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1 Introduction

Discretization of semiclassical Schrödinger equations The quantitative and qual-
itative behavior of space and time discretization methods for linear and nonlinear
Schrödinger equations has been extensively studied in recent years. As a small selec-
tion, we mention the contributions [6–8, 12, 15, 22, 24, 30] which are of relevance in
particular in the context of semiclassical Schrödinger equations.

The numerical approximation of nonlinear Schrödinger equations in the semiclas-
sical regime is a challenge, since in general the space and time increments have to
be chosen in dependence of the semiclassical parameter 0 < ε < 1 in order to
correctly capture the solution behavior. In particular, for an initial state u depend-
ing on the parameter ε in the form of semiclassical wave packets, WKB states or
focussing states, the solution ψ shows a highly oscillating behavior. However, a pre-
cise characterization of the solution to semiclassical nonlinear Schrödinger equations
in dependence of the prescribed initial state is a question in the area of analysis that
has not been resolved exhaustively yet.

Operator splitting methods Exponential operator splitting methods for nonlinear
Schrödinger equations have been in the focus of interest of both theoretical physics
and numerical analysis in the last years. A comprehensive review of numerical meth-
ods for nonlinear Schrödinger equations such as Gross–Pitaevskii equations is [1],
which summarizes most of the studies conducted in this field. Time-splitting meth-
ods in conjunction with spectral space discretizations are overall concluded to be
the most successful approximations, with favorable stability and efficiency as well
as norm and energy conservation. In particular, the spectral accuracy of the space
discretization is advantageous for Schrödinger equations with regular solutions.

A first error analysis of the Lie and Strang splitting methods for nonlinear
Schrödinger equations is found in [9]. The seminal work [26] provides a rigorous
convergence analysis for the Strang splitting method applied to the Schrödinger–
Poisson and cubic Schrödinger equations; extensions to Gross–Pitaevskii equations
and high-order splitting methods as well as a study of the effect of spatial discretiza-
tion by spectral methods are given for instance in [20, 25, 29]. The question of
long-time integration, with view on near-conservation of invariants under time dis-
cretization by splitting methods, is considered in [18, 19, 21], see also references
given therein and [11, 14] for the analysis of related classes of methods.

Linear and nonlinear Schrödinger equations in the semiclassical regime are
considered in [7, 8], distinguishing between the cases of weak/strong focus-
ing/defocusing nonlinearities. In particular, numerical tests for time-splitting spectral
methods are included and admissible meshing strategies for the correct computation
of the solution and evaluation of observables are provided. Theoretical investigations
of time-splitting methods applied to the cubic Schrödinger equation in the semiclas-
sical regime are conducted in [17]. A wider class of (nonlocal) nonlinearities has
recently been analyzed in [12]. In essence, all these contributions confirm that for the
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correct computation of the solution the time increment has to be chosen sufficiently
small in relation to the semiclassical parameter ε.

Objective and outline In this work, we study the cubic Schrödinger equation involv-
ing a small but fixed parameter 0 < ε < 1, see Section 2. Our objective is to provide a
rigorous a priori and a posteriori local error analysis for low-order splitting methods,
the first-order Lie splitting and the second-order Strang splitting methods.

First considerations and numerical tests imply that the splitting solution cor-
rectly describes the qualitative behavior of the true solution only if the time stepsize
t > 0 is in the range of the parameter ε, see also [7, 8, 17]. Notably, the nume
rical simulation of the semiclassical limit (ε → 0) is not possible by the splitting
approach.

A refined local error analysis provides a deeper understanding of the dependence
on the time stepsize and the parameter, see Sections 3–5. However, as the obtained
bounds involve certain Sobolev norms of the solution, whose precise dependence
on ε is in general unknown, an appropriate a priori choice of the time stepsize to
optimally balance computational cost and accuracy is a delicate issue.

Pessimistic bounds for the solution and its spatial derivatives would lead to a sys-
tematic underestimation of the time stepsize, at the expense of efficiency. A remedy
is the use of asymptotically correct a posteriori local error estimates for an automatic
time step size control, see Section 6.

The theoretical investigations are substantiated and complemented by numerical
examples, see Section 7.

Theoretical results and connection to earlier work The present paper extends the
work of [16, 17], where the local error in dependence of ε is studied for higher-
order splitting methods applied to linear equations and for the first-order Lie splitting
method applied to nonlinear equations, respectively. In particular, we analyze the
second-order Strang splitting method in detail, where we adopt the defect-based
approach of [3–5]. This enables us to derive a suitable local error representations with
bounds of the form

Lie splitting: Ct2 ,

where the constant depends essentially on ‖u‖H 2 , and

Strang splitting: Ct3ε−1 ,

where the constant depends essentially on ‖u‖H 4 . Here, the explicitly stated depen-
dence on ε is associated with the applied splitting method, additionally a solution
dependence on a negative power of ε may be present. In special cases, precise
bounds for ‖u‖Hk are known, however, the treatment of the general case is an
open analytical question. Extending [3], we analyze asymptotically correct a pos-
teriori error estimators for the purpose of adaptive time stepping, and verify their
asymptotics.
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2 The cubic Schrödinger equation as a model problem

Problem setting The main aim of this paper is to provide a rigorous a priori and
a posteriori local error analysis for low-order splitting methods applied to the cubic
Schrödinger equation (NLS)

i ∂
∂t

ψ(t, x) = −ε 1
2 �ψ(t, x) + 1

ε

(
U(x) + ϑ |ψ(t, x)|2)ψ(t, x), (2.1a)

ψ(0, x) = u(x), (2.1b)

with solution ψ : [0, T ] × R
d → C, initial state u : Rd → C, a quadratic harmonic

potential
U : R

d → R : x �→ 1
2 ω2 |x|2 , (2.2)

and a fixed positive constant 0 < ε < 1. We choose ϑ = 1 to obtain a defocussing
nonlinearity, where a solution exists globally. We focus on the relevant cases d ∈
{1, 2, 3} and employ certain regularity conditions and boundedness assumptions on
ψ and Uψ .

Splitting For discretization in time we split the right-hand side of the PDE (2.1a),

F(ψ) = iε 1
2 �ψ − i 1

ε
(U + ϑ |ψ |2)ψ ,

separating the two scalings with respect to ε into

A(ψ) = iε 1
2 �ψ , (2.3a)

B(ψ) = −i 1
ε

(
U + ϑ |ψ |2)ψ . (2.3b)

The evolutionary operators EA and EB associated with these subproblems and initial
state u are given by

EA(t, u) = ei t
ε
2 �u, (2.4a)

EB(t, u) = e−i t 1
ε
(U+ϑ |u|2) u. (2.4b)

Representation (2.4a) follows from Stone’s theorem, and the explicit representa-
tion (2.4b) is immediate.

