. In this paper, we show that the smooth line search algorithm can be
applied to locally Lipschitz functions by replacing the directional derivative by the
generalized directional derivative. Also, the Wolfe conditions are generalized and we
show that at each iteration of line search algorithm there is a step length, which sat-
isfies this generalization. In this paper by Corollary 3.2, the finite termination of the
line search algorithm is proved for semismooth functions.

In the finite precision arithmetic, if the length of interval [ak, bk] is too small, then
two function values f (x + akg) and f (x + bkg) may be indistinguishable. So, in
practice, Algorithm 2 must be terminated after finitely many iterations [38]. In our
numerical experiments, Algorithm 2 terminates after 30 iterations. If Algorithm 2
does find a step length satisfying the GWC, then we select a step satisfying the GAC.
Since A(ak) < 0, then we set ak as a step length. In this case, the step length does
not satisfy the GWC. Thus, the approximation of inverse Hessian cannot be updated.

70 Numer Algor (2016) 72:57–90

In such iterations, the approximation of inverse Hessian is initialized by the identity
matrix.

4 Combining the steepest descent method by the BFGS algorithm

In Proposition 2.1, we show that a descent direction can be computed by the solution
of (7). Since it is not always possible to compute the whole set ∂εf (·) then, ∂εf (x)

is approximated and based on its approximation a descent direction is computed. In
this section, we present an algorithm for computing a descent direction based on a
positive definite matrix and ∂εf (x). At each iteration, an approximation of ∂εf (x)

is improved by adding a new element. We prove that this algorithm terminates after
finitely many iterations. The nonsmooth line search algorithm is applied along this
direction and a step length satisfying the GWC is computed. We discuss how the
positive definite matrix is updated by the BFGS method and subgradients. Finally,
the convergence of the minimization algorithm is proven.

4.1 Computing descent direction

We approximate ∂εf (x) by the convex hull of the finite number of ε-subgradients.
More exactly, if Wk = {v1, v2, . . . , vk} ⊂ ∂εf (x) then we consider convWk as an
approximation of ∂εf (x). Therefore, the solution of the following problem is an
approximation of the solution of (7),

wk = arg min
v∈convWk

‖v‖H . (24)

Since convWk is an approximation of ∂εf (x), then wk is an approximation of ξ0 in
(7). On the other hand, we have f ◦

ε (x, g) = − ‖ξ0‖H , therefore− ‖wk‖H can be con-
sidered as an approximation of f ◦

ε (x, g). Equation (24) is equivalent to a quadratic
programming problem and there exist several efficient methods for computing its
solution [43–45]. We use the method described in [45]. Set g = −Hwk; if we have

f (x + εg) − f (x) ≤ −c1ε ‖wk‖H , (25)

for some constant c1 ∈ (0, 1), then convWk is an acceptable approximation of
∂εf (x). If the sufficient decrease (25) is not satisfied, then convWk (which is an
approximation of ∂εf (x)) must be improved by adding a new element of ∂εf (x)

into Wk , such that this element does not belongs to convWk . How to select such an
element is described in the following proposition.

Proposition 4.1 Suppose that f : R
n → R is a Locally Lipschitz function, 0 �∈

∂εf (x), Wk is a collection of k elements of ∂εf (x), wk = argminv∈convWk
‖v‖H and

g = −Hwk . If (25) is not satisfied, then there exists v ∈ ∂f (x + εg) such that
v �∈ convWk .

Numer Algor (2016) 72:57–90 71

Proof Since (25) is not satisfied, the we have A(ε) > 0. On the other hand, A(0) =
0. Therefore, by Lemma 2.2, there exists α ∈ (0, ε) such that A is increasing on
its neighborhood. Since A is increasing on a neighborhood of α, then ξ ≥ 0 for all
ξ ∈ ∂A(α). We have

∂A(α) ⊆ 〈∂f (x + αg), g〉 + c1 ‖wk‖H ,

thus

〈−v, Hwk〉 ≥ −c1 ‖wk‖H (26)

for all v ∈ ∂f (x + αg), where 〈v, g〉 + c1 ‖wk‖H ∈ ∂A(α). Consider the Cholesky
factorization of H , i.e., H = RT R. Since RconvWk is convex and Rwk is its element
with minimum norm, then

〈Hwk, v〉 = 〈Rwk, Rv〉 ≥ ‖wk‖H , for all v ∈ convWk. (27)

Therefore, by (27) and (26) we have v �∈ convWk , for all v ∈ ∂f (x + αg) such that
〈v, g〉 + c1 ‖wk‖H ∈ ∂A(α).

To improve convWk as an approximation of ∂εf (x), by Proposition 4.1, we need
to find a point in (0, ε] such that A is increasing on that neighborhood. Now, an
algorithm is presented to find such a point. The idea of this algorithm is similar to
Algorithm 2. Let Wk be a finite subset of ∂εf (x),

wk = arg min
v∈convWk

‖v‖H ,

and suppose that (25) is not satisfied. Similar to Algorithm 2, in each iteration of
the following algorithm, we have an interval, which contains a point which A is
increasing on its neighborhood and the interval length is halved. The algorithm starts
with the initial interval, [0, ε] such thatA(0) = 0 andA(ε) > 0. Thus, by Lemma 2.2,
[0, ε] contains a point, which A is increasing on its neighborhood. In each iteration,
we have an interval [a, b] such that A(a) < A(b) and a < b, therefore it contains
a point, which A is increasing on its neighborhood. When A(·) is increasing on a
neighborhood of t , then by Lemma 2.1 〈v, g〉 + c1 ‖wk‖H ≥ 0 for all v ∈ ∂f (x +
tg) such that 〈v, g〉 + c1 ‖wk‖H ∈ ∂A(t). If at any iteration 〈v, g〉 + c1 ‖wk‖H ≥
0, then by Proposition 4.1 v �∈ convWk and Algorithm 3 is terminated. Now, we
present an algorithm to find a point belonging to (0, ε] such that A is increasing on
its neighborhood.

Remark 4.1 If ‖g‖ ≤ 1, then v ∈ ∂εf (x). Otherwise, we define

g = g

‖g‖ , c = c1

‖g‖ , (28)

and A(t) = f (x + tg) − f (x) + tc ‖wk‖H . If A is increasing on a neighborhood α,
then

〈v, g〉 + c‖wk‖H ≥ 0, (29)

72 Numer Algor (2016) 72:57–90

Algorithm 3 Finding increasing point

b ← ε

a ← 0
t ← b

repeat
compute v ∈ ∂f (x + tg) such that 〈v, g〉 + c1 ‖wk‖H ∈ ∂A(t)

if 〈v, g〉 + c1 ‖wk‖H ≥ 0 then
STOP

else if A(b) > A(t) then
a ← t

else
b ← t

end if
t ← a+b

2
end repeat

for all v ∈ ∂f (x+αg) and some α ∈ (0, ε]. By (28) and (29), 〈v, g〉+c1 ‖wk‖H ≥ 0.
This inequality shows that v �∈ convWk and v ∈ ∂εf (x). Thus, without loss of
generality, we can assume that v ∈ ∂εf (x) for all v ∈ ∂f (x + αg) and α ∈ (0, ε].

