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Abstract In this paper, a method is developed for solving nonsmooth nonconvex
minimization problems. This method extends the classical BFGS framework. First,
we generalize the Wolfe conditions for locally Lipschitz functions and prove that this
generalization is well defined. Then, a line search algorithm is presented to find a step
length satisfying the generalized Wolfe conditions. Next, the Goldstein e-subgradient
is approximated by an iterative method and a descent direction is computed using a
positive definite matrix. This matrix is updated using the BFGS method. Finally, a
minimization algorithm based on the BFGS method is described. The algorithm is
implemented in MATLAB and numerical results using it are reported.
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1 Introduction

Nonsmooth unconstrained optimization problems arise in many applications includ-
ing control theory, discrete minimax problems, complementarity problems and image
denoising. Several methods for solving nonsmooth nonconvex optimization prob-
lems have been developed based on the Clarke subdifferential. The subgradient-type
methods are the simplest methods for solving convex optimization problems [1]. The
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bundle-type methods are developed for convex and nonconvex optimization prob-
lems [2-10]. The algorithms based on smoothing techniques are presented in [11,
12]. The discrete gradient (DG) algorithm is considered as a derivative free method
[13, 14]. In the most recent works in [15, 16], the gradient sampling (GS) algorithm
is proposed to solve nonconvex optimization problems.

In methods in which only first order derivative information is employed, the BFGS
method is one of the most efficient methods to solve smooth optimization prob-
lems. However, in the literature, few modifications of quasi-Newton methods have
been developed to solve the nonsmooth nonconvex problems and we review some of
them. In this paper, a new nonsmooth version of BFGS algorithm is developed for
minimizing locally Lipschitz functions.

Since the Moreau-Yosida regularization of a convex function is differentiable
[6], the a Quasi-Newton method can be applied to the Moreau-Yosida regulariza-
tion. In fact, a Quasi-Newton method is combined with the bundle method [6, 8].
Under second-order smoothness assumption, these algorithms converge superlinearly
[22]. However this assumption is strong and quite restrictive. Another drawback
of this class is that the derivative of the regularized function is computed by
convex nonsmooth minimization. More specifically, at each iteration of the Quasi-
Newton method, the bundle method is applied for approximating the gradient of the
regularized function, which is time consuming for the large scale functions.

In [28], the Quasi-Newton method is combined with the bundle method. The
search direction is computed by the aggregated subgradients and by this search direc-
tion, the inverse of Hessian matrix approximation is updated by the BFGS or SR1
method. This class of algorithms was improved for large scale problems in [29, 30]
by using the BFGS limited memory method. Recently, the behavior of the BFGS
method on nonsmooth functions was studied without any modification with exact and
inexact line search [31-33]. The numerical experiments show that the BFGS method
with inexact line search enjoys good behavior for some nonsmooth functions.

When the classical BFGS method is used to minimize a nonsmooth function, the
search direction is selected from the Clarke generalized gradient set. So, there is not
any guarantee that this direction is descent. In [28] and [29, 30], the search direction
is computed by using 3 subgradients and this does not guarantee that the computed
direction is descent. Thus, instead of the smooth BFGS method, the search direction
in the genralized nonsmooth BFGS may be not descent. So this is the main reason
that these methods have poor performance in some nonconvex minimization prob-
lems. For increasing the performance of a generalized BFGS method for nonconvex
minimization problems, the search direction is computed such that it is descent. In
this paper, we propose a minimization algorithm where a descent direction is com-
puted using Goldstein e-subgradients and a positive definite matrix. Using an idea
similar to those from [13, 36], an algorithm is developed to iteratively approximate
Goldstein e-subgradients. This procedure computes a descent direction after finite
many iterations. This is the first step for generalized the BFGS method for noncon-
vex functions. Instead of other generaliztion, the developed algorithm in this paper
computes a descent direction.
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In the second step, a line search algorithm must be applied along the computed
direction such that the Wolfe conditions are satisfied. In this paper, the Wolfe condi-
tions are generalized based on the Goldstein e-subgradient and it will be proven that
there exist step lengths satisfying this generalization for each descent direction. We
modify the smooth line search algorithm [38] for finding a step length satisfying the
generalized Wolfe conditions. The modified line search algorithm also returns two
subgradients for updating the approximation of Hessian matrix by the BFGS method.
The proposed algorithm is implemented in MATLAB and the results are compared
with those obtained using other methods.

In Section 2 some preliminaries are provided. In Section 3, the generalized Wolfe
conditions and a line search algorithm are presented. A procedure for computing
a descent direction is discussed in Section 4. Next, based on BFGS algorithm, a
minimization algorithm is presented. In Section 5, the numerical results are reported.

2 Preliminaries
In this section, some preliminaries are given which will be used throughout the paper.
2.1 Notations

In this paper, R” is the n-dimensional Euclidian Space. We use B(x, r) as the open
ball around x with radius r. The inner product is denoted by (., .). [|x|| is the norm
of vector x and defined by +/(x, x) and for the positive definite matrix H, we define
lx|lg = (Hx, x). Since H is a positive definite matrix, then all of its eigenvalues are
positive [46]. Let A, and A be the largest and smallest eigenvalue of H. Then, we
have [46]

A llxl® < xllg < 2 llx]. (1)
conv(A) is convex hull of a set A.

2.2 Nonsmooth analysis

Let f : R" — R be a locally Lipschitz function and L be the Lipschitz constant
in some neighborhood of x. The Clarke generalized directional derivative of f at x
in the direction of v, denoted by f°(x, v), is defined by
t —
f°(x, v) := limsup fly+1v) f(x)’
y—>x,t}0 t

and based on this generalization, in [39], the Clarke generalized subdifferential
is defined as follows:

af (x) := {§ eR" : f°x,v) > (§,v), VUER”}.

‘We have [39]
IE < L, V& €df(x), 2
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and
f(x,g) = sup (g, v). (3)
vedf(x)

If f is differentiable at x, then V f(x) € 9f(x) [39]. Furthermore, if F is con-
tinuously differentiable at x, then we have d F(x) = {VF(x)}. By Rademacher’s
Theorem [39], a Lipschitz function is differentiable almost everywhere and, thus the
gradient exists almost everywhere. If x is a minimal point of f, then 0 € 9f(x).
For each ¢ > 0, in [35], the Goldstein e-subdifferential is defined by:

e f(x):=conv{é : £ €df(y), y e B(x,¢e)}.

If 0 € 9, f(x), then x is said to be an e-stationary point. Moreover, let f2(x, g) =
SUP,cy, £(x) (8, v) and thus we have f°(x, g) < f7(x, ). If f°(x,g) <O, then g is
a descent direction, i.e., there exists « > 0, such that

fx+1tg)— f(x) <0, Vre ().