For the numerical approximation we consider s -fold splitting methods, where one
splitting step S has the general form1

S (t, ·) := EB(bs t, EA(as t, . . . , EB(b1 t, EA(a1 t, ·)))). (2.5)

The splitting coefficients ai, bi ∈ R are defined by appropriate order conditions. The
numerical solution ψn after n time steps is given by

ψn = S (t, S (t, . . . , S (t,︸ ︷︷ ︸
n times

u))). (2.6)

For the subsequent study the two-fold symmetric second-order Strang splitting
method, with a1 = a2 = 1

2 , b1 = 1, b2 = 0, see (3.2) below, will be in the focus of
interest.

1For notational convenience, the time increment is simply denoted by t .
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Notation For a nonlinear operator G we denote by G′ its Fréchet derivative.
Moreover, for the associated evolutionary operator EG(t, u), its first and k-th deriva-
tives with respect to the initial value u are denoted by ∂2EG(t, u) and ∂k

2EG(t, u),
respectively.2

3 General representation of the local error

Our main goal is a better understanding of the local error behavior of a Strang split-
ting step for problem (2.1), see Section 4. To this end, in the present section we first
recapitulate an exact representation of the local error for a general nonlinear evolution
equation

∂
∂t

ψ = F(ψ) = A(ψ) + B(ψ), ψ(0) = u. (3.1)

This local error representation is based on [3, Section 4 and Appendix C]. Here
we do not repeat all details of the derivation but particularize for A linear as is the
case in (2.3a), and rearrange terms appropriately as a preparation for the subsequent
estimates.

Since A is a linear operator, we have

A(u) = Au, A′(u)v = Av, EA(t, u) = EA(t)u, ∂2EA(t, u)v = EA(t)v ,

with the operator exponential EA(t) = ei t
ε
2 �, see (2.4a). A Strang splitting step takes

the form

S (t, u) = SStrang(t, u) = EA( 12 t)EB

(
t, EA( 12 t)u)

)
(3.2)

with EB(t, ·) from (2.4b).
The flow defined by (3.1) is denoted by EF (t, u), and the local error of a splitting

step is denoted by

L (t, u) = S (t, u) − EF (t, u). (3.3)

The representation of L (t, u) given in the sequel indicates the expected local order
O(tp+1) of the Strang splitting scheme with p = 2 and in particular the dependence
on the operators A and B. This also will enable us to study the dependence on the
parameter ε.

The approach adopted in [3] is based on an iterated application of (non)linear vari-
ation of constant formulas involving the defect S (1)(t, u) of the numerical solution
S (t, u), defined according to

∂
∂t

S (t, u) = F(S (t, u)) + S (1)(t, u), (3.4)

such that S (t, u) is the exact solution of the perturbed problem (3.4).

2The operator B from (2.3b) is not complex Fréchet differentiable due to the occurrence of the factor |�|2.
However, this is a merely formal problem, see the discussion in [3, Section 5.1].
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3.1 First expansion step

Using Proposition 2 (Gröbner-Alekseev formula, see Appendix A), with z(t) =
S (t, u), the local error (3.3) can be written as

L (t, u) =
∫ t

0
∂2EF (t − τ, S (τ, u))S (1)(τ, u)dτ . (3.5)

An expression for the defect S (1)(t, u) which contains no time derivatives is derived
in Section B.1,

S (1)(t, u) = EA( 12 t)B(w) − B(EA( 12 t)w) (3.6)

+ 1
2 EA( 12 t)

(
∂2EB(t, v)Av − AEB(t, v)

)∣∣
v=EA( 12 t,u)

w=EB(t,EA( 12 t,u))

.

Obviously, S (1)(0, u) = 0, hence S (1)(t, u) is at least of order O(t) provided all
expressions involved are bounded. However, this does not yet reveal the expected
order O(t2).

3.2 Second expansion step

Further expansion of L (t, u) via another application of the variation of constant
formula results in

L (t, u) =
∫ t

0

∫ τ1

0

{
∂2EF (t − τ2, S (τ2, u))S (2)(τ2, u)

+ ∂22 EF (t−τ2, S (τ2, u))
(
S (1)(τ2, u), S (1)(τ2, u)

)}
dτ2 dτ1

=: L (2)(t, u) + L (1,1)(t, u), (3.7)

see [2], involving the first- and second-order defect terms

S (1)(t, u) = ∂
∂t

S (t, u) − F(S (t, u)) (see (3.4),(3.6)), (3.8a)

S (2)(t, u) = ∂
∂t

S (1)(t, u) − F ′(S (t, u))S (1)(t, u). (3.8b)

Note that for (2.1a),

F ′(u)v = −ε 1
2 �v + 1

ε

(
U v + u2v + 2ϑ |u|2v

)
.
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Again, S (2)(t, u) can be expressed in a way such that no time derivatives occur.
Here we resort to a reformulation facilitating identification of the dominant terms,
see Section B.1,

S (2)(t, u) = (
EA( 12 t)B ′(w) − B ′(EA( 12 t)w)EA( 12 t)

)
∂2EB(t, v)Av

+ (
A + B ′(EA( 12 t)w)

)(
B(EA( 12 t)w) − EA( 12 t)B(w)

)

+ (
EA( 12 t)B ′(w) − B ′(EA( 12 t)w)EA( 12 t)

)
B(w)

+ 1
4 EA( 12 t)

(
A

(
AEB(t, v) − ∂2EB(t, v)Av

)

− (
A∂2EB(t, v) − ∂2EB(t, v)A

)
Av

+ ∂22 EB(t, v)(Av, Av)
) ∣∣∣ v=EA( 12 t)u

w=EB(t,EA( 12 t)u)

, (3.9)

satisfying S (2)(0, u) = 0, hence S (2)(t, u) = O(t) provided all expressions
involved remain bounded. Thus, together with S (1)(t, u) = O(t), we have

L (t, u) = O(t3). (3.10)

Detailed integral expressions for S (1)(t, u) and S (2)(t, u) are given in Section 3.4
below.

3.3 Commutator expressions occurring in the subsequent analysis

In the expansion of the local error, nonlinear commutators occur. The commutator of
two nonlinear vector fields A, B is defined as3

[A, B](u) = A′(u)B(u) − B ′(u)A(u).