This algorithm is similar to Algorithm 3 in [36]. The following proposition shows
the behavior of algorithm.

Proposition 4.2 [36] Let f : Rn → R be locally Lipschitz. Either Algorithm 3 ter-
minates after finitely many iterations, or it generates a sequence of intervals [ak, bk],
each one containing some subintervals on which A is increasing. These intervals
converge to a step length t0 > 0 such that 0 ∈ ∂A(t0).

If A(·) does not have an infinite number of local extremal points in [0, ε], then
similar to Proposition 3.5, we can prove that this algorithm terminates after finitely
many iterations. Practically, for small ε > 0, applying Algorithm 3 is not costly. We
have observed in our numerical experiments that since A(·) does not usually have a
local extremum on (0, ε], then most often the algorithm terminates after one iteration
[36].

Now, we present an algorithm to find a descent direction. In each iteration of this
algorithm, the approximation of ∂εf (x) is improved by adding a new element and
the algorithm terminates, when (25) is satisfied. If H is the identity matrix, then
Algorithm 4 converts to Algorithm 4.1 in [36]. Now, we present the algorithm as
following, Now, the following proposition shows that Algorithm 4 terminates after
finitely many iterations and its proof is similar to [13, Theorem 6.1.].

Numer Algor (2016) 72:57–90 73

Algorithm 4 Computing descent direction

Step 0: (Initialize)
Let v1 ∈ ∂f (x) and δ, c1, ε ∈ (0, 1). Set W1 = {v1} and let l = 1.

Step 1: (Compute a descent direction)
Solve the following minimization problem and let

wl = arg min
v∈convWl

‖v‖H , (30)

If ‖wl‖H ≤ δ then stop else let gl+1 = −Hwl .

Step 2: (Stopping condition)
If

f (x + εgl+1) − f (x) ≤ −c1ε ‖wl‖H , (31)

then Stop.

Step 3: (Improve upon the approximation of ∂εf (x))
Apply Algorithm 3 at point x along direction gl+1 and interval (0, ε].
Suppose that Algorithm 3 returns α ∈ (0, ε] and v ∈ ∂f (x + αg) such
that 〈v, g〉+c1 ‖wk‖H ≥ 0. We have v �∈ convWl . Set vl+1 = v, Wl+1 =
Wl ∪ {vl+1} and l = l + 1. Go to Step 1.

Proposition 4.3 Let f : Rn → R be a locally Lipschitz function and for the point
x1 ∈ R

n, the level set M = {x : f (x) ≤ f (x1)} be bounded. Then, for each x ∈ M ,
Algorithm 4 terminates after finitely many iterations.

Proof Let L be a Lipschitz constant for f in M . If the stoping condition is not
satisfied, based on Algorithm 3, we have vk+1 �∈ convWk and

〈vk+1, Hwk〉 ≤ c1 ‖wk‖H . (32)

Now, condition (31) is not satisfied after finitely many iterations, for some m we
have ‖wm‖H ≤ δ and therefore the algorithm terminates. Let RT R be the Cholesky
factorization of H . Since wk+1 is an element of RconvWk+1 with minimal norm,
then for all t ∈ (0, 1) and vk+1 ∈ convWk+1 we have,

‖wk+1‖H ≤ ‖tvk+1 + (1 − t)wk‖H

= ‖wk + t (vk+1 − wk)‖H

= 〈wk + t (vk+1 − wk) , H (wk + t (vk+1 − wk))〉
= 〈wk, Hwk〉 + t2〈vk+1 − wk, H (vk+1 − wk)〉 − 2t〈wk, H (vk+1−wk)〉
= ‖wk‖H + 2t〈wk, H (vk+1 − wk)〉 + t2 ‖vk+1 − wk‖H

= ‖wk‖H + 2t (〈wk, Hvk〉 − ‖wk‖H) + t2 ‖vk+1 − wk‖H .

74 Numer Algor (2016) 72:57–90

By (1), we have ‖vk+1 − wk‖H ≤ λn ‖vk+1 − wk‖2. Since vk+1, wk ∈ ∂εf (x),
then by (2) we have ‖vl+1 − wk‖ ≤ 2L. Thus, ‖vk+1 − wk‖H ≤ 4λnL

2. Now, by
(32),

‖wk+1‖H ≤ ‖wk‖H − 2t (1 − c1) ‖wk‖H + 4t2λnL
2.

By (1) and (2), we have ‖wk‖H ≤ λnL
2. Let t = (1−c1)

λn(2L)2
‖wk‖H ∈ (0, 1). For

given δ ∈ (0,min(L, λn)) and for all ‖wk‖H > δ, we have,

‖wk+1‖H ≤
(
1 − ‖wk‖H

(1 − c1)
2

λn(2L)2

)
‖wk‖H

≤
(
1 − (1 − c1)

2δ

λn(2L)2

)
‖wk‖H .

Define r = 1− (1−c1)
2δ

λn(2L)2
. Since λnL

2 > δ, then r ∈ (0, 1). So, for all ‖wk‖H > δ,
we have,

‖wk+1‖H ≤ r ‖wk‖H ≤ · · · ≤ rk ‖w1‖H ≤ λnr
kL2.

Therefore, after finitely many iterations, we have ‖wk+1‖H ≤ δ and the algorithm
terminates.

4.2 Minimization algorithm

To update the approximation of inverse Hessian, we need a pair of subgradients from
∂f (x) and ∂f (x + αg) such that the secant equation is satisfied. How to select these
subgradients is described in the following proposition.

Proposition 4.4 Let f : R
n → R be a locally Lipschitz function and convWk be

an approximation of ∂εf (x). Suppose that wk = argminv∈convWk
‖v‖H and g =

−Hwk satisfying in (25). If the line search algorithm returns the step length α and
subgradient ξ , then 〈ξ, g〉 ≥ c1〈v, g〉 for all v ∈ convWk and

〈ξ − v, g〉 > 0.