Suppose that f;’(x, g) < 0 for some ¢ > 0 and ||g|| < 1. Then, by the Lebourg’s
Mean Value Theorem [39], forall ¢ € (0, g] there existd € (0, 1) and & € df (x+160g)
such that

Fx+ig) — f(x) =18, 8) <1f (x,8). “)

This inequality shows that, when f;’(x, g) is positive or slightly negative, then it
cannot be guaranteed to reduce f along g. If 0 & 9, f(x), then we can find a descent
direction. Now, consider the following problem

min f2(x,g) = min max (&, g). 5
Hg\lilfs( 8 \Igl\sléeiiaf(w(é g ©)

This problem has a solution, which can be computed by solving the following

problem [7],
min . 6
comn &1 Q)

If &j is the solution of (6), then g = —% is the solution of (5) and f(x, g) =

— ||&o]l. Let H be a positive definite matrix. In (6), we replace ||x|| with ||x|| gz and
thus problem (6) is reduced to:

min ||&]ly . @)
cenn, 16 la

The following proposition shows that a descent direction can be computed by
solving Problem (7).

Proposition 2.1 Suppose that &y be the solution of (7) and g = —H&y. Then, we
have f2(x, g) = — &l g , and there exists o > O such that

f+1g) — f(x) <tff(x,8), Ve (0,a).
Proof Let H = RT R be the Cholesky factorization of H. For all v € RO, f(x),

there exists £ € 9. f (x) such that v = R. So we have llvll?> = (RE, RE) = (&, HE).
Thus, the following problem

min [v]? s.f. v € R, f(x), (®)
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is equivalent to (7). If & is the solution of (7), then R&j is the solution of (8). Since
RO¢ f (x) is convex, then we have [6]

(RE&, R&o) = (R&o, R&0), V& € 0 f (x),
and thus
(§, H&o) > (60, H&0), V& € 0 f (x). )

Since &y € 9, f(x), then (9) shows that f’(x, g) = — ||&oll . Now, suppose that
o= ﬁ So, we have x +rg € B(x, ¢) forall t € (0, «]. The rest of theorem follows
from the Lebourge’s mean value Theorem. O

In subgradient based algorithms, it is assumed that at each point one subgradient
is available. In this paper, we use the same assumption to design an algorithm. If
it is not possible to compute such a subgradient then the algorithm terminates. Let
¢ (@) ;= f(x +ag). We have [39] 0¢p () C (3f (x + g), g), Where

(0f (x +ag), g) ={(6.8) : § €df(x +ag)}.

The equality holds if f is regular and in general the equality does not hold if f is
not regular. If for all v € R", the one-side directional derivative f’(x, v) exists and
f'(x,v) = f°(x, v), then f is regular at x. In such a case the above formula cannot
be used to compute subgradients of ¢. However, according to the above mentioned
assumption we assume that one subgradient of ¢ is available at any o > 0.

2.3 The BFGS method

Suppose that F is continuously differentiable. Let Hy be a positive definite matrix
and the approximation of its inverse Hessian and V F (x;) be its gradient at x;. We
know that g = —H;VF(x;) is a descent direction. The approximation of inverse
Hessian can be updated by the BFGS method, when the computed step length sat-
isfies in the Wolfe conditions. For given constants 0 < ¢; < ¢ < 1 the Wolfe
conditions are formulated as:

Fx +ag) = F(x) = cia(VF(xx), 8k) (10)
(VF (xk + ok gk), 8k) = c2(VF(xk), gk)- 1D
Consider the following notations:
Sk = Xkl — Xk, Yk = VFrq1) — VF(xp).

If the step length oy satisfies in the Wolfe conditions, then we have (yg, sx) > 0.
This inequality is known as secant inequality. If the secant inequality holds, then Hj
can be updated by the BFGS method

Hir1 = (I — presiy ") He (I — pxvisd) + pesesy s

where o = (ykl—Sk)

In nonsmooth case, suppose

wr =arg min |jv , 12
k gveasfm) vl a7, (12)
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and gr = —Hjwyg, where Hy is a positive definite matrix. Let ax be a step length
and xx4+1 = x; + ox gk be the next iteration. To update Hj by the BFGS method, we
must select vy € df (xx) and vg41 € df (xk41) such that (yg, sx) > 0, where y; =
Vg+1 — Vk. We use an approach proposed in [40] where the authors generalized the
Wolfe conditions for nonsmooth convex functions using subgradients. For a convex
function f, since f is regular, then the step length « satisfies the Wolfe conditions if
the following inequalities hold for constants ¢; € (0, 1) and ¢3 € (cq, 1)

fx+ag) — fx) <cla SaL}I? (v, 8) = craf'(x, 8),
vedf(x)

and

sup (v, g) =c2 sup (v,g).
vedf (x+ag) vedf (x)

In this paper, we generalize the Wolfe conditions for the locally Lipschitz func-
tions by the e-subdifferential. If ¢ = 0, then this generalization is the Yu et al.’s
generalization [40]. Then, a line search algorithm is developed based on the gen-
eralized Wolfe conditions which coincide with the Wolfe conditions for smooth
optimization when the objective function is smooth. The proposed line search
algorithm require computation of only one subgradient from df(x) and the full
computation of this set is not necessary.

In this paper, we use the following lemmas from [36].

Lemma 2.1 Leth : R — R be a locally Lipschitz function around r. If h is decreas-
ing in a neighborhood of r, then & < 0 for all £ € 0h(r), and if ¢ < O for all
& € dh(r), then h is decreasing in a neighborhood of r.

Lemma 2.2 [fh : R — R is locally Lipschitz and h(b) > h(a) such that a < b,
then there exists 0y € [a, b] such that h is increasing in a neighborhood of 6.

3 Line search algorithm

In this section, an approximation of Goldstein ¢-subdifferential is used to generalize
the Wolfe conditions for locally Lipschitz functions. Then, we show that there exist
step lengths satisfying these conditions. Finally, an algorithm is presented to find
such step lengths.

3.1 Generalized Wolfe conditions

In this paper, we suppose that H is a positive definite matrix and f : R” — Ris a
locally Lipschitz function. Let W C 9, f (x) and

w=arg min_ |v|g. (13)
veconvW
Define g = —Hw. Since convW is an approximation of d; f (x), then w can be

considered as approximation of (7). Suppose that &y is a solution of (7). Thus by
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Proposition 2.1, — [|w| i can be considered as an approximation of f(x, —H&p).
Based on an approximation of d; f (x), we generalize the Armijo condition.

Definition 3.1 Let f : R" — R be locally Lipschitz, W C 9. f (x), w be the solution
of (13) and g = —Hw. Iff the following inequality holds for a step length o and
fixed constant ¢y € (0, 1)

f+ag)— fx) = —caalwly,

then o satisfies in the generalized Armijo condition (GAC).
If f°(x+ag, g) is only slightly negative or even positive, then by (4) f cannot suf-
ficiently be decreased along g with lager step length. This leads to the generalization

of the curvature condition for locally Lipschitz functions as follows.

Definition 3.2 Let f : R" — R be locally Lipschitz, W C 9, f (x), w be the solu-

tion of (13) and g = —Hw. The step length « satisfies in the nonsmooth curvature
inequality, iff the following inequality holds for constant ¢; € (cy, 1),
ffxtag, )= —clwly. (14)

Lemma 3.1 Ler f : R" — R be locally Lipschitz, W C 9. f (x), w be the solution
of (13) and g = —Hw. If there exists & € df (x +«ag) such that (¢, g) > —ca |wl g,
then the nonsmooth curvature inequality holds.