For a linear operator A, the relevant first- and second-order commutators are given
by

[A, B](u) = AB(u) − B ′(u)Au, (3.11a)

[A, B ′(v)](u) = AB ′(v)u − B ′(v)Au, (3.11b)

[B, [B, A]](u) = B ′(u)
(
B ′(u)Au − AB(u)

) − (
B ′(u)Au − AB(u)

)′
B(u) (3.11c)

= −2B ′(u)AB(u) − B ′′(u)(Au, B(u)) + B ′(u)B ′(u)Au + AB ′(u)B(u),

[A, [A, B]](u) = A
(
AB(u) − B ′(u)Au

) − (
AB(u) − B ′(u)Au

)′
Au

= A2B(u) + B ′′(u)(Au, Au) + B ′(u)A2u − 2AB ′(u)Au. (3.11d)

3Here and in the following, u is a formal variable representing the argument of the respective operators.
This is not to be confused with the initial value, which has also been denoted by u.
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3.4 Explicit integral representation of the local error

The integrand in (3.7) depends on the first- and second-order defect terms S (1) and
S (2), see (3.6),(3.9). For a precise estimation of the local error, a more explicit repre-
sentation of S (1) and S (2) is required. This is accomplished by converting them into
integral form according to the ideas from [3]. The following integral representations
are derived in Appendix B.

S (1)(t, u) =
∫ t

0

{
1
2 EA( 12 (t − τ))[A, B]EA( 12 τ)w

+ 1
2 EA( 12 t)∂2EB(t − τ,EB(τ, v))[B, A](EB(τ, v))

}
dτ

∣∣∣
v=EA(

1
2 t)u

w=EB(t,EA(
1
2 t)u)

=:
∫ t

0
s(1)(t, τ, u)dτ = O(t), (3.12)

and

S (2)(t, u) =
=

∫ t

0

{
− 1

2 EA( 12 (t − τ))B ′′(EA( 12 τ)w)

·
(
AEA( 12 τ)w, EA( 12 τ) · (∂2EB(t, v)Av − AEB(t, v)

))

+ 1
2EA( 12 (t − τ))

·
(
[A, [B,A]](EA( 12 τ)w) + [A, B ′(EA( 12 τ)w)]EA( 12 τ)

(
∂2EB(t, v)Av − AEB(t, v)

))

+ EA( 12 (t − τ))

·
(

− B ′′(EA( 12 τ)w)
((

EA( 12 τ)B(w) − B(EA( 12 τ)w)
)
, AEA( 12 τ)w

)

+ 1
2 [B, [B,A]](EA( 12 τ)w

) + [A, B ′(EA( 12 τ)w)](EA(τ)B(w) − B(EA( 12 τ)w)
))

+ EA( 12 t)∂2EB(t − τ, EB(τ, v))

·
(
1
4 [A, [A, B]](EB(τ, v)) − 1

2 [A,B ′(EB(τ, v))](∂2EB(τ, v)Av − AEB(τ, v)
)

+ 1
4 B ′′(EB(τ, v))

((
∂2EB(τ, v)Av − A(EB(τ, v))

)
, ∂2EB(τ, v)Av + AEB(τ, v)

))}

dτ
∣∣∣

v=EA(
1
2 t)u

w=EB(t,EA(
1
2 t)u)

. (3.13a)

Analogously to (3.12) we define s(2)(t, τ, u) as the integrand in (3.13a), such that

S (2)(t, u) =
∫ t

0
s(2)(t, τ, u)dτ . (3.13b)

Several terms in (3.13) cancel out at t = 0, e.g., ∂2EB(t, v)Av − AEB(t, v). Hence
s(2) can be written as

s(2)(t, τ, u) = 1
4 [A, [B, A]](u) + 1

2 [B, [B, A]](u) + O(t). (3.14)
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These commutators will dominate the term S (2).
Combining these results we finally obtain an integral expression for L (t, u) con-

sisting of two parts according to (3.7). Evaluating L (t, u) at t = 0 reveals the
dominant term in its Taylor expansion,

L (t, u) = t3

6 s(2)(t, τ, u) + O(t4), (3.15)

with s(2) as in (3.14).

4 The local error for the cubic Schrödinger equation

In the special case of the NLS (2.1) the operators A, B are given explicitly
in (2.3), for which we can explicitly calculate the terms appearing in the local error
representation.

For Au = iε 1
2 �u from (2.3a) we have

A′(u)v ≡ Av = iε 1
2 �v, A′′(u)(v, w) ≡ 0 .

4.1 Auxiliary results for the nonlinear operator B

In a subsequent L2 -estimate for the integral representation of the local error, several
derivatives of the nonlinear operator from (2.3b),

B(u) = −i 1
ε

(
U + ϑ |u|2)u

appear.

Fréchet derivatives of B Direct computation yields

B ′(u)v = −i 1
ε

(
U v + ϑ (2|u|2v + u2v)

)
,

B ′′(u)(v, w) = −2i 1
ε
ϑ

(
uvw + uvw + uvw

)
,

B ′′′(u)(v, w, z) ≡ −2i 1
ε
ϑ

(
vwz + vwz + vwz

)
.

Spatial derivatives associated with B In the commutators to be analyzed below,
spatial derivatives of the functions B(u), B ′(u)v and B ′′(u)(v, w) occur. We thus
compute

∇B(u) = −i 1
ε

(
(∇U)u + U(∇u) + ϑ

(
2|u|2 (∇u) + u2 (∇u)

))
,

∇(
B ′(u)v

) = −i 1
ε

(
(∇U)v + U ∇v

+ ϑ
(
2|u|2∇v + u2 (∇v) + 2u(∇u)v + 2u(∇u)v + 2u(∇u)v

))
,

∇(B ′′(u)(v, w)) = −2i 1
ε
ϑ

(
(∇u)vw + (∇u)vw + (∇u)vw + u(∇v)w

+ u(∇v)w + u(∇v)w + uv(∇w) + uv(∇w) + uv(∇w)
)
.
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This implies

�B(u) = −i 1
ε

(
(�U)u + 2(∇U) · (∇u) + U(�u)

+ ϑ
(
2u(∇u) · (∇u) + 4u(∇u) · (∇u) + 2|u|2(�u) + u2(�u)

))
,

�(B ′(u)v) = −i 1
ε

(
(�U)v + 2(∇U) · (∇v) + U(�v)

+ ϑ
(
2|u|2 (�v) + u2 (�v) + 4u(∇u) · (∇v) + 4u(∇u) · (∇v)

+ 4u(∇u) · (∇v) + 2u(�u)v + 2u(�u)v

+ 2u(�u)v + 2v(∇u) · (∇u) + 4v(∇u) · (∇u)
))

,

�(B ′′(u)(v, w)) = −2i 1
ε
ϑ

(
(�u)vw + (�u)vw + (�u)vw + u(�v)w + u(�v)w + u(�w)w

+ uv(�w) + uv(�w) + uv(�w)

+ 2w(∇u) · (∇v) + 2w(∇u) · (∇v) + 2w(∇u) · (∇v)

+ 2v(∇u) · (∇w) + 2v(∇u) · (∇w) + 2v(∇u) · (∇w)

+ 2u(∇v) · (∇w) + 2u(∇v) · (∇w) + 2u(∇v) · (∇w)
)
.