Proof Let H = RT R be the Cholesky factorization of H . Since Rwk is the ele-
ment of RconvWk with the minimum norm, then for all v ∈ convWk we have
〈Rv, −Rwk〉 ≤ 〈Rwk, −Rwk〉. Thus

〈v, −Hwk〉 = −vT Hwk

= vtRT Rwk

= 〈Rv, −Rwk〉
≤ 〈Rwk, −Rwk〉
= − ‖wk‖H ,

Numer Algor (2016) 72:57–90 75

On the other hand, we have 〈ξ,−Hwk〉 ≥ −c1 ‖wk‖H , thus 〈ξ,−Hwk〉 ≥
c1〈v,−Hwk〉 for all v ∈ convWk . This gives

〈ξ − v,−Hwk〉 ≥ (c1 − 1)〈v, −Hwk〉 ≥ (1 − c1) ‖wk‖H > 0.

Suppose that Algorithm 4 is applied at point x and it returns the descent direction
g and convWl as an approximation of ∂εf (x). We apply the line search algorithm at x
along direction g. The line search algorithm returns a step length α and a subgradient
ξ ∈ ∂f (x + αg). Proposition 4.4 shows that ξ and each element of convWk satisfies
the secant equation. Thus, H can be updated using the BFGS method with ξ and an
element of convWk . In the implementation of the minimization algorithm, we use the
ξ and v1 ∈ Wl , which Algorithm 4 is initialized v1, for updating the approximation
of inverse Hessian. Now, we present the nonsmooth version of BFGS algorithm.

In Algorithm 5, we have two loops, outer and inner loop. In the inner loop,
∂εk

f (xm
k) is approximated by Algorithm 4 and descent direction is computed. When∥∥wm

k

∥∥ ≤ δk , then parameters must be updated. In Theorem 3, we show that
the inner loop is terminated after finitely many iterations. The outer loop iterates
infinitely. But in the practice, the outer loop terminates when δk is less than a
threshold.

Now, we show that secant equation is satisfied in Step 4 of Algorithm 5. The line
search algorithm returns vm+1

k such that 〈vm+1
k , gm

k 〉 ≥ −c2
∥∥wm

k

∥∥
Hm

k
and since Rwm

k

is an element of RconvWm
k with minimal norm, then we have

〈vm
k , gm

k 〉 = 〈vm
k , Hn

k wm
k 〉 ≤ − ∥∥wm

k

∥∥
Hm

k
.

Thus,

〈y, s〉 = α〈vm+1
k − vm

k , gm
k 〉 ≥ α

(
−c2

∥∥wm
k

∥∥
Hm

k
+ ∥∥wm

k

∥∥
Hm

k

)

= α(1 − c2)
∥∥wm

k

∥∥
Hm

k
> 0.

This equation shows that the approximation of inverse Hessian can be updated by
the BFGS method.

Remark 4.2 To prove the global convergence of the minimization algorithm, it is
required that Hk is bounded. Thus, if the following equation is satisfied,

〈wm
k , Hm

k wm
k 〉 < σ

∥∥wm
k

∥∥2 ,

then we set Hm
k = Hm

k + σIn and gm
k = gm

k − σwm
k , where σ ∈ (0, 1). By this

modification, we have 〈wm
k , Hm

k wm
k 〉 ≥ σ

∥∥wm
k

∥∥2.

The following theorem shows that every accumulation point of the sequence {xk},
generated by Algorithm 5, belongs to the set X = {x ∈ R

n : 0 ∈ ∂f (x)}. The proof
is similar to [13, Theorem 6.2].

76 Numer Algor (2016) 72:57–90

Algorithm 5Minimization algorithm

Step 0 (Initialization)
Let x1 ∈ R

n, v11 ∈ ∂f (x1), θε, c1, θδ , ε1, δ1 ∈ (0, 1), H1 = In×n, c2 ∈
(c1, 1) and set k = 1, where In×n is the identity matrix.

Step 1 (Set new parameters)
Set m = 1, Hm

k = Hk and xm
k = xk .

Step 2 (Compute descent direction)
Apply Algorithm 4 at point xm

k , with H = Hm
k , v1 = vm

k , δ = δk

and ε = εk . Let nm
k be the number of iterations needed for termina-

tion of Algorithm 4 and let
∥∥wm

k

∥∥
Hm

k
= min

{‖w‖Hk
: w ∈ convWm

k

}
. If

∥∥wm
k

∥∥
Hk

= 0 then Stop else let gm
k = −Hm

k wm
k be the descent direction.

Step 3 (Line search)
If the stopping condition (31), as given in Algorithm 4, is not satisfied
then go to Step 5, else apply Algorithm 1. If Algorithm 2 terminates
successfully, then α is the line search parameter satisfying the GWC and
vm+1
k ∈ ∂εf (xm

k +αgm
k) is a vector such that 〈vm+1

k , gm
k 〉+c2

∥∥wm
k

∥∥
Hm

k
>

0, else α is the line search parameter satisfying the GAC. Construct the
next iterate xm+1

k = xm
k + αgm

k and go to Step 4.

Step 4 (BFGS update)
IfAlgorithm 2 terminates successfully, then set s = αgm

k , y = vm+1
k −vm

k

and

Hm+1
k = Hm

k − Hm
k yyT Hm

k

〈y, Hm
k y〉 + ssT

〈y, y〉 ,

else set Hm+1
k = I . Set m = m + 1 and go to Step 2.

Step 5 (Update parameters)
Set εk+1 = εk × θε, δk+1 = δk × θδ , xk+1 = xm

k , Hk+1 = Hm
k and let

k = k + 1. Go to Step 1.

Theorem 4.1 Let f : Rn → R be a locally Lipschitz function. If the level set

M = {x : f (x) ≤ f (x1)} ,

is bounded, then either Algorithm 5 terminates finitely at some k0 and m0 with∥∥∥w
m0
k0

∥∥∥ = 0 or every cluster point of the sequence {xk}, generated by Algorithm 5,

belongs to the set X = {x ∈ R
n : 0 ∈ ∂f (x)}.