Proof By (3), we have f°(x +ag,g) > —c2 |lwlgy- O]
Now, we present the generalized Wolfe Conditions (GWC).

Definition 3.3 Let f : R” — R be locally Lipschitz, W C 9. f(x), w be the solution
of (13)and g = —Hw. For constants 0 < ¢ < ¢p < 1, iff there exist€ € 9f (x +ag)
such that (£, g) > —c3 ||w|| g and the GAC satisfies in « along direction g at x, then
we say that the step length « satisfies the GWC along direction g at x.

Now, we prove that for each descent direction, there exist intervals containing step
lengths satisfying the GWC. Before its proof, we define the following function,
W) = flx +ag) — fx) +aalwly, (15)
and prove the following lemma.
Lemma 3.2 Let f : R" — R be locally Lipschitz, W C 0. f (x), w be the solution

of (13) and g = —Hw. If W(-) is not decreasing on neighborhood of o, then the
nonsmooth curvature inequality holds at «.

Proof Suppose that W (-) is not decreasing in the neighborhood of «, by Lemma 2.1,
there exists v € 0 W («) such that v > 0. Since, we have

IW(a) € (Bf (x +ag). g) + 2wy (16)
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then there exists £€ € df(x + ag) such that v = (£, g) + 2 |lwlly. So, (&, g) >
—c2 lw||g. Thus, by Lemma 3.1, the nonsmooth curvature inequality holds for all
step lengths which W (-) is not decreasing on their neighborhood. O

Proposition 3.1 Let f : R" — R be locally Lipschitz, W C 0, f(x), w be the
solution of (13) and g = —Hw. Suppose that [ be bounded below along the ray
{x + agla > 0} and there exists a step which satisfied the GAC along the direction
gatx. If0 < c1 < ¢ < 1, then there exist open intervals of step lengths satisfying
the GWC.

Proof Let¢(a) = f(x +ag)and (o) = f(x) — c1a ||w] . By (4), we have
¢(a) < (), forall a € (0,¢). (17)

Since — ||w]|g < 0and ¢; > 0, then /(«) is unbounded below. On the other hand,
¢ () is bounded below for all @ > 0. Thus, there exists ¢g > 0 such that

¢(a) > l(x), forall o > ap. (18)

By (17) and (18), there exists some o > 0 such that ¢ (o) = [(«). Let ) > 0
be the smallest value such that ¢(«1) = I(¢q). Therefore, we have, f(x + a1g) =
f(x) — croq |lw||y. Thus, the GAC is satisfied for all « € (0, 1) and we have
fx +ag) — f(x) < —cja||lw| g. By the similar way, let @y > 0 be the smallest
value such that W (ap) = 0. Since ¢; < c¢p, then we have oy < . Since W(t) < 0
for all t € (0, ap) and W(0) = W(ap) = 0, then W takes its minimum on (0, a»).
Therefore, there exist some open subintervals in (0, «p) such that W is increasing and
thus v > O for all v € 9W(-) on them. By Lemma 3.2, for some £ € 9f(x + «g),
we have (£, g) > —c> ||w]| . Since o < «7, then all step length in that subinterval
satisfy the GAC and GWC. O

3.2 Nonsmooth line search algorithm

The main idea of the nonsmooth line search algorithm is similar to the smooth version
[38] and it converts to the smooth version, when f is continuously differentiable.
The first stage starts with a trial estimate of o and keeps increasing until it finds
either an acceptable step length or an interval that contains acceptable step lengths.
The second stage is started by calling Algorithm 2. This algorithm reduces the size
of the interval until a step length satisfying the GWC is found. Now, we present
the nonsmooth line search algorithm. In the presented algorithms in this subsection,
let W C 9. f(x), w be the solution of (13) and g = —Hw. Also assume that ¢ is
satisfied the GAC along direction g at x. In Section 4, we present Algorithm 4 to
compute such an approximation. To simplify the notations, we define the following
one variable function,

Al) == fx +ag) — f(x) +aalwly .

In Algorithm 1, the step lengths {c;} are monotonically increasing, until a step
length or an interval containing a step length satisfying the GWC is found. Suppose
that A(e;) > 0. Since A(xj—1) < 0, then A(xj—1) < A(w;). So, by Lemma 2.2,
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Algorithm 1 Line Search Algorithm

oy < 0
o <1
i <1
repeat
if A(;) > O then
oy < Wolfe(o;, aj_1)
STOP
end if
compute £ € If (x + o g)
such that (&, g) + 2 lwllyg € OW (%).
if (§,g) +c2llwlly = 0 then
Oy < O
STOP
else
iyl < 20
end if
end repeat

[ej—1, @] contains an interval such that A is negative and increasing on this interval.
So, in this interval, the GWC is satisfied and Algorithm 1 invokes Wolfe algorithm.
The following proposition shows that Algorithm 1 is terminated after finitely many
iterations.

Proposition 3.2 Let f : R" — R be locally Lipschitz, W C 9, f(x), w be the
solution of (13) and g = —Hw. Also assume that ¢ is satisfied the GAC along
direction g at x. If f is bounded below along the ray {x + ag|la > 0}, then Algorithm
1 terminates after finitely many iterations.

Proof Since f(x+ag) is bounded below and f (x)—c« ||w|| g is unbounded below,
then there exits @ such that

fx+ag) > fx) —calwly, Ya > a,

ie. A(w) > O for all « > «. Thus, Algorithm 1 terminates after finitely many
iterations. [

Now we present the second stage of algorithm.
The following proposition describes the behavior of Algorithm 2.

Proposition 3.3 Let f : R" — R be locally Lipschitz, W C 0, f(x), w be the
solution of (13) and g = —Hw. Also assume that ¢ is satisfied the GAC along
direction g at x. Either Algorithm 2 terminates after finitely many iterations, or it
generates a sequence of intervals [ay, by, such that each one contains some subin-
tervals satisfying the GWC and ay and by converge to a step length ty > 0. Also,
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Algorithm 2 Wolfe Algorithm

k<1
g < oj—1
bk <~ O
repeat
ty <
if A(t;) > 0 then
biv1 < 1x
Ag+1 <= Ak
else
compute & € 9f (x + 1 g)
such that (&, g) + 2 lw]lg € oW ().
if (&, g) + c2 [lwl g = O then
oy <t
STOP
else
b1 < by
k41 < Ik
end if
end if
k<—k+1
end repeat

ar+by
2

there exist £1,02,¢3 € f (x + tog) such that (¢1,8) < —c|lwly, (&2, g) >
= llwlly and (83, 8) = —c1 |lwll g

Proof 1f the algorithm terminates after finitely many iterations, then there is nothing
to prove. Suppose that the algorithm does not terminate after finitely many iterations.
Since a; and by are monotone sequence thus they are convergent. On the other hand,
we have by, — a; = bzlk_, 4L thus limg_, o0 bx — ax = 0. Therefore, these sequences are
convergent to same point such as 7y. We suppose that L is the Lipshitz constance for
fover{x +ag : a € lay, b1]}.