Higher derivatives ofB, which appear in higher-order commutators, can be expressed
in a similar way but will not be listed here.

4.2 Auxiliary results for the evolutionary operators EA and EB

The evolutionary operators EA and EB are given by (2.4). For the nonlinear opera-
tor EB , the Fréchet derivatives with respect to the initial value u are of increasing
complexity:

∂2EB(t, u)v = e−i t
ε
(U+ϑ |u|2)v − i t

ε
ϑ e−i t

ε
(U+ϑ |u|2) u(uv + uv),

∂22 EB(t, u)(v, w) = −i t
ε
ϑ e−i t

ε
(U+ϑ |u|2)

·(2uvw + 2uvw + 2uvw − i t
ε
ϑ u(uv + uv)(uw + uw)

)
.

For higher derivatives ∂k
2 the results look similar and involve higher powers of t

ε
.

Furthermore,

∂2EB(t, u)
∣∣
t=0 = id,

∂22 EB(t, u)
∣∣
t=0 = 0 .

In the present situation, we may use the identity

∇EA(t)u = EA(t)∇u,
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thus

∇EB(t, EA(t)u) = e−i t
ε
(U+ϑ |EA(t)u|2)

·
(
EA(t)∇u − i t

ε

(
(∇U)EA(t)u+ϑ |EA(t)u|2 (EA(t)∇u)+ϑ (EA(t)u)2 (EA(t)∇u)

))
,

which implies

�EB(t,EA(t)u) = e−i t
ε
(U+ϑ |EA(t)u|2)(EA(t)�u

− i t
ε

(
2(∇U) · (EA(t)∇u) + 2ϑ (EA(t)u)(EA(t)∇u) · (EA(t)∇u) + 3ϑ (EA(t)u)|EA(t)∇u|2

+ (�U)EA(t)u + ϑ |EA(t)u|2EA(t)�u + ϑ (EA(t)u)2EA(t)�u
)

− t2

ε2

(
(∇U) · (∇U)EA(t)u + 2ϑ (∇U) · (EA(t)∇u)|EA(t)u|2

+ 2ϑ (∇U) · (EA(t)∇u)(EA(t)u)2 + 2ϑ2|EA(t)∇u|2 |EA(t)u|2EA(t)u

+ ϑ2(EA(t)∇u) · (EA(t)∇u)(EA(t)u)3 + ϑ2(EA(t)∇u) · (EA(t)∇u)|EA(t)u|2 EA(t)u
))

.

4.3 Representation of commutators

The results derived above for the operators A and B yield explicit expressions for
the relevant commutators from (3.11). With iε(−i 1

ε
) = 1 we obtain, for a general

potential U ,

[A, B](u) = (∇U) · (∇u) + 1
2 (�U)u + ϑ

(
u2 (�u) + 2u|∇u|2 + u(∇u) · (∇u)

)
, (4.1a)

[A, B ′(u)](v) = 1
2 (�U)v + (∇U) · (∇v) (4.1b)

+ ϑ
(
u2(�v) + (�u)uv + (�u)uv + (�u)uv + 2|∇u|2v

+ 2u(∇u) · (∇v) + 2u(∇u) · (∇v) + (∇u) · (∇u)v + 2u(∇u) · (∇v)
)
.

Furthermore,

[B, [B, A]](u)

= −i 1
ε

(
− u(∇U) · (∇U)

+ ϑ
(
2(�U)|u|2u − 4|u|2 (∇U) · (∇u) − 2U u2 (�u)

)

− ϑ2 (
2|u|4 (�u) − 2|u|2u2 (�u) + |u|2u(∇u) · (∇u) + 6|u|2u|∇u|2

+ u3 (∇u) · (∇u)
))

. (4.1c)

This expression comprises less critical terms with respect to U , in particular it does
not contain terms U(∇u) · (∇u), or U(�u).



12 Numer Algor (2016) 72:1–35

For [A, [A, B]](u), using the identities

�
(
(∇u) · (∇v)

) = (∇ (�u)
) · (∇v) + (∇u) · (∇ (�v)

) + 2 Tr
(
(∇∇T u) · (∇∇T v)

)
,

(∇u) · (∇ ((∇u) · (∇u))
) = 2(∇u)T · (∇∇T u) · (∇u),

we obtain4

[A, [A, B]](u)

= iε
(
1
4 (�2U)u + (∇(�U)) · (∇u) + Tr

(
(∇∇T (U)) · (∇∇T (u))

)

+ ϑ
(
u2 (�2u) + 4u(∇u) · (∇(�u)) + 2(�u)(∇u) · (∇u)

))

+ iεϑ
(
u Tr

(
(∇∇T (u))2

) + 2uTr
(
(∇∇T (u)) · (∇∇T (u))

) + 2(∇u)T · (∇∇T (u)) · (∇u)

+ 2(∇u)T · (∇∇T (u)) · (∇u) + 2(∇u)T · (∇∇T (u)) · (∇u)
)
. (4.1d)

5 L2 -estimate of the local error for the cubic Schrödinger equation

Since solutions to Schrödinger equations are well-defined in the Hilbert space L2,
we aim for an L2 -estimate of L (t, u) on the basis of the general representation from
Section 3. Proceeding from (3.7), the local error terms L (2)(t, u) and L (1,1)(t, u)

will be estimated separately below in the situation of (2.1a). The detailed derivations
of these estimates are given in Appendix C.