Proof If the algorithm terminates after finitely many iterations at some k0 and
m0, then we have 0 ∈ ∂εk

f (x
m0
k0

). Therefore, x
m0
k0

is an ε-subdifferential station-
ary point. Now, suppose that the algorithm does not terminate after finitely many

Numer Algor (2016) 72:57–90 77

iterations. Since M is bounded and f is locally Lipschitz, then we have, f ∗ =
inf {f (x) : x ∈ R

n} > −∞. At each point xm
k , we apply Algorithm 4. By Proposi-

tion 4.3, this algorithm is terminated after finitely many iterations. Either it returns
the descent direction gm

k = −Hm
k wm

k such that (31) is satisfied, or
∥∥wm

k

∥∥ ≤ δk . First,
for each k, we show that there exists mk > 0 such that

∥∥w
mk

k

∥∥
H

mk
k

≤ δk . By the

contradiction, suppose that
∥∥wm

k

∥∥
Hm

k
> δk for all m, then Proposition 4.3 shows that

Algorithm 4 returns the descent direction gm
k = −Hm

k wm
k , such that (31) is satisfied

for all m. So, the line search algorithm is applied for all m and a step length α is
computed. Since A(εk) ≤ 0, then α ≥ εk . Thus, we have

f (xm+1
k) − f (xm

k) ≤ −c1α
∥∥wm

k

∥∥
Hm

k

≤ −c1εk

∥∥wm
k

∥∥
Hm

k
. (33)

On the other hand,
∥∥wm

k

∥∥
Hm

k
> δk , thus lim

m→∞ f (xm
k) = −∞. This is in contradiction

with the fact that f (xm
k) ≥ f ∗ > −∞. Therefore, for each k, there is mk > 0 such

that
∥∥w

mk

k

∥∥
H

mk
k

≤ δk . Hence, after finitely many iterations, xk+1 = x
mk

k and we have

min
{
‖v‖

H
mk
k

: v ∈ convWmk

k

}
≤ δk. (34)

Also, in the iteration mk , parameters are updated. Thus, we have δk+1 = δk × θδ

and εk+1 = εk×θε. Since θδ, θε ∈ (0, 1), then δk and εk converge to 0, when k → ∞.
Since {xk} ⊆ M and M is bounded, then {xk} has an accumulation point, namely x∗
and there exists a subsequence

{
xki

}
such that xki

→ x∗ as ki → ∞. On the other
hand, we have,

convW
mki

ki
⊆ ∂εki

f (x
mki

ki
). (35)

Now, by (34) and (35), we have,

∥∥w∗
ki

∥∥
H

mki
ki

= min

{
‖v‖

H
mki
ki

: v ∈ ∂εki
f (xki

)

}
≤ δki

.

Since δki
→ 0 as ki → ∞, then we have limki→∞

∥∥∥w∗
ki

∥∥∥
H

mki
ki

= 0. By

Remark 4.2, we have
∥∥∥w∗

ki

∥∥∥
H

mki
ki

≥ σ

∥∥∥w∗
ki

∥∥∥
2
. Therefore limki→∞

∥∥∥w∗
ki

∥∥∥ = 0.

Thus, limki→∞ w∗
ki

= 0. On the other hand, there exists yki
∈ B(xki

, εki
) such that

w∗
ki

∈ ∂f (yki
). Since ∂f (·) is upper semicontinuous and yki

→ x∗, then 0 ∈ ∂f (x∗)
and this completes the proof.

5 Numerical experiments

In this section, we implement Algorithm 5, denoted by “NBFGS”, and compare the
results with some other nonsmooth optimization algorithms. All the algorithms are

78 Numer Algor (2016) 72:57–90

Fig. 1 Performance profiles for tested algorithms in dimensions n = 10, for first classes of problems

being implemented in MATLAB R2007b. The number of subgradient evaluations is
considered as the measure of an algorithm efficiency. Also, we take the advantages
of the performance profile of Dolan and More in [48] to have a better comparison
between the implemented algorithms. Two classes of test functions are used to mea-
sure the efficiency of the considered algorithms. The first class of test problems is
taken from [29] and the second one is the TEST29 taken from [47]. In the numerical
experiments, we see that the second class of problems is harder than the first class.

Numer Algor (2016) 72:57–90 79

Fig. 2 Performance profiles for tested algorithms in dimensions n = 10, for second classes of problems

Thus, we compare the performance of algorithms for each class of problems sepa-
rately. The test problems are introduced in Table 1. 10 randomly generated starting
points were used for each test problem and we report the number of successful runs
of each algorithm.

In the smooth line search, c1 and c2 are initialized with 10−4 and 0.9. Here, we
also set these parameters with the same values. The algorithm is tested with different

80 Numer Algor (2016) 72:57–90

Fig. 3 Performance profiles for tested algorithms in dimensions n = 100, for first classes of problems in
the same column

values of parameters and the values are chosen that give the best results for the all
test problems. We set ε = 10−6, θε = .1, δ1 = 10−6, θδ = 1, and σ = 10−12. If any
the following condition satisfies,

– εk <= 10−15,
–

∥∥wm
k

∥∥ ≤ 10−6,
– the number of the function evaluation exceeds 1000000,

Numer Algor (2016) 72:57–90 81

Fig. 4 Performance profiles for tested algorithms in dimensions n = 100, for second classes of problems
in the same column

then Algorithm 5 terminates.
We compare the presented algorithm with the variable metric bundle method

(PVAR) [27, 28], Limited-Memory Bundle Method (LMBM) [29], MY method [36],
gradient sampling method (GS) [15], Shor-R algorithm [1], smooth BFGS method
and Limited-Memory BFGS method (LBFGS) [38].

82 Numer Algor (2016) 72:57–90

Fig. 5 Performance profiles for tested algorithms in dimensions n = 1000, for first classes of problems
in the same column

In the performance profile, we say an algorithm is successfully solve a problem,
if the following inequality satisfies,

|fmin − f∗|
|fmin| + 1

≤ ε,

where, fmin is the global minimizing value and Algorithm 3 returns f∗ as approx-
imation of fmin. We use three tolerances ε = 10−4, 10−5 and the number of

Numer Algor (2016) 72:57–90 83

Fig. 6 Performance profiles for tested algorithms in dimensions n = 1000, for second classes of problems
in the same column

subgradient evaluations as a performance measure. Since the number of function
evaluations is equal to the number of subgradient evaluations in the all methods,
then we use the number of subgradient evaluations and show the results in Figs. 1,
2, 3, 4, 5 and 6. In these figures, each row shows the different optimality thresh-
olds, ε = 10−3, 10−4 and 10−5 for the first, second and third rows respectively and

84 Numer Algor (2016) 72:57–90

Table 1 Test problems and
their optimal value for n = 1000 No. problem convex optimal value

First class of problems

1 MAXQ + 0

2 MAXHILB + 0

3 LQ + −1.41279e+003

4 CB3I + 1998

5 CB3II + 1998

6 NACTFACES − 0

7 Brown 2 − 0

8 Mifflin 2 − −7.06503e+002

9 Crescent I − 0

10 Crescent II - 0

Second class of problems

11 problem 2 from TEST29 + 0

12 problem 5 from TEST29 + 0

13 problem 6 from TEST29 + 0

14 problem 11 from TEST29 + 1.20312e+004

15 problem 13 from TEST29 + 5.66131e+002

16 problem 17from TEST29 − 0

17 problem 19 from TEST29 − 0

18 problem 20 from TEST29 − 0

19 problem 22 from TEST29 − 0

20 problem 24 from TEST29 − 0

each column shows performance profiles for the first and second class of problems
respectively. We set ε = 10−4 and run each algorithm for 10 fixed random start-
ing points for dimension 10, 50 and 100. For each algorithm, the number of number
of unsuccessful runs are reported in Table 2 for each problem and the average num-
ber of subgradient evaluations for each successful implementation are reported in
Table 3.