We prove that a; will be positive after finitely many iterations. Suppose that a; =
0. Since g is a descent direction, then there exists « > 0, such that A(s) < O for
all s € (0, ). If a,, = 0, then we must have A(z;) > Oforallk = 1,...,m. In
these iterations, we have by = t, arr1 = ar = 0 and tx4] = % = ;L;( for all
k =1, ..., m. Therefore, after finitely many iterations #; < «. In this iteration, since
A(tx) <0, then ax41 = .

Let S be all the iterations such that a1 = #;. Therefore, (&, g) < —ca2 |wlly
for all k € S. We have ||| < L for all k € S. Thus, the sequence {£;} contains
a convergent subsequence. Therefore, without loss of generality, we can assume this
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sequence is convergent and {1 = limges k— o0 k- By the upper semicontinuously of
df (-) and f — fo, we have 1 € 9f (x +1pg) and ({1, &) < —c2 [[lwl g.

Since ay < by, A(ax) < 0and A(ax) < A(by), then by Lemma 2.2, A(-) contains
a step length r; such that A(-) is increasing on its neighborhood and A(r;) < 0. On
the other hand, ¢; < c3, therefore W(-) is also increasing in a neighborhood of .
Therefore, the GWC is satisfied at ry. If (kx, g) + 2 |w|| g € OW (rg) for some ki €
af (x +rrg), then by lemma 2.1 (kx, g) + c2 lw| g = 0. Since {«¢} has a convergent
subsequence, then without loss of generality, suppose that {» = limg_, o k%. Since
af (-) is upper semicontinuous and ry — fy, then {» € df (x + fHg) and we have
(2, 8) = —ca ||lw|l . Since A(-) is increasing on a neighborhood of r¢, then v > 0
for all v € dA(ry). Thus, we have (g, g) > —c1 ||wllgy, for all ny € af (x + rrg)
such that (ng, g) + c1 |lwlly € 0A(ry). Since {nx} has a convergent subsequence,
then without loss of generality, suppose that {3 = limg_. o 1. Since ry — fg, then
{3 € 9f (x + f0g) and we have ({3, g) > —c1 lwllg- O

Corollary 3.1 Assume that all assumptions of Proposition 3.3 are satisfied and f
is continuously differentiable almost everywhere. If Algorithm 2 does not terminate
after finitely many iterations and the sequence {ty} converges the step length to, then
to belongs to a set with zero measure.

Proof Suppose that Algorithm 2 does not terminate after finitely many iterations
and converges to ty. If f is continuously differentiable at #y, then

af (x +10g) = {(Vf(x +108)}. (19)
So, by Proposition 3.3 and (19), we have
(Vf(x+10g),8) = —ci lwllg and (V f(x +10g), g) < —c2lwlg -

These relations are in contradiction with ¢; < ¢3. So, if Algorithm 2 does not
terminate after finitely many iterations, then f is not continuously differentiable
at fp. On the other hand, f is not continuously differentiable in a set with zero
measure. O]

Now, we show that Wolfe algorithm terminates after finitely many iterations for
semismooth functions.

Corollary 3.2 Assume that all assumptions of Proposition 3.3 are satisfied and f is a
semismooth function. Then Wolfe algorithm terminates after finitely many iterations.

Proof Suppose that Wolfe algorithm does not terminate after finitely many iterations
and converges to ty. In each iterations, we have A(ay) < 0 and A(by) > 0. On the
other hand, a; and by converge to fy. Thus

Alto) = 0. (20)
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Let S be the set of all indices such that a;+1 = ;. We show that S is an infinite set.
By contrary, if § is finite, then there exist ko such that ay,11 = t, and by = # for
all k > ko. Thus, we have fg = limg_ oo tx = ag,+1. Therefore, A(ty) = A(ar,+1) <
0 and this is in contradiction with (20). Therefore, S is an infinite set. Since f is
semismooth, then f is directionally differentiable and f'(x, g) = f°(x, g) [9]. Also,
we have

lim (v, ) = f'(x, 9). (1)
v € 9f (x + I g)
Lk 10
The nonsmooth curvature does not satisfy at t;x. Thus, we have (&, g) <
—c ||lw|| g forall k € S where & € df (x +#xg). Since ax < fg, then by (21) we have
limges k—o0 (k> &) = f'(x + tog, —g). Thus

flx+1g,—g) < —c2llwlly - (22)

Since A(ay) < 0and A(fg) = 0, then by Lemma 2.2 there exists r; € (ag, fp) such
that A(-) is increasing on its neighborhood. Therefore, by Lemma 2.1, £ > 0 for all
& € 0A(ry). Hence, for some nx € df (x + rrg), we have (g, g) > c1 ||lwl| . Since
re < to, then by (21) we have limy_, o0 (1%, g) = f'(x + tog, —g). Thus

[l +10g, —g) = —ci |wlg - (23)

This is in contradiction with (22). Since ¢; < c¢». Therefore, Wolfe algorithm
must be terminated after finitely many iterations. O

If Wolfe algorithm does not terminate after finitely many iterations, then W (-) has
infinite number of extremum point in [a;, b1]. Otherwise by Proposition 3.5, Wolfe
algorithm terminates after finitely many iterations. Similar situation may happen in
the smooth case, for example [41, Theorem 2.3] and [42, Theorem 2.1]. Let F :
R" — R be a continuously differentiable function and g be a descent direction at x.
Define ¥ (o) = F(x + ag) — F(x) — ca(VF(x), g). If the line search algorithm
does not terminate after finitely many iterations, then the sign of /() is changed
in infinite number of times, i.e., ¥ («) has infinite number of the local extremum.
The line search algorithm converges to a* such that ¥’ (a*) = 0. A similar result for
locally Lipschitz functions is proven in Proposition 3.4. But here by Corollary 3.1,
we prove that in smooth functions, the line search algorithm must be terminated after
finitely many iterations.

Proposition 3.4 Assume that all assumptions of Proposition 3.3 are satisfied and
Algorithm 2 does not terminate after finitely many iterations and converges to t.

Then 0 € (3f (x + 10g), &) + 2 lwll 5.

Proof By Proposition 3.3 there exist 11,72 € 9f(x + fog) such that ({1, g) <
—c [lwlly and (82, g) = —c2 [wll . Let sy = (82, g) + i1 llwll g and 52 = (¢3, g) +
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¢ lwll . We have sy, 52 € (3f (x + 108), ) + c2 [[wl . Since s; < 0, 52 > 0 and
(0f (x +108), &) + c2 [lwll p is convex, then 0 € (3f (x +108), &) + 2 wlgy. U

If f does not has an infinite number of local extremal points in any bounded
set, then there exist finitely many subintervals such that W (-) is increasing on there.
Commonly, functions have this property. By this assumption, we can prove that
this algorithm terminates after finitely many iterations for any locally Lipschitz
function.

Proposition 3.5 Assume that all assumptions of Proposition 3.3 are satisfied and
W (-) has a finite number of local extremal points in any bounded set, then Algorithm
2 terminates after finitely many iterations.