5.1 L2 -estimates for L (2) and L (1,1)

Consider

L (2)(t, u) =
∫ t

0

∫ τ1

0
∂2EF (t − τ2, S (τ2, u))S (2)(τ2, u)dτ2 dτ1 (5.1a)

with S (2)(τ2, u) = ∫ τ2
0 s(2)(τ2, τ3, u)dτ3 given by (3.13). In combination with an

estimate for s(2), the integrand in (5.1a) can be estimated by
∥
∥∂2EF (t − τ2, S (τ2, u)) · S (2)(τ2, u)

∥
∥

L2

≤exp
(
C

∫ t

τ2

1
ε
|ϑ | ‖EF (σ −τ2, S (τ2, u))‖2

H 2 dσ
)(

t · sup
0≤τ3≤τ2

‖s(2)(τ2, τ3, u)‖L2 + t
ε
C∗

)
,

(5.1b)

with a constant C∗ as indicated in Appendix C.1.
The second contribution to the local error (3.7) is

L (1,1)(t, u) =
∫ t

0

∫ τ1

0
∂22 EF (t − τ2, S (τ2, u))

(
S (1)(τ2, u), S (1)(τ2, u)

)}
dτ2 dτ1

(5.2a)

4For the harmonic potential U from (2.2), the terms �2U and ∇(�U) vanish.
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with S (1)(τ2, u) = ∫ τ2
0 s(1)(τ2, τ3, u)dτ3 given by (3.12). The calculations from

Appendix C.2 yield
∥
∥∂22EF (t − τ2,S (τ2, u))(S (1)(τ2, u),S (1)(τ2, u))

∥
∥

L2

≤ exp
(
C

t∫

τ2

1
ε
|ϑ |‖EF (σ − τ2,S (τ2, u))‖2

H 2 dσ
)

·
(
Ĉ t3

ε
‖u‖L2

(
sup

0≤τ3≤τ2

‖s(1)(τ2, τ3, u)‖H 2 + 1
ε
C∗

)2 + t2

ε
C∗

)
.

(5.2b)

In this way, estimation of the local error reduces to estimates for s(1) and s(2) which
will be discussed in Sections 5.4 and 5.5.

5.2 L2 -boundedness of UEA(t)u for the harmonic potential U from (2.2)

The product of the quadratic potentialU(x) = 1
2 ω2 |x|2 with the function EA(t)u as it

appears in (5.6) below and in the estimates from Section 5.3, is unbounded in general.
In the following we work out requirements on u which guarantee that ‖UEA(t)u‖L2

remains bounded.
From the well-known identity

EA(t)xEA(−t) = x + i t ε∇
we first obtain

‖xEA(t)u‖L2 ≤ ‖xu‖L2 + ε t ‖u‖H 1 .

Furthermore, using the estimates from Appendix A.3 we find

‖UEA(t)u‖L2 ≤ ‖U u‖L2 + t εC1‖(∇U)u‖H 1 + t2ε2C2‖u‖H 2

≤ ‖U u‖L2 + t εC1
(‖U u‖L2 + ‖u‖H 2

) + t2ε2C2‖u‖H 2 , (5.3)

with C1, C2 depending on the weight ω in U . Clearly, the expression ‖(�U)u‖L2 is
bounded by C‖u‖L2 with a constant C depending on ω.

5.3 Hm -boundedness of a Strang splitting step

In the estimates of S (1) and S (2), certain Hm -norms of the splitting approx-
imation S (t, u) = EA( 12 t) · EB(t, EA( 12 t)u) and of the intermediate composition
EB(t, EA( 12 t)u) occur. Their boundedness with respect to the initial value u is crit-
ical for our analysis. Due to the invariance property ‖EA(t)u‖Hm = ‖u‖Hm , the
expressions S (t, u) and w = EB(t, EA( 12 t)u) show the same behavior in the
Hm-norm.

Concerning m = 0, both flows EA and EB conserve the L2 -norm, hence

‖S (t, u)‖L2 = ‖EB(t, EA( 12 t)u)‖L2 = ‖u‖L2 . (5.4)
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The following estimates are based on the results from Section 4.2, making use of the
estimates from Appendix A.2. For m = 1 and m = 2 we have

‖EB(t, EA( 12 t)u)‖H 1 ≤ ‖u‖H 1+C·
(

t
ε

(‖(∇U)u‖L2+|ϑ |‖u‖H 2‖u‖2
H 1

)+t2‖u‖H 1

)
,

(5.5a)
and

‖EB(t,EA( 12 t)u)‖H 2 ≤ ‖u‖H 2 + C ·
(

t
ε

(‖U u‖L2 + ‖u‖H 2 + |ϑ |‖u‖3
H 2

) + t2‖u‖H 2

+ t2

ε2

(‖Uu‖L2 + |ϑ |‖U u‖L2‖u‖2
H 2 + |ϑ |‖u‖3

H 2 + |ϑ |2‖u‖5
H 2

)

+ t3

ε

(‖U u‖L2 + ‖u‖H 2 + |ϑ |‖u‖3
H 2

) + t4‖u‖H 2

)
. (5.5b)

Analogous estimates for higher Sobolev indices m involve powers up to
(

t
ε

)m and
higher Sobolev norms of u as well as U u.

5.4 H 2 -estimate for s(1)(t, τ, u)

The integrand s(1) in the integral representation (3.12) for S (1) can be estimated by

‖s(1)(t, τ, u)‖H 2 ≤ C
∥
∥[A, B](EA( 12τ)EB(t,EA( 12 t)u))

∥
∥

H 2

+ C
∥
∥∂2EB(t − τ,EB(τ,EA( 12 t)u))[B,A](EB(τ,EA( 12 t)u))

∥
∥

H 2 ,

and further

∥
∥s(1)(t, τ, u)

∥∥
H 2 ≤ C

(
1 + t

ε
|ϑ |‖w‖2

H 2

) ·
((
1 + t

ε
|ϑ |‖u‖2

H 2

)2‖[A, B](w)‖H 2

+t ε‖w‖H 4 + t
ε

(‖U�w‖L2 + ‖(∇U) · (∇w)‖L2

+|ϑ |‖(∇U) · (∇w)‖L2‖w‖H 4‖w‖H 3

)

+ t2

ε2

(‖U(∇U) · (∇w)‖L2 + ‖Uw‖L2 + |ϑ |‖Uw‖L2‖w‖H 4‖w‖H 3

+|ϑ |‖U u‖L2‖u‖H 2‖[A, B](w)‖H 2

+t ε‖u‖2
H 2‖[A, B](w)‖H 2

)) ∣∣∣ v=EA( 12 τ)u

w=EB(τ,EA( 12 τ)u)

, (5.6)
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where (∇U) · (∇U) = CU and

‖[A, B](w)‖H 2 ≤ C
(‖(∇U) · (∇w)‖H 2 + |ϑ |‖w‖H 4‖w‖H 3‖w‖H 2

)
.