For small dimensions, the numerical experiments show that all of the tested algo-
rithm have an acceptable behavior. But, some of these algorithms are not efficient
for high-dimensional problems. Specially, this is more evident for nonconvex prob-
lems. The numerical results shown that the NBFGS and BFGS methods have the
same behavior for some test problems and the NBFGS method has better efficiency
in nonconvex problems. The computed search direction is the main reason for the

Numer Algor (2016) 72:57–90 85

Table 2 Each column of table shows the number of unsuccessful runs for each algorithm in dimension
10, 50 and 100 respectively. The starting points are fixed for all algorithms

prob NBFGS MY BFGS LBFGS PVAR LMBM SHOR GS

1 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 2,10,10 0,0,0

2 0,0,0 0,1,5 0,0,0 10,10,10 0,1,0 4,3,6 10,10,10 0,0,0

3 0,0,0 0,2,3 0,0,0 7,7,3 0,0,0 0,8,3 10,10,10 0,1,6

4 0,0,0 0,3,3 0,0,0 0,8,6 0,4,5 1,8,7 9,10,10 0,2,5

5 5,5,4 0,0,0 7,5,6 4,7,5 6,10,10 2,2,3 10,10,10 0,0,0

6 0,0,0 0,0,0 0,0,0 0,0,0 4,10,10 0,0,6 10,10,10 0,4,8

7 0,0,0 0,1,1 0,0,0 0,3,5 0,7,6 0,8,7 1,10,10 0,0,1

8 5,0,0 2,2,2 10,10,0 9,7,10 10,10,0 10,7,10 10,10,10 10,10,0

9 0,0,0 0,0,0 0,0,0 0,0,0 8,5,7 0,0,0 10,10,10 0,0,0

10 0,0,0 0,0,0 0,0,0 10,10,10 0,8,6 5,10,10 10,10,10 0,4,7

11 0,0,0 0,0,0 0,0,0 0,0,0 0,1,0 10,10,10 10,10,10 0,6,8

12 0,0,0 2,6,6 0,0,0 10,10,10 6,3,3 6,6,10 10,10,10 0,0,0

13 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 2,10,10 0,0,0

14 10,10,10 10,10,10 10,10,10 10,10,10 10,10,10 10,10,10 10,10,10 10,10,10

15 5,10,10 4,10,10 5,10,10 5,10,10 7,10,10 4,10,10 9,10,10 3,10,10

16 0,3,4 0,0,3 0,3,4 0,9,8 5,10,10 0,7,10 5,10,10 1,3,2

17 10,10,10 10,10,10 10,10,10 10,10,10 10,10,10 10,10,10 10,10,10 10,10,10

18 5,10,10 4,10,10 5,10,10 10,10,10 10,10,10 8,10,10 10,10,10 7,10,10

19 0,0,0 0,10,10 0,0,0 10,10,10 4,9,10 10,10,10 10,10,10 0,0,0

20 0,0,0 0,10,10 0,0,0 0,10,10 10,10,10 5,10,10 10,10,10 0,0,0

behavior of these methods. In the NBFGS, the serach direction is a descent direc-
tion depending on positive definite matrix. This is the main reason that NBFGS gives
better results for nonconvex problems. Since the available Matlab code for the GS
algorithm does not return the number of subgradient evaluations, then we do not
report the subgradient evaluations of this algorithm.

By increasing the optimality threshold, a solver can successfully solve a prob-
lem, when it approximates the optimal solution accurately. In dimension n = 10,
the performance profiles of the NBFGS, MY, BFGS and GS methods are fixed and
do not vary. Thus these methods approximate the optimal value with enough cur-
rency. But, in the higher dimensions, the performance of each solver is changed.
The performance profiles of several solvers show that the performance of NBFGS
method has the least variation than other methods. Also, the NBFGS has the least
number of unsuccessful runs, when starting points are randomly generated. In
some test functions, the number of subgradient evaluations of the BFGS method
is less than the NBFGS methods. Computing cost for the descent direction is its
main result.