Proof Since W has a finite number of local extremal points on («;, ;+1], then
it is increasing on a finite number of subintervals in («;, ;j+1]. Let d; > 0 be
the shortest length of subinterval in (¢;, ;1] on which W is increasing. In each
iteration, the length of [ag, bi] is divided in two, so after k iterations we have
by —ar = ai;ﬁ’fl. Since W (by) > W(ax) and by > ag, then (ax, by) includes at
least a subinterval on which W is increasing. After finitely many iterations, such as
k, we have by — ar < d.. On the other hand, d; is the shortest length of subinter-
val on which W is increasing. Therefore, at iteration k, W is increasing on f. Thus,
by Lemma 2.1, (&, g) + c2 |lw|ly = 0. Hence, the algorithm terminates after k
iterations. ]

In [9] based on the smooth line search algorithm, a line search algorithm is devel-
oped for semismooth functions. In this algorithm, two parameters are updated in each
iterations. If the step length satisfies the Armijo condition the first parameter, ¢z, is
updated. The second parameter, ¢, is updated, when the step length satisfied the cur-
vature condition. Thus ¢ and #;, will be equal if the step length satisfied the Wolfe
conditions.This algorithm terminates, when 7z — 7, is less than a threshold. By this
condition, the finite termination of the line search algorithm is proved for semis-
mooth functions. In this paper, we show that the smooth line search algorithm can be
applied to locally Lipschitz functions by replacing the directional derivative by the
generalized directional derivative. Also, the Wolfe conditions are generalized and we
show that at each iteration of line search algorithm there is a step length, which sat-
isfies this generalization. In this paper by Corollary 3.2, the finite termination of the
line search algorithm is proved for semismooth functions.

In the finite precision arithmetic, if the length of interval [ax, b¢] is too small, then
two function values f(x + axg) and f(x + brg) may be indistinguishable. So, in
practice, Algorithm 2 must be terminated after finitely many iterations [38]. In our
numerical experiments, Algorithm 2 terminates after 30 iterations. If Algorithm 2
does find a step length satisfying the GWC, then we select a step satisfying the GAC.
Since A(ax) < 0, then we set a; as a step length. In this case, the step length does
not satisfy the GWC. Thus, the approximation of inverse Hessian cannot be updated.
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In such iterations, the approximation of inverse Hessian is initialized by the identity
matrix.

4 Combining the steepest descent method by the BFGS algorithm

In Proposition 2.1, we show that a descent direction can be computed by the solution
of (7). Since it is not always possible to compute the whole set 9. f (-) then, 9 f (x)
is approximated and based on its approximation a descent direction is computed. In
this section, we present an algorithm for computing a descent direction based on a
positive definite matrix and 9. f (x). At each iteration, an approximation of 9, f (x)
is improved by adding a new element. We prove that this algorithm terminates after
finitely many iterations. The nonsmooth line search algorithm is applied along this
direction and a step length satisfying the GWC is computed. We discuss how the
positive definite matrix is updated by the BFGS method and subgradients. Finally,
the convergence of the minimization algorithm is proven.

4.1 Computing descent direction

We approximate 9, f(x) by the convex hull of the finite number of e-subgradients.
More exactly, if Wy = {v, v2,..., v} C 9 f(x) then we consider convWy as an
approximation of 9, f(x). Therefore, the solution of the following problem is an
approximation of the solution of (7),

wy =arg min_ |v]g . (24)
veconvWy
Since convWj is an approximation of 9 f (x), then wy is an approximation of &y in
(7). On the other hand, we have f’(x, g) = — ol jy, therefore — ||wy || y can be con-
sidered as an approximation of f(x, g). Equation (24) is equivalent to a quadratic
programming problem and there exist several efficient methods for computing its
solution [43—-45]. We use the method described in [45]. Set g = — Hwy; if we have

fx+eg)— fx) = —crellwilly (25)

for some constant ¢; € (0, 1), then convW) is an acceptable approximation of
d¢ f(x). If the sufficient decrease (25) is not satisfied, then convW; (which is an
approximation of d; f(x)) must be improved by adding a new element of 9. f (x)
into Wy, such that this element does not belongs to convWy. How to select such an
element is described in the following proposition.

Proposition 4.1 Suppose that f : R" — R is a Locally Lipschitz function, 0 ¢
0g f(x), Wy is a collection of k elements of 0 f (x), wi = arg minyeconvw, |Vl g and
g = —Huwy. If (25) is not satisfied, then there exists v € df (x + €g) such that
v & convWy.
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Proof Since (25) is not satisfied, the we have A(¢) > 0. On the other hand, A(0) =
0. Therefore, by Lemma 2.2, there exists ¢ € (0, ¢) such that A is increasing on
its neighborhood. Since A is increasing on a neighborhood of «, then £ > 0 for all
& € 0A(a). We have

0A(a) C(0f (x +ag), g) +ci llwlly,
thus
(—v, Hwy) = —cy llwelly (26)

for all v € f (x + ag), where (v, g) + c1 |lwi|lg € dA(«). Consider the Cholesky
factorization of H, i.e., H = RT R. Since RconvWj is convex and Rwy, is its element
with minimum norm, then

(Hwg, v) = (Rwg, Rv) > |lwkllyg, forall v e convWy. 27
Therefore, by (27) and (26) we have v & convWy, for all v € 3f (x + ag) such that
(v, 8) + i llwellg € A(@). O

To improve convWj as an approximation of d, f (x), by Proposition 4.1, we need
to find a point in (0, €] such that A is increasing on that neighborhood. Now, an
algorithm is presented to find such a point. The idea of this algorithm is similar to
Algorithm 2. Let Wy, be a finite subset of 9. f (x),

wy =arg min_|vlly,
veconvWy

and suppose that (25) is not satisfied. Similar to Algorithm 2, in each iteration of
the following algorithm, we have an interval, which contains a point which A is
increasing on its neighborhood and the interval length is halved. The algorithm starts
with the initial interval, [0, £] such that A(0) = 0 and A(g) > 0. Thus, by Lemma 2.2,
[0, €] contains a point, which A is increasing on its neighborhood. In each iteration,
we have an interval [a, b] such that A(a) < A(b) and a < b, therefore it contains
a point, which A is increasing on its neighborhood. When A(:) is increasing on a
neighborhood of #, then by Lemma 2.1 (v, g) + c¢1 ||willy = Oforall v € 9f(x +

tg) such that (v, g) + c1 |willyg € dA(¢). If at any iteration (v, g) + ¢y |lwillyg >
0, then by Proposition 4.1 v ¢ convWj and Algorithm 3 is terminated. Now, we
present an algorithm to find a point belonging to (0, €] such that A is increasing on

its neighborhood.

Remark 4.1 If ||g|| < 1, then v € 0, f (x). Otherwise, we define
g= S e="1, (28)
gl gl

and A(1) = f(x +1g) — f(x) + ¢ ||lwi| . If A is increasing on a neighborhood «,
then

(v, 8) +cllwellp =0, (29)
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Algorithm 3 Finding increasing point

b<«¢
a<~0
t<b
repeat
compute v € df (x + tg) such that (v, g) + ¢ ||lwkll g € dA(r)
if (v, g)+cyllwilly = O then
STOP
else if A(b) > A(r) then
a <t
else
b <«t
end if
a+b

1< =

end repeat

forallv € df (x +ag) and some o € (0, €]. By (28) and (29), (v, g)+c1 lwkllyg = O.
This inequality shows that v ¢ convW; and v € 9, f(x). Thus, without loss of
generality, we can assume that v € 9, f(x) forall v € 9f (x + @g) and o € (0, ¢].