Inserting the expressions for v and w into (5.6) we obtain

sup
0≤τ≤t

‖s(1)(t, τ, u)‖H 2

≤ C1

(
‖U2u‖L2 + ‖U u‖L2 + ‖u‖H 4 + |ϑ |‖u‖H 4‖u‖H 3‖u‖H 2

)

+C2
t
ε

(
‖U u‖L2 + ‖u‖H 2 + |ϑ |‖U2u‖L2‖u‖2

H 2 + |ϑ |‖U u‖L2‖u‖H 4‖u‖H 3

+|ϑ |‖u‖H 4‖u‖2
H 2 + |ϑ |2‖u‖H 4‖u‖H 3‖u‖3

H 2 + ε2
(‖u‖H 4 + ‖U2u‖L2

))

+C3
t2

ε2

(
‖U2u‖L2 + ‖U u‖L2 + ‖u‖H 4 + |ϑ |‖U2u‖L2‖u‖2

H 2

+|ϑ |‖U u‖2
L2‖u‖H 2 + |ϑ |‖U u‖L2‖u‖H 4‖u‖H 3

+|ϑ |‖u‖H 4‖u‖2
H 2 + |ϑ |2‖U u‖L2‖u‖2

H 3‖u‖2
H 2

+|ϑ |2‖u‖H 4‖u‖H 3‖u‖3
H 2 + |ϑ |3‖u‖H 4‖u‖H 3‖u‖5

H 2

+ε2
(|ϑ |‖U u‖L2‖u‖H 4‖u‖H 2 + |ϑ |‖u‖H 4‖u‖2

H 3

) + ε4‖u‖H 4

)

+O
(

t3

ε3

)(
1 + O(ε2)

)
. (5.7)

5.5 L2 -estimate for s(2)(t, τ, u)

The integrand s(2) in the integral representation (3.13) for S (2) involves multiple
commutators and derivatives of the flows EA and EB . Here we only note the dominant
terms according to (3.14) in more detail:

‖s(2)(t, τ, u)‖L2 ≤ 1
2 ‖[B, [B, A]](u)‖L2 + 1

4 ‖[A, [B, A]](u)‖L2 + O( t

ε2
+ t),

where the dominant commutators, given by (4.1c) and (4.1d), can be estimated by

‖[B, [B,A]](u)‖L2 ≤ C 1
ε

(
‖U u‖L2 + |ϑ |‖U u‖L2 ‖u‖H 4 ‖u‖H 2 + |ϑ |‖u‖3

H 2 + |ϑ |2‖u‖5
H 2

)
,

‖[A, [B,A]](u)‖L2 ≤ Cε
(
‖u‖H 2 + |ϑ |‖u‖H 4 ‖u‖2

H 2

)
.
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A more refined estimate reads

sup
0≤τ≤t

‖s(2)(t, τ, u)‖L2

≤ C1ε
(
‖u‖H 2 + |ϑ |‖u‖H 4 ‖u‖2

H 2

)

+ C2
1
ε

(
‖U u‖L2 + |ϑ |‖U u‖L2 ‖u‖H 4 ‖u‖H 2 + |ϑ |‖u‖3

H 2 + |ϑ |2‖u‖5
H 2

)

+ C3 t
(
‖U2u‖L2 + ‖U u‖L2 + ‖u‖H 4 + |ϑ |‖U u‖L2 ‖u‖H 4 ‖u‖L2

+|ϑ |‖u‖H 4 ‖u‖2
H 2 + |ϑ |‖u‖2

H 3 ‖u‖H 2 + |ϑ |2‖u‖H 4 ‖u‖4
H 2

)

+ C4 t 1
ε2

(
|ϑ |‖U u‖2

L2 ‖u‖H 4 + |ϑ |‖U u‖L2 ‖u‖H 4 ‖u‖H 2

+|ϑ |2‖U u‖L2 ‖u‖4
H 2 + |ϑ |3‖u‖7

H 2

)

+O
(

t2

ε3
+ t2

ε
+ t2ε

)
. (5.8)

5.6 Resulting L2 -estimate for L (t, u)

Combining all previous estimates we conclude

∥∥L (t, u)
∥∥

L2 ≤
∫ t

0

∫ τ1

0

{ ∫ τ2

0
‖∂2EF (t − τ2,S (τ2, u))s(2)(τ2, τ3, u)‖L2 dτ3

+
∥∥∥∂22 EF (t − τ2,S (τ2, u)) ·

( ∫ τ2

0
s(1)(τ2, τ3, u)dτ3

)2∥∥∥
L2

}
dτ2 dτ1

≤ C̃ · t3 exp
(
C t

ε
|ϑ | sup

0≤χ≤σ≤t

‖EF (σ,S (χ, u))‖2
H 2

)

· sup
0≤τ≤t

(
t2

ε
‖u‖L2

(‖s(1)(t, τ, u)‖H 2 + 1
ε
C∗

)2 + ‖s(2)(t, τ, u)‖L2 + 1
ε
C∗ + t

ε
C∗

)
,

(5.9)

where s(1) and s(2) have been estimated in Sections 5.4 and 5.5.

5.7 L2 -estimate for L (t, u) for the Lie splitting method

For comparison, we recapitulate an L2 -estimate for the Lie splitting method

S (t, u) = SLie(t, u) = EB(t, EA(t)u). (5.10)

Following [3] we have, for A linear,

L (t, u) =
∫ t

0

∫ τ1

0
∂2EF (t − τ1,S (τ1, u))∂2EB(τ1 − τ2,EB(τ2,EA(τ1)u))

· [B, A](EB(τ2,EA(τ1)u))dτ2 dτ1 .

(5.11)

Evaluating L (t, u) at t = 0 reveals the dominant term in its Taylor expansion,

L (t, u) = t2

2 [B, A](u) + O
(

t3

ε
+ t3ε

)
. (5.12)
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Proceeding similarly as for the case of the Strang splitting method we obtain

‖L (t, u)‖L2 ≤ C̃ · t2 exp
(
C t

ε
|ϑ | sup

0≤χ≤σ≤t

‖EF (σ, S (χ, u))‖2
H 2

)

·
(
‖U u‖L2 + ‖u‖H 2 + |ϑ |‖u‖3

H 2 + t ε‖u‖H 2

+ t
ε

(‖U u‖L2 + |ϑ |‖U u‖L2‖u‖H 2‖u‖H 2 + |ϑ |‖u‖H 2‖u‖2
H 1

)

+ t2
(‖U u‖L2 + ‖u‖H 2 + |ϑ |‖u‖3

H 2

)

+ t2

ε2
|ϑ |(‖U u‖L2‖u‖2

H 2 + ‖U u‖2
L2‖u‖H 2 + |ϑ |‖U u‖L2‖u‖4

H 2

+ |ϑ |‖u‖5
H 2 + |ϑ |2‖u‖7

H 2

) + 1
ε
C∗

)

+O
(

t5

ε3
+ t5

ε
+ t5ε

)
. (5.13)

Here the constant C∗ discussed in Appendix C.1 again appears. We observe that the
dominant O(t2) term of the local error does not depend on ε, which is a different
behavior compared to the Strang splitting method.