86 Numer Algor (2016) 72:57–90

Ta
bl
e
3

E
ac
h
co
lu
m
n
of

ta
bl
e
sh
ow

s
th
e
av
er
ag
e
nu
m
be
r
of

su
bg
ra
di
en
te
va
lu
at
io
ns

fo
r
ea
ch

al
go
ri
th
m

in
di
m
en
si
on

10
,5

0
an
d
10
0
re
sp
ec
tiv

el
y

N
B
FG

S
M
Y

B
FG

S
L
B
FG

S
PV

A
R

L
M
B
M

SH
O
R

1
56
5.
5

21
21
.3

37
33
.2

70
3.
6

35
20
.1

69
02
.3

65
7.
2

32
98
.1

62
19
.4

22
1.
4

15
97
.2

36
97
.3

55
.7

18
2.
6
28
7.
2

61
.3

33
0.
1

66
2.
2

10
00
.0

69
80
.0

13
61
7.
0

2
22
24
.5

41
64
.8

41
35
.8

22
44
.8

29
49
.1

35
44
.2

10
37
.6

18
63
.1

23
09
.8

−
−

−
45
.3

60
.9

63
.5

52
0.
8

99
5.
7

90
8.
3

38
58
.0

99
43
.0

11
06
6.
0

3
20
40
.6

14
28
2.
4
75
42
.8

10
92
9.
5
77
10
7.
4
10
00
64
.7

57
7.
8

27
61
.5

46
59
.5

11
27
.7

59
12
.3

26
35
.3

78
.2

27
2.
3
50
0.
0

20
16
.4

28
70
.5

24
34
.4

31
38
.0

53
18
.0

90
6.
0

4
26
62
.3

60
56
.9

84
28
.0

37
02
.7

46
51
9.
6
83
82
.3

63
0.
0

28
13
.9

52
44
.4

10
73
9.
6
14
81
3.
0
51
35
.3

14
5.
4
75
1.
0
17
52
.2

33
21
.3

64
4.
5

14
62
.7

12
88
.0

43
33
.0

44
80
.0

5
62
6.
0

98
9.
0

57
3.
7

61
96
.2

11
61
2.
4
19
90
4.
8

26
8.
0

24
1.
0

24
7.
0

33
5.
5

43
6.
3

40
4.
8

11
6.
8

−
−

48
8.
4

77
1.
4

62
4.
0

12
25
.0

86
02
.0

94
90
.0

6
12
72
.0

47
06
.4

76
51
.5

32
04
.9

17
45
9.
0
35
28
6.
0

59
2.
6

24
99
.6

46
86
.5

54
9.
9

29
15
.7

68
49
.4

10
1.
0

−
−

99
3.
5

33
28
.2

59
03
.3

10
15
.0

45
71
.0

36
1.
0

7
26
61
.5

88
01
.4

12
34
0.
3
26
36
.7

44
02
.1

83
43
.7

63
7.
5

28
59
.2

55
43
.4

12
80
5.
0
80
52
.0

68
29
.8

10
2.
6
47
7.
7
70
9.
3

24
68
.5

83
2.
5

60
4.
3

10
21
.0

78
40
.0

10
80
0.
0

8
11
6.
6

50
4.
0

17
74
7.
4
29
46
.9

12
31
1.
1
90
91
7.
8

−
−

49
61
.9

83
7.
0

54
02
.3

−
−

−
58
5.
3

−
14
16
.3

−
0.
0

0.
0

92
30
.0

9
33
6.
2

38
0.
4

32
7.
1

10
32
.7

11
66
.4

14
52
.7

20
0.
8

18
7.
7

18
3.
7

35
0.
0

33
9.
1

36
6.
0

72
.0

10
5.
4
86
.0

53
4.
9

44
0.
8

56
3.
7

11
51
.0

74
67
.0

11
99
4.
0

10
25
21
.9

94
60
.8

14
21
2.
9
25
73
.0

30
94
.9

33
76
.1

68
0.
5

30
63
.2

53
92
.3

−
−

−
10
1.
8
34
2.
0
63
5.
5

43
10
.8

−
−

35
77
.0

44
43
.0

25
07
.0

11
29
38
.6

58
64
.9

11
11
7.
2
27
56
.6

13
96
9.
4
27
73
2.
5

62
8.
1

29
01
.5

56
10
.3

10
05
1.
0
17
93
2.
3
17
62
9.
9
64
.4

24
4.
4
40
2.
4

−
−

−
15
58
.0

24
38
.0

63
2.
0

12
21
23
.9

40
60
.9

57
80
.4

13
64
9.
5
26
02
6.
5
27
84
3.
0

84
0.
2

15
97
.0

19
46
.6

−
−

−
57
.0

76
.6

88
.0

94
3.
8

16
35
.3

−
16
08
.0

62
15
.0

12
23
2.
0

13
10
3.
2

10
5.
2

94
.5

30
5.
4

27
9.
7

31
7.
6

73
.3

75
.2

71
.1

69
.3

73
.7

67
.9

22
.3

37
.5

90
.4

49
.7

36
.3

42
.0

15
14
.0

61
29
.0

10
38
8.
0

14
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

15
12
57
.2

−
−

16
65
.5

−
−

29
3.
2

−
−

36
1.
4

−
−

13
4.
7

−
−

12
83
.3

−
−

10
84
.0

−
−

16
10
11
.5

45
61
.1

78
40
.8

28
33
.7

18
82
6.
9
35
97
5.
4

57
6.
9

26
66
.7

49
17
.5

46
4.
9

53
27
.0

87
07
.0

84
.2

−
−

62
4.
3

56
37
.0

−
14
64
.0

42
85
.0

85
64
.0

17
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

18
49
97
.0

−
−

33
53
6.
3

−
−

39
55
.4

−
−

−
−

−
−

−
−

32
07
.0

−
−

50
5.
0

−
−

19
21
32
.4

98
71
.0

21
63
5.
1
24
44
4.
7

−
−

59
9.
2

27
06
.0

51
87
.5

−
−

−
79
.0

29
7.
0

−
−

−
−

14
92
.0

47
56
.0

10
52
5.
0

20
23
96
.7

13
47
2.
6
29
35
9.
1
10
20
8.
6

−
−

81
4.
7

41
78
.9

10
03
6.
8
23
42
.9

−
−

−
−

−
52
57
.2

−
−

16
16
.0

56
11
.0

97
39
.0

T
he

st
ar
tin

g
po
in
ts
ar
e
fi
xe
d
fo
r
al
la
lg
or
ith

m
s

Numer Algor (2016) 72:57–90 87

Ta
bl
e
4

Te
st
re
su
lts
,t
he

nu
m
be
r
of

su
bg
ra
di
en
te
va
lu
at
io
ns

an
d
fi
na
lv

al
ue

of
fu
nc
tio

n
w
ith

n
=

10
00

N
B
FG

S
M
Y

B
FG

S
PV

A
R

L
M
B
M

SH
O
R

N
o.