This algorithm is similar to Algorithm 3 in [36]. The following proposition shows
the behavior of algorithm.

Proposition 4.2 [36] Let f : R" — R be locally Lipschitz. Either Algorithm 3 ter-
minates after finitely many iterations, or it generates a sequence of intervals [ay, by],
each one containing some subintervals on which A is increasing. These intervals
converge to a step length ty > 0 such that 0 € 3 A(ty).

If A(-) does not have an infinite number of local extremal points in [0, €], then
similar to Proposition 3.5, we can prove that this algorithm terminates after finitely
many iterations. Practically, for small ¢ > 0, applying Algorithm 3 is not costly. We
have observed in our numerical experiments that since A(-) does not usually have a
local extremum on (0, €], then most often the algorithm terminates after one iteration
[36].

Now, we present an algorithm to find a descent direction. In each iteration of this
algorithm, the approximation of 9, f(x) is improved by adding a new element and
the algorithm terminates, when (25) is satisfied. If H is the identity matrix, then
Algorithm 4 converts to Algorithm 4.1 in [36]. Now, we present the algorithm as
following, Now, the following proposition shows that Algorithm 4 terminates after
finitely many iterations and its proof is similar to [13, Theorem 6.1.].
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Algorithm 4 Computing descent direction

Step 0:  (Initialize)
Letv; € 9f(x) and 8, ¢, € € (0, 1). Set Wi = {v;} and let/ = 1.

Step 1:  (Compute a descent direction)
Solve the following minimization problem and let

w; =arg mi vl g, 30)
veconvW,;
If |w;|| g < & then stop else let g;1 = —Huwy.
Step 2:  (Stopping condition)
If
fx+egip) — f(x) < —crellwilly . (31
then Stop.

Step 3:  (Improve upon the approximation of 9, f (x))
Apply Algorithm 3 at point x along direction g;4+1 and interval (0, ¢].
Suppose that Algorithm 3 returns o € (0, ¢] and v € df (x + «g) such
that (v, g)+c1 llwillg = 0. We have v & convW,. Set vj+1 = v, Wiy =
Wi U {vi4+1}and! =1+ 1. Go to Step 1.

Proposition 4.3 Let f : R" — R be a locally Lipschitz function and for the point
x1 € R, the level set M = {x : f(x) < f(x1)} be bounded. Then, for each x € M,
Algorithm 4 terminates after finitely many iterations.

Proof Let L be a Lipschitz constant for f in M. If the stoping condition is not
satisfied, based on Algorithm 3, we have vi+| & convWj and

(Vit1, Hwe) < ey llwell g - (32)

Now, condition (31) is not satisfied after finitely many iterations, for some m we
have ||wy, ||z < 8 and therefore the algorithm terminates. Let R” R be the Cholesky
factorization of H. Since w41 is an element of RconvWj_ with minimal norm,
then for all # € (0, 1) and vi+1 € convWi1 we have,
lwitilly < lltveer + (A = Dwilly

= llwk + 1 (k1 — wi) Iy

= (wk +1 (Vi1 — wi) s H (Wi + 1 (Vi1 — wi)))

= (g, Hwg) + 1> ey — we, H (U1 — wi)) — 20 (w, H (Vg1 —wy))
= llwellg + 2 (wi, H (g1 — we)) + 27 oggr — willy

= llwlly + 2 (wi, Hoe) = lwgll ) + 1 Togrn — wlly -
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2 .
By (1), we have [|lvit1 — willg < Ay kg1 — will”. Since viyr, wp € 9¢ f(x),

then by (2) we have |lvj+1 — will < 2L. Thus, |vi41 — willyg < 4AnL2. Now, by
(32),

lwesilly < lwelly =200 = 1) llwill g + 462, L2

By (1) and (2), we have |lwilly < A,L% Lett = ;‘(—221;2 lwilly € (0, 1). For

given § € (0, min(L, X,)) and for all ||wg| g > §, we have,

” + ” =< 1 ” ”H (l C1)2 ” ”H
w, w — w
k+ille = k )\.n(ZL) k

(1—c1)?
= <1 — m) lwill g -

(=c1)’8 Gince ), L2 > 8, then r € (0, 1). So, for all |willy > 6,

Definer =1 — PRGTAE

we have,

k ky2
lwitillg < rllwlly < -+ <" lwillg = A" L7

Therefore, after finitely many iterations, we have ||w+1llz < 6 and the algorithm
terminates. O

4.2 Minimization algorithm

To update the approximation of inverse Hessian, we need a pair of subgradients from
df (x) and df (x + «g) such that the secant equation is satisfied. How to select these
subgradients is described in the following proposition.

Proposition 4.4 Let f : R" — R be a locally Lipschitz function and convWy be
an approximation of 9g f (x). Suppose that wy = arg minyeconvw; lIVlly and g =
—Hwy satisfying in (25). If the line search algorithm returns the step length o and
subgradient &, then (€, g) > c1(v, g) for all v € convW} and

(& —v,g) >0.

Proof Let H = RT R be the Cholesky factorization of H. Since Rwy is the ele-
ment of RconvW; with the minimum norm, then for all v € convW; we have
(Rv, —Rwy) < (Rwg, —Rwyg). Thus

(v, —Hwy) = —vT Huy

v' RT Rwy,

= (Rv, —Rwy)
(Rwg, —Rwg)

— llwill g

IA
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On the other hand, we have (§, —Hwy) > —ci ||lwilly, thus (§, —Hwy) >

c1{v, —Hwy) for all v € convW;. This gives
(§ —v,—Hwg) = (c1 — D{v, —Hwg) = (1 —c1) llwill g > 0.
O

Suppose that Algorithm 4 is applied at point x and it returns the descent direction
g and convW; as an approximation of d, f (x). We apply the line search algorithm at x
along direction g. The line search algorithm returns a step length « and a subgradient
& € f (x + ag). Proposition 4.4 shows that £ and each element of convWj, satisfies
the secant equation. Thus, H can be updated using the BFGS method with £ and an
element of convWy. In the implementation of the minimization algorithm, we use the
& and v1 € W, which Algorithm 4 is initialized v;, for updating the approximation
of inverse Hessian. Now, we present the nonsmooth version of BFGS algorithm.

In Algorithm 5, we have two loops, outer and inner loop. In the inner loop,
g, f (x") is approximated by Algorithm 4 and descent direction is computed. When
H wy! H < &, then parameters must be updated. In Theorem 3, we show that
the inner loop is terminated after finitely many iterations. The outer loop iterates
infinitely. But in the practice, the outer loop terminates when &; is less than a
threshold.

Now, we show that secant equation is satisfied in Step 4 of Algorithm 5. The line
search algorithm returns vk’"Jrl such that (v ’"H, gl = —c || wy' || Hy and since Rw;"

is an element of Rcoan,T with minimal norm, then we have
(v 8¢y = (' Hfwy') = — leTHH,;" :
Thus,

+1
(v, s) = oy

v

o (=2 |0 o + [0 )

= a(l — ) ||wy’ ||H1:n > 0.