5.8 Higher-order methods

For the Lie and Strang splitting methods, the leading term of the local error has a very
simple structure and is influenced by [B, A] and [A, [B, A]], [B, [B, A]], respec-
tively (see (5.12),(3.15)). It is also known that for a higher-order method the leading
term in the Taylor expansion of the local error comprises iterated commutators, see
for instance [2] for a precise discussion.

However, as we have seen, an exact (integral) representation of the local error
becomes quite complicated already for the Strang case, and it involves various deriva-
tives of the nonlinear operator B(u) and derivatives of commutator expressions. Due
to this significant increase in complexity, a rigorous analysis of higher-order splitting
methods (2.5) appears to be a major challenge for the nonlinear case which we do
not attempt to cope with here.5

Nevertheless we may infer information about the behavior of the dominant terms.
For a third-order scheme, for instance, the local error will be dominated by the
commutator expressions

[A, [A, [A, B]]](u), [A, [B, [A, B]]](u) = [B, [A, [A, B]]](u), [B, [B, [A, B]]](u).

For the NLS we have [B, [B, [A, B]]] = 0 and therefore no terms involving 1
ε2

appear. Moreover, all other third-order commutators have either no or a quadratic
dependence on ε. This is comparable to our results for the Lie splitting method. This
means that especially for ε � 1, one would see the classical behavior or even a better
order behavior for more regular initial values. Numerical observations are reported
in Section 7.

5See [5] for an exact local error representation for the linear case. This is combinatorially rather involved;
however, the role of iterated commutators dominating the error is clearly worked out.
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Summarizing remark The theoretical analysis has shown a delicate dependence of
the numerical error on the semiclassical parameter, the stepsize, and higher Sobolev
norms of the exact solution. Consequently for practical computations, automatic step-
size control seems more promising than an attempt to choose the time steps a priori.
To this end, a posteriori estimators for the local time stepping error are required. In the
following, we construct and analyze an asymptotically correct local error estimator
based on the defect of the splitting solution.

6 An a posteriori error estimator

In [3] the following a posteriori local error estimator for s -fold splitting meth-
ods (2.5) of order p was proposed; it is based on an Hermite quadrature approxima-
tion for the local error integral (3.5). In Proposition 1 we state how this error estimator
can be practically computed via an appropriate evaluation of the defect.

Proposition 1 ([3]) Let vi , wi be defined as

vi = EA(ai t, wi−1), wi = EB(bi t, vi), 1 ≤ i ≤ s , (6.1)

with w0 = u and ws = S (t, u), and consider the local a posteriori error estimator
for a method of order p defined by

P(t, u) = 1
p+1 tS

(1)(t, u) ≈ L (t, u), (6.2)

involving the defect

S (1)(t, u) = ∂
∂t

S (t, u) − F(S (t, u)). (6.3)

This can be computationally evaluated in the following way:

S (1)(t, u) = g(s) ◦ g(s−1) ◦ . . . ◦ g(1) ◦ g(0) − F(ws), (6.4)

where

g(i)(z) = bi B(wi) + ∂2EB(bi t, vi)∂2EA(ai t, wi−1)
[
ai A(wi−1) + z

]
, i ≥ 1,

g(0)(z) = 0 .

Hence, P(t, u) can be computed as

P = 1
p+1 t

(
g(s) ◦ . . . ◦ g(0) − F(ws)

)
. (6.5)

Since the g(i) depend on vi , wi and wi−1 only, they can be evaluated in parallel with
the splitting scheme without the need to store all intermediate values vi , wi .

For problem (2.1) with ε = 1, the asymptotical order

P(t, u) − L (t, u) = O(tp+2)

has been proven in [3] for the cases p = 1 (Lie) and p = 2 (Strang). We will extend
this study by incorporating the dependence on ε < 1, while for higher-order methods
we resort to numerical observations. Understanding the asymptotical order behavior
is essential to ensure reliability of a time-adaptive method.
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6.1 Analysis of the deviation of the a posteriori error estimator

Lie splitting For the deviation P −L of the Lie splitting error estimator an integral
representation has been derived in [3],

P(t, u) − L (t, u) =
∫ t

0

(
K1(τ, t)G1(τ, t, u) − K2(τ, t)G2(τ, t, u)

)
dτ , (6.6)

where K1 and K2 are the first- and second-order Peano kernels associated with the
error of the underlying trapezoidal quadrature,

K1(τ, t) = τ − 1
2 t , K2(τ, t) = 1

2 τ (t − τ),

and

G1(τ, t, u) =
{
∂2EF (t − τ, S (τ, u))

∫ τ

0
∂2EB(τ − τ2, EB(τ2, v))

·
(
B ′′(EB(τ2, v))

(
S̃ (1)(τ2, v)

)2+[[B,A], A](EB(τ2, v))+[[B,A], B](EB(τ2, v))

+ 2[B,A]′(EB(τ2, v))S̃ (1)(τ2, v)
)
dτ2

+ ∂22EF (t − τ, S (τ, u))
(
S (1)(τ, u)

)2} ∣∣∣
v=EA(τ)u

,

G2(τ, t, u) =
{
∂2EF (t − τ, S (τ, u))

(
∂22 EB(τ, v)(Av, [B,A](v))

+ (
∂2EB(τ, v)A − A∂2EB(τ, v)

)[B,A](v)
)

+ ∂22EF (t − τ, S (τ, u))
(
S (1)(τ, u), ∂2EB(τ, v)[B,A](v)

)

+ ∂2EF (t − τ, S (τ, u))∂2EB(τ, v)[[B,A], A](v)
} ∣∣∣

v=EA(τ)u
.

Here, S (1) is the defect (6.3) which satisfies the integral representation

S (1)(t, u) = S̃ (1)(t, EA(t, u)),

with S̃ (1)(t, v) =
∫ t

0
∂2EB(t − τ, EB(τ, v))[B, A](EB(τ, v))dτ .