f
∗

nf
ev
al

f
∗

nf
ev
al

f
∗

nf
ev
al

f
∗

nf
ev
al

f
∗

nf
ev
al

f
∗

nf
ev
al

1
1.
11
8e

−0
7

36
40
6

8.
23
1e

−1
0

98
86

5.
39
6e

−0
8

24
09
3

7.
43
0e

+0
2

17
43
9

8.
36
3e

−0
6

37
08

4.
98
8e

−0
6

22
80
8

2
4.
04
8e

−0
5

69
6

3.
42
6e

−0
5

36
14

3.
68
3e

−0
9

19
09

4.
53
8e

−0
2

72
1

3.
68
5e

−0
5

14
3

6.
16
6e

−0
3

86
1

3
−1

.4
13
e+

03
20
14
7

−1
.4
13
e+

03
12
24
0

-1
.4
13
e+

03
14
07
4

-1
.4
13
e+

03
65
37

-1
.4
13
e+

03
15
69

-1
.4
13
e+

03
18
24

4
1.
99
8e

+0
3

10
53
1

1.
99
8e

+0
3

30
61

1.
99
8e

+0
3

18
93

1.
99
8e

+0
3

21
42

1.
99
8e

+0
4

4
1.
99
8e

+0
3

17
88

5
1.
99
8e

+0
3

33
4

1.
99
8e

+0
3

69
4

1.
99
8e

+0
3

68
2.
00
1e

+0
3

85
1.
99
8e

+0
3

65
1.
99
8e

+0
3

11
25

6
1.
48
1e

−0
9

10
7

7.
03
3e

−1
1

38
2

1.
22
1e

−1
1

59
0.
00
0e

+0
0

10
7

2.
51
6e

−0
6

53
0

1.
37
7e

−1
4

56
9

7
5.
07
5e

−0
8

39
8

1.
46
3e

−0
9

14
23

6.
56
3e

−0
7

19
4

1.
77
4e

−2
0

23
67

1.
92
7e

+0
3

68
9.
13
2e

−0
4

16
36

8
−7

.0
65
e+

02
54
39

−7
.0
65
e+

02
14
18
9

−7
.0
65
e+

02
10
85

−7
.0
65
e+

02
59
7

-7
.0
65
e+

02
41
15

-7
.0
65
e+

02
38
92

9
−2

.6
65
e−

15
45
2

6.
89
5e

−1
0

11
49

5.
55
1e

−1
5

15
4

2.
77
7e

−0
1

18
5

1.
96
8e

−0
6

12
0

3.
68
1e

−0
8

81
7

10
8.
20
3e

−0
8

19
40

1.
20
3e

−0
9

46
78

3.
83
9e

−0
6

52
2

7.
42
7e

−0
2

57
17

1.
17
2e

+0
0

40
1.
36
9e

−0
4

96
26

11
3.
75
7e

−0
7

28
29
3

3.
29
0e

−0
9

26
47
8

2.
29
2e

−1
4

48
13
4

2.
21
7e

−0
2

17
57
9

5.
70
3e

−0
4

16
44

9.
81
5e
-0
1

63

12
6.
06
9e

−0
6

39
1

3.
00
1e

−0
5

10
00
18

2.
67
9e

−1
0

68
2

1.
64
2e

−0
3

27
97

6.
29
2e

−0
6

10
6

6.
43
4e

−0
6

45
63

13
6.
66
1e

−1
6

14
7

1.
30
1e

−1
1

48
8

6.
66
1e

−1
6

88
2.
22
0e

−1
6

90
4.
81
6e

−0
8

32
1.
94
3e

−1
6

14

14
1.
20
3e

+0
4

15
18
0

1.
20
3e

+0
4

13
68
8

1.
20
4e

+0
4

13
99

1.
20
3e

+0
4

56
78

1.
62
2e

+0
4

24
1.
20
4e

+0
4

13
36

15
5.
66
1e

+0
2

39
89
1

5.
68
4e

+0
2

10
00
73

6.
21
8e

+0
2

29
42
6

5.
69
0e

+0
2

74
77

3.
75
3e

+0
3

91
2

5.
66
1e

+0
2

94
29

16
2.
24
0e

−0
3

45
51

3.
04
6e

−0
9

21
36
8

2.
38
8e

−0
3

40
2.
38
8e

−0
3

40
1.
67
5e

−0
3

13
90

2.
25
8e

−0
3

92
62

17
2.
89
4e

−1
0

27
60
2

4.
56
4e

−0
3

10
00
33

1.
00
0e

+0
0

10
99

1.
00
0e

+0
0

45
8

1.
49
5e

−0
4

36
07

1.
00
0e

+0
0

87
2

18
1.
19
5e

07
31
22
3

5.
00
5e

−0
1

85
71

5.
00
0e

−0
1

10
30

5.
00
0e

−0
1

12
96

5.
02
7e

−0
1

13
5

5.
00
0e

−0
1

30
87

19
4.
61
8e

−0
5

87
3

6.
43
7e

−0
6

10
00
09

1.
53
7e

−0
6

13
28
6

1.
11
9e

−0
3

39
1

4.
79
5e

−0
4

56
5

8.
28
8e

−0
4

43
3

20
1.
09
9e

−0
1

28
06

7.
65
3e

−0
2

21
89
6

1.
09
9e

−0
1

59
2

1.
09
9e
-0
1

69
1

1.
10
6e
-0
1

12
3

1.
35
9e
-0
1

20
34

88 Numer Algor (2016) 72:57–90

6 Conclusions

The numerical results shown that the smooth BFGS and LBFGS method have good
behavior to solve nonsmooth optimization problems such that they give better solu-
tions than the famous nonsmooth optimization algorithms. By combination of the
BFGS and a descent method, the efficiency of the BFGS method is increased espe-
cially for high dimensional problems. In the combination method, the number of
subgradient evolutions are more than the BFGS method in some cases. In fact, com-
puting the descent direction increases the number of subgradient evolutions. In this
paper, a descent direction is computed for locally Lipschitz function. If the descent
direction computing algorithm is modified based on a special functions, for exam-
ple convex functions, semismooth functions and ..., we except that the number of
subgradient evolutions are reduced significantly. In future works, we try to modify
the NBFGS method for special functions such that its efficiency is increased. Also,
by combination of the LBFGS and a descent method, an efficient method will be
construct for large scale problems.

Acknowledgments The author is grateful to three anonymous referees for their valuable comments and
suggestions that improved the presentation of the paper.

References

1. Shor, N.Z.: Minimization Methods for Non-differentiable Functions. Springer, Berlin (1985)
2. Frangioni, A.: Generalized bundle methods. SIAM J. Optim. 13(1), 117–156 (2002)
3. Fuduli, A., Gaudioso, M., Giallombardo, G.: Minimizing nonconvex nonsmooth functions via cutting

planes and proximity control, vol. 14, pp. 743–756 (2003). (electronic)
4. Fuduli, A., Gaudioso, M., Giallombardo, G.: A DC piecewise affine model and a bundling technique

in nonconvex nonsmooth minimization. Optimization Methods & Software 19(1), 89–102 (2004)
5. Gaudioso, M., Gorgone, E., Monaco, M.F.: Piecewise linear approximations in nonconvex nonsmooth

optimization. Numer. Math. 113(1), 73–88 (2009)
6. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin

(1993)
7. Makela, M.M., Neittaanmaki, P.: Nonsmooth Optimization. World Scientific (1992)
8. Kiwiel, K.: Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Mathematics

1133. Springer, Berlin (1985)
9. Mifflin, R.: An algorithm for constrained optimization with semismooth functions. Math. Oper. Res.

2(2), 191–207 (1977)
10. Wolfe, P.H.: A method of conjugate subgradients of minimizing nondifferentiable convex functions.

Math. Program. Study 3, 145–173 (1975)
11. Mayne, D.Q., Polak, E.: Nondifferential optimization via adaptive smoothing. J. Optim. Theory Appl.