— 8

This equation shows that the approximation of inverse Hessian can be updated by
the BFGS method.

Remark 4.2 To prove the global convergence of the minimization algorithm, it is
required that Hy, is bounded. Thus, if the following equation is satisfied,

(wi's H'wy') < o |wf H
then we set H" = H;" +ol, and g;' = g' — owy’, where o € (0, 1). By this

modification, we have (w}", H"w') > o H wy! H

The following theorem shows that every accumulation point of the sequence {xz},
generated by Algorithm 5, belongs to the set X = {x € R" : 0 € df (x)}. The proof
is similar to [13, Theorem 6.2].

@ Springer



76 Numer Algor (2016) 72:57-90

Algorithm 5 Minimization algorithm

Step O (Initialization)
Let x; € R", vl € 3f(x1), 0, c1, 05, 61,81 € (0, 1), Hy = Iyxn, 2 €
(c1, 1) and set k = 1, where I, is the identity matrix.

Step 1  (Set new parameters)
Setm =1, H}" = Hy and x} = xi.

Step2 (Compute descent direction)
Apply Algorithm 4 at point x;", with H = H}", v = v}, § = &
and ¢ = ¢gi. Let n;:’ be the number of iterations needed for termina-
tion of Algorithm 4 and let || wy! || o= min { lwl g, : w e convW}" } If

wi]| 5, = O then Stop else let g} = —H;"w;" be the descent direction.
Step 3  (Line search)

If the stopping condition (31), as given in Algorithm 4, is not satisfied

then go to Step 5, else apply Algorithm 1. If Algorithm 2 terminates

successfully, then « is the line search parameter satisfying the GWC and

v,'f“ € e f (x" +ag)) is a vector such that (v,i”“, gl +e2 ” wy! H Hp >

0, else « is the line search parameter satisfying the GAC. Construct the

next iterate xk”’+l = x;" + agy' and go to Step 4.

Step4 (BFGS update)
If Algorithm 2 terminates successfully, then set s = ag", y = vZ’H -

and
H,Z”nyH,:” ssT

(v, H'y) (v, »)’
else set H"*! = 1. Setm = m + 1 and go to Step 2.

m+1 _ ym
Hk - Hk -

Step 5 (Update parameters)
Set ex1 = e X O, Sk+1 = Sk X 05, Xpt1 = xi', Hp1 = H}' and let
k=k+1.Goto Step 1.

Theorem 4.1 Let f : R" — R be a locally Lipschitz function. If the level set
M ={x:f(x) = f(&xD},

is bounded, then either Algorithm 5 terminates finitely at some ko and mq with

” wzz)o = 0 or every cluster point of the sequence {xy}, generated by Algorithm 5,
belongs to the set X = {x e R" : 0 € 9f (x)}.

Proof If the algorithm terminates after finitely many iterations at some ko and

myo, then we have 0 € 9, f (x,i'éo). Therefore, x,'c':)o is an e-subdifferential station-
ary point. Now, suppose that the algorithm does not terminate after finitely many
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iterations. Since M is bounded and f is locally Lipschitz, then we have, f* =
inf{f(x) : x € R"} > —o0. At each point x;", we apply Algorithm 4. By Proposi-
tion 4.3, this algorithm is terminated after finitely many iterations. Either it returns
the descent direction g,T = —H,:" w,’f such that (31) is satisfied, or Hw}(" || < 6. First,

for each k, we show that there exists m; > 0 such that || wZ”‘ || g < 8. By the
k

contradiction, suppose that “ wy! || ym > O for all m, then Proposition 4.3 shows that
k

Algorithm 4 returns the descent direction g;" = —H;"wy}", such that (31) is satisfied

for all m. So, the line search algorithm is applied for all m and a step length « is

computed. Since A(ex) < 0, then @ > &. Thus, we have

FOED = FOq = —eror Ju! |

= —Ci& H w]l;n H HIZI . (33)
On the other hand, ’ wy' H ym > Ok, thus lim f(x}") = —oo. This is in contradiction
k m—00

with the fact that f(x;') > f* > —oo. Therefore, for each k, there is m; > 0 such
that || w || yme < 8. Hence, after finitely many iterations, x4 1 = x;'* and we have
k
min {||v|| v € coan,;"k] < 5. (34)
k

Also, in the iteration my, parameters are updated. Thus, we have 41 = §x X 65
and ex4+1 = & X 6;. Since 05, 6, € (0, 1), then §; and &; converge to 0, when k — oo.
Since {x;} € M and M is bounded, then {x;} has an accumulation point, namely x*
and there exists a subsequence {xki} such that x;, — x* as k; — oo. On the other
hand, we have,

convW, ¥ S Be f(x ). (35)
Now, by (34) and (35), we have,

H w;{"i H H:k" = min{||v||H:k[ Ve E)ekl_f(xkl.)} < ;.
1 1

Since &, — 0 as k; — oo, then we have limy,_, H w;;i H = 0. By

my.
1
Hki

2
Remark 4.2, we have Hw,’(“i . Therefore limy; oo H w;; H = 0.

> o Hw*
mg; = ki
H,. i

Thus, limg, - o0 w,*;_ = 0.0On thé other hand, there exists yr, € B(xy;, &) such that
u),fl_ € 9f (yx,)- Since df () is upper semicontinuous and y;, — x*, then 0 € 3f (x*)
and this completes the proof. [

5 Numerical experiments

In this section, we implement Algorithm 5, denoted by “NBFGS”, and compare the
results with some other nonsmooth optimization algorithms. All the algorithms are
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Fig. 1 Performance profiles for tested algorithms in dimensions n = 10, for first classes of problems

being implemented in MATLAB R2007b. The number of subgradient evaluations is
considered as the measure of an algorithm efficiency. Also, we take the advantages
of the performance profile of Dolan and More in [48] to have a better comparison
between the implemented algorithms. Two classes of test functions are used to mea-
sure the efficiency of the considered algorithms. The first class of test problems is
taken from [29] and the second one is the TEST29 taken from [47]. In the numerical
experiments, we see that the second class of problems is harder than the first class.
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Fig. 2 Performance profiles for tested algorithms in dimensions n = 10, for second classes of problems

Thus, we compare the performance of algorithms for each class of problems sepa-
rately. The test problems are introduced in Table 1. 10 randomly generated starting
points were used for each test problem and we report the number of successful runs
of each algorithm.

In the smooth line search, ¢; and ¢, are initialized with 10~* and 0.9. Here, we
also set these parameters with the same values. The algorithm is tested with different
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Fig. 3 Performance profiles for tested algorithms in dimensions n = 100, for first classes of problems in
the same column

values of parameters and the values are chosen that give the best results for the all
test problems. We set ¢ = 1079, 0, =.1,61 = 1079, 0s =1,and o = 10712, 1f any
the following condition satisfies,

- g <= 10715 s
Jwit| = 107°,
— the number of the function evaluation exceeds 1000000,
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Fig. 4 Performance profiles for tested algorithms in dimensions n = 100, for second classes of problems
in the same column

then Algorithm 5 terminates.