43, 19–30 (1984)
12. Polak, E., Royset, J.O.: Algorithms for finite and semi-infinite min-max-min problems using adaptive

smoothing techniques. J. Optim. Theory Appl. 119(3), 421–457 (2003)
13. Bagirov, A.M.: Continuous subdifferential approximations and their applications. J. Math. Sci. 115,

2567–2609 (2003)
14. Bagirov, A.M., Karasözen, B., Sezer, M.: Discrete gradient method: derivative-free method for

nonsmooth optimization. J. Optim. Theory Appl. 137(2), 317–334 (2008)
15. Burke, J.V., Lewis, A.S., Overton, M.L.: A robust gradient sampling algorithm for nonsmooth,

nonconvex optimization. SIAM J. Optim. 15, 571–779 (2005)

Numer Algor (2016) 72:57–90 89

16. Kiwiel, K.C.: Convergence of the gradient sampling algorithm for nonsmooth nonconvex optimiza-
tion. SIAM J. Optim. 18(2), 379–388 (2007)

17. Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.: A family of variable metric proximal
methods. Math. Program. 68, 15–47 (1995)

18. Burke, J., Qian, M.: On the superlinear convergence of the variable metric proximal point algorithm
using broyden and bfgs matrix secant updating. Math. Program. 88, 157–181 (1997)

19. Chen, X., Fukushima, M.: Proximal quasi-newton methods for nondifferentiable convex optimization.
Math. Program. 88, 313–334 (1999)

20. Fukushima, M., Qi, L.: A globally and superlinearly convergent algorithm for nonsmooth convex
minimization. SIAM J. Optim. 6, 1106–1120 (1996)

21. Hare, W., Sagastizábal, C.: Computing proximal points of nonconvex functions. Math. Program. 116,
221–258 (2009)

22. Lemaréchal, C., Sagastizábal, C.: Variable metric bundle methods: From conceptual to implementable
forms. Math. Program. 76, 393–410 (1996)

23. Mifflin, R.: A quasi-second-order proximal bundle algorithm. Math. Program. 73, 51–72 (1996)
24. Mifflin, R., Sun, D., Qi, L.: Quasi-newton bundle-type methods for nondifferentiable convex

optimization. SIAM J. Optim. 8, 583–603 (1998)
25. Zhu, C.: Asymptotic convergence analysis of some inexact proximal point algorithms for minimiza-

tion. SIAM J. Optim. 6, 626–637 (1996)
26. Luksan, L., Vlcek, J.: A bundle-newton method for nonsmooth unconstrained minimization. Math.

Program. 83, 373–391 (1998)
27. Luksan, L., Vlcek, J.: Globally convergent variable metric method for convex nonsmooth uncon-

strained minimization. J. Optim. Theory Appl. 102, 593–613 (1999)
28. Luksan, L., Vlcek, J.: Globally convergent variable metric method for nonconvex nondifferentiable

unconstrained minimization. J. Optim. Theory Appl. 111, 407–430 (2001)
29. Haarala, N., Miettinen, K., Mäkelä, M.M.: Globally convergent limited memory bundle method for

large-scale nonsmooth optimization. Math. Program. 109, 181–205 (2007)
30. Karmitsa, N., Mäkelä, M.M.: Limited memory bundle method for large bound constrained nonsmooth

optimization: convergence analysis. Optimization Methods Software 25, 895–916 (2010)
31. Lewis, A., Overton, M.: Behavior of bfgs with an exact line search on nonsmooth examples. Tech. rep

(2008). http://www.cs.nyu.edu/overton/papers/pdffiles/bfgs exactLS.pdf
32. Lewis, A., Overton, M.: Nonsmooth optimization via bfgs. Tech. rep. http://www.cs.nyu.edu/overton/

papers/pdffiles/bfgs inexactLS.pdf (2008)
33. Lewis, A., Overton, M.: Nonsmooth optimization via quasi-newton methods. Math. Program., 1–29

(2012). doi:10.1007/s10107-012-0514-2
34. Bertsekas, D.P., Mitter, S.K.: A descent numerical method for optimization problems with nondiffer-

entiable cost functionals. SIAM J. Control. 11, 637–652 (1973)
35. Goldstein, A.A.: Optimization of Lipschitz continuous functions. Math. Program. 13, 14–22 (1977)
36. Mahdavi-Amiri, N., Yousefpour, R.: An effective nonsmooth optimization algorithm for locally

Lipschitz functions. J. Optim. Theory Appl. 155, 180–195 (2012)
37. Wolfe, P.: A method of conjugate subgradients for minimizing non-differentiable functions. Non-

differentiable Optimization. In: Balinski, M., Wolfe, P. (eds.), vol. 3, pp. 145–173. Mathematical
Programming Study, North-Holland (1975)

38. Nocedal, J., Wright, S.J.: Numerical optimization, 2nd edn. Springer Series in Operations Research
and Financial Engineering. Springer, New York (2006)

39. Clarke, F.H.: Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics
(1987)

40. Yu, J., Vishwanathan, S., Günter, S., Schraudolph, N.N.: A quasi-newton approach to nonsmooth
convex optimization problems in machine learning. J. Mach. Learn. Res. 11, 1145–1200 (2010)

41. More, J.J., Thuente, D.J., Mcs-p, P.: Line search algorithms with guaranteed sufficient decrease. ACM
Trans. Math. Software 20, 286–307 (1992)

42. Al-Baali, M., Fletcher, R.: An efficient line search for nonlinear least squares. J. Optim. Theory Appl.
48(3), 359–377 (1986)

43. Daugavet, V.A.: Modification of the Wolfe method. Zh. Vychisl. Mat. Mat. Fiz. 21, 504–508 (1981)
44. Mitchell, B.F., Demyanov, V.F., Malozemov, V.N.: Finding the point of a polyhedron closest to the

origin. SIAM J. Control. Optim. 12, 19–26 (1974)
45. Wolfe, P.: Finding the nearest point in a polytope. Math. Program. 11, 128–149 (1976)

http://www.cs.nyu.edu/overton/papers/pdffiles/bfgs_exactLS.pdf
http://www.cs.nyu.edu/overton/papers/pdffiles/bfgs_inexactLS.pdf
http://www.cs.nyu.edu/overton/papers/pdffiles/bfgs_inexactLS.pdf
http://dx.doi.org/10.1007/s10107-012-0514-2

90 Numer Algor (2016) 72:57–90

46. Golub, G.H., Van Loan, C.F.: Matrix Computations (3rd Edn.) Johns Hopkins University Press (1996)
47. Luksan, L., Tuma, M., Siska, M., Vlcek, J., Ramesova, N.: Ufo 2002. interactive system for universal

functional optimization. Tech. rep., Academy of Sciences of the Czech Republic (2002)
48. Dolan, E., More, J.: Benchmarking optimization software with performance profiles. Math. Program.

91, 201–213 (2002)

	Combination of steepest descent and BFGS methods for nonconvex nonsmooth optimization
	Abstract
	Introduction
	Preliminaries
	Notations
	Nonsmooth analysis
	The BFGS method

	Line search algorithm
	Generalized Wolfe conditions
	Nonsmooth line search algorithm

	Combining the steepest descent method by the BFGS algorithm
	Computing descent direction
	Minimization algorithm

	Numerical experiments
	Conclusions
	Acknowledgments
	References