We compare the presented algorithm with the variable metric bundle method
(PVAR) [27, 28], Limited-Memory Bundle Method (LMBM) [29], MY method [36],
gradient sampling method (GS) [15], Shor-R algorithm [1], smooth BFGS method
and Limited-Memory BFGS method (LBFGS) [38].
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Fig. 5 Performance profiles for tested algorithms in dimensions n = 1000, for first classes of problems

in the same column

In the performance profile, we say an algorithm is successfully solve a problem,
if the following inequality satisfies,

|fmin - f*|

<

k]

fmin| +1

where, fmin is the global minimizing value and Algorithm 3 returns f, as approx-

imation of fmin. We use three tolerances €
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Fig. 6 Performance profiles for tested algorithms in dimensions n = 1000, for second classes of problems

in the same column

subgradient evaluations as a performance measure. Since the number of function
evaluations is equal to the number of subgradient evaluations in the all methods,
then we use the number of subgradient evaluations and show the results in Figs. 1,
2, 3,4, 5 and 6. In these figures, each row shows the different optimality thresh-
olds, ¢ = 1073, 10~ and 1073 for the first, second and third rows respectively and
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Table 1 Test problems and
their optimal value for n = 1000  No. problem convex optimal value

First class of problems

1 MAXQ + 0

2 MAXHILB + 0

3 LQ + —1.41279e+003
4 CB31 + 1998

5 CB3II + 1998

6 NACTFACES — 0

7 Brown 2 - 0

8 Mifflin 2 - —7.06503e+002
9 Crescent I — 0

10 Crescent 11 - 0

Second class of problems

11 problem 2 from TEST29 + 0
12 problem 5 from TEST29 + 0
13 problem 6 from TEST29 + 0
14 problem 11 from TEST29 + 1.20312e+004
15 problem 13 from TEST29 + 5.66131e+002
16 problem 17from TEST29 - 0

17 problem 19 from TEST29 -
18 problem 20 from TEST29 -
19 problem 22 from TEST29 -
20 problem 24 from TEST29 -

[=E =l =]

each column shows performance profiles for the first and second class of problems
respectively. We set € = 10™* and run each algorithm for 10 fixed random start-
ing points for dimension 10, 50 and 100. For each algorithm, the number of number
of unsuccessful runs are reported in Table 2 for each problem and the average num-
ber of subgradient evaluations for each successful implementation are reported in
Table 3.

For small dimensions, the numerical experiments show that all of the tested algo-
rithm have an acceptable behavior. But, some of these algorithms are not efficient
for high-dimensional problems. Specially, this is more evident for nonconvex prob-
lems. The numerical results shown that the NBFGS and BFGS methods have the
same behavior for some test problems and the NBFGS method has better efficiency
in nonconvex problems. The computed search direction is the main reason for the
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Table 2 Each column of table shows the number of unsuccessful runs for each algorithm in dimension
10, 50 and 100 respectively. The starting points are fixed for all algorithms

prob NBFGS MY BFGS LBFGS PVAR LMBM  SHOR GS

1 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 2,10,10  0,0,0

2 0,0,0 0,1,5 0,0,0 10,10,10 0,1,0 43,6 10,10,10 0,0,0

3 0,0,0 02,3 0,0,0 7,13 0,0,0 0,8,3 10,10,10 0,1,6

4 0,0,0 03,3 0,0,0 0,8,6 0,4,5 1,8,7 9,10,10  0,2,5

5 5,54 0,0,0 75,6 4,75 6,10,10 2273 10,10,10  0,0,0

6 0,0,0 0,0,0 0,0,0 0,0,0 4,10,10 0,06 10,10,10 0,4.,8

7 0,0,0 0,1,1 0,0,0 0,3,5 0,7,6 0,8,7 1,10,10  0,0,1

8 5,0,0 2,22 10,10,0  9,7,10 10,100  10,7,10  10,10,10 10,10,0
9 0,0,0 0,0,0 0,0,0 0,0,0 85,7 0,0,0 10,10,10  0,0,0
10 0,0,0 0,0,0 0,0,0 10,10,10 0,8,6 5,10,10  10,10,10 0,4,7
11 0,0,0 0,0,0 0,0,0 0,0,0 0,1,0 10,10,10 10,10,10 0,6,8
12 0,0,0 2,6,6 0,0,0 10,10,10 6,3,3 6,6,10 10,10,10 0,0,0
13 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 2,10,10  0,0,0
14 10,10,10 10,10,10 10,10,10 10,10,10 10,10,10 10,10,10 10,10,10 10,10,10
15 5,10,10  4,10,10  5,10,10  5,10,10  7,10,10  4,10,10  9,10,10  3,10,10
16 0,34 0,0,3 0,3.4 0,9.8 5,10,10  0,7,10 5,10,10 13,2
17 10,10,10 10,10,10 10,10,10 10,10,10 10,10,10 10,10,10 10,10,10 10,10,10
18 5,10,10  4,10,10  5,10,10  10,10,10 10,10,10 8,10,10  10,10,10 7,10,10
19 0,0,0 0,10,10  0,0,0 10,10,10 4,9,10 10,10,10 10,10,10 0,0,0
20 0,0,0 0,10,10  0,0,0 0,10,10  10,10,10 5,10,10  10,10,10 0,0,0

behavior of these methods. In the NBFGS, the serach direction is a descent direc-
tion depending on positive definite matrix. This is the main reason that NBFGS gives
better results for nonconvex problems. Since the available Matlab code for the GS
algorithm does not return the number of subgradient evaluations, then we do not
report the subgradient evaluations of this algorithm.

By increasing the optimality threshold, a solver can successfully solve a prob-
lem, when it approximates the optimal solution accurately. In dimension n = 10,
the performance profiles of the NBFGS, MY, BFGS and GS methods are fixed and
do not vary. Thus these methods approximate the optimal value with enough cur-
rency. But, in the higher dimensions, the performance of each solver is changed.
The performance profiles of several solvers show that the performance of NBFGS
method has the least variation than other methods. Also, the NBFGS has the least
number of unsuccessful runs, when starting points are randomly generated. In
some test functions, the number of subgradient evaluations of the BFGS method
is less than the NBFGS methods. Computing cost for the descent direction is its
main result.
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6 Conclusions

The numerical results shown that the smooth BFGS and LBFGS method have good
behavior to solve nonsmooth optimization problems such that they give better solu-
tions than the famous nonsmooth optimization algorithms. By combination of the
BFGS and a descent method, the efficiency of the BFGS method is increased espe-
cially for high dimensional problems. In the combination method, the number of
subgradient evolutions are more than the BFGS method in some cases. In fact, com-
puting the descent direction increases the number of subgradient evolutions. In this
paper, a descent direction is computed for locally Lipschitz function. If the descent
direction computing algorithm is modified based on a special functions, for exam-
ple convex functions, semismooth functions and ..., we except that the number of
subgradient evolutions are reduced significantly. In future works, we try to modify
the NBFGS method for special functions such that its efficiency is increased. Also,
by combination of the LBFGS and a descent method, an efficient method will be
construct for large scale problems.
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