Denoting

T1 =
∫ τ

0
∂2EB(τ −τ2, EB(τ2, v))

(
B ′′(EB(τ2, v))

(
S̃ (1)(τ2, v)

)2 + [[B,A], A](EB(τ2, v))

+ [[B,A], B](EB(τ2, v)) + 2[B,A]′(EB(τ2, v))S̃ (1)(τ2, v)
)
dτ2 ,

T2 = ∂22 EB(τ, v)(Av, [B,A](v)) + (
∂2EB(τ, v)A − A∂2EB(τ, v)

)[B,A](v)

+ ∂2EB(τ, v)[[B,A], A](v),

T22 = ∂2EB(τ, v)[B,A](v),

we have

‖P (t, u) − L (t, u)‖L2

≤ Ct2
(‖∂2EF (t − τ,S (τ, u))T1‖L2 + ‖∂22EF (t − τ,S (τ, u))(S (1)(τ, u))2‖L2

)

+ Ct3
(‖∂2EF (t − τ,S (τ, u))T2‖L2 + ‖∂22EF (t − τ,S (τ, u))(S (1)(τ, u), T22)‖L2

)
.
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Estimating ∂2EF and ∂22EF as in Appendix C, we obtain

‖P(t, u) − L (t, u)‖L2 ≤ C1 e

(
C2

t
ε

|ϑ | sup0≤χ≤σ≤t ‖EF (σ,S (χ,u))‖2
H2

)

· sup
0≤τ2≤τ≤t

(
t2‖T1‖L2 + t3

ε
C∗ + t5

ε
‖u‖L2

(‖s(1)(τ, τ2, u)‖L2 + 1
ε
C∗

)2 + t4

ε
C∗ + t3‖T2‖L2

+ t4

ε
C∗ + t5

ε
‖u‖L2

(‖s(1)(τ, τ2, u)‖L2 + 1
ε
C∗

)
(‖T22‖L2 + 1

ε
C∗) + t4

ε
C∗

)
.

Now we separately estimate,

‖T1‖L2 ≤ t ε
(‖u‖H 2 + |ϑ |‖u‖H 4‖u‖H 3‖u‖H 2

)

+ t
ε

(‖U u‖L2 + |ϑ |‖Uu‖L2‖u‖H 4‖u‖H 2 + |ϑ |‖u‖3
H 2 + |ϑ |2‖u‖5

H 2

)

+ t2
(‖U2u‖L2 + ‖U u‖L2 + ‖u‖H 4 + |ϑ |‖u‖H 3‖u‖2

H 2 +|ϑ |‖U u‖L2‖u‖H 3‖u‖H 2

+ |ϑ |2‖u‖H 4‖u‖H 3‖u‖3
H 2

)

+ t2

ε2

(|ϑ |‖U u‖L2‖u‖H 4‖u‖H 3 + |ϑ |2‖u‖H 4‖u‖H 3‖u‖3
H 2 + |ϑ |2‖U u‖L2‖u‖4

H 2

+ |ϑ |3‖u‖7
H 2

) + O
(

t3

ε3
+ t3

ε
+ t3 ε

)
,

and

‖T2‖L2 ≤ ε
(‖u‖H 2 + |ϑ |‖u‖H 4‖u‖H 3‖u‖H 2

)

+ t
(‖U2u‖L2 + ‖U u‖L2 + ‖u‖H 4 + |ϑ |‖U u‖L2‖u‖H 4‖u‖H 2

+ |ϑ |‖u‖H 4‖u‖2
H 2 + |ϑ |2‖u‖H 4‖u‖H 3‖u‖3

H 2

)

+ O
(

t2

ε
+ t2ε

)
.

Concerning T22 we refer to the representation of the commutator [B, A](v) in
Section 4.3.

Combining these results, we obtain

‖P(t, u) − L (t, u)‖L2 ≤ C1 t3 e

(
C2

t
ε

|ϑ | sup0≤χ≤σ≤t ‖EF (σ,S (χ,u))‖2
H2

)

·
(
ε
(‖u‖H 2 + |ϑ |‖u‖H 4‖u‖H 3‖u‖H 2

)

+ 1
ε

(‖U u‖L2 + |ϑ |‖U u‖L2‖u‖H 4‖u‖H 2 + |ϑ |‖u‖3
H 2 + |ϑ |2‖u‖5

H 2 + C∗
)

+ t
(‖U2u‖L2 + ‖U u‖L2 + ‖u‖H 4 + |ϑ |‖u‖H 3‖u‖2

H 2 + |ϑ |‖U u‖L2‖u‖H 3‖u‖H 2

+ |ϑ |2‖u‖H 4‖u‖H 3‖u‖3
H 2

) + t
ε
C∗

+ t

ε2

(|ϑ |‖U u‖L2‖u‖H 4‖u‖H 3 + |ϑ |2‖u‖H 4‖u‖H 3‖u‖3
H 2 + |ϑ |2‖U u‖L2‖u‖4

H 2

+ |ϑ |3‖u‖7
H 2

))

+ O
(

t5

ε3
+ t5

ε
+ t5 ε

)
,

where the constant C∗ arising in Appendix C.1 appears again.
To sum up, for the Lie splitting method6

‖PLie(t, u) − LLie(t, u)‖L2 � t3
(
C1

1
ε

+ C2ε
) + t4

(
C3

1
ε2

+ C4
)
, (6.7)

6Here and in the following, we use the symbol� in order to express bounds in terms of the asymptotically
dominant quantities (omitting higher order terms).
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Fig. 1 t -dependence of the local error and of the deviation of the a posteriori error estimator. First row:
The plot on the left shows the empirical local error for several splitting methods, while the plot on the right
shows the associated observed orders. It can be seen that for the Lie splitting and other odd-order methods,
the order decreases by one, starting below t ≈ ε. The even order methods are not affected by this order
reduction. Second row: Here, the plot on the left shows the estimated deviation of the a posteriori error esti-
mator for several splitting methods and again, the plot on the right shows the associated observed orders.
The odd order methods change their behavior, but here we observe an improved order for t < ε. More-
over, the even order methods perform even one order better than expected, O(tp+3). For all computations
the initial condition was a shifted Gaussian at 2 · 104 gridpoints with a fixed parameter ε = 10−2

with constants C1,. . . ,C4 depending on the H 4 -norm of u, and additionally C1, C3
depending on ‖U u‖L2 , and C4 depending on ‖U2u‖L2 .

This estimate is of a similar nature as the a priori error bound for the Strang
splitting method. Therefore we expect the same asymptotical behavior of both
the deviation of the a posteriori error estimator of the Lie splitting method and
the local error of the Strang splitting method. This claim is mainly based on the
fact that both estimates are dominated by the commutators ‖[[B, A], A](u)‖L2 and
‖[[B, A], B](u)‖L2 .

Strang splitting It was observed earlier that, to leading order, the deviation
of the a posteriori Lie error estimator is dominated by ‖[[B, A], A](u)‖L2 and
‖[[B, A], B](u)‖L2 . For the case of Strang splitting, third-order commutators domi-
nate. According to [3],

P(t, u)−L (t, u) =
∫ t

0
K3(τ, t)

∂
∂τ

(
∂2EF (t−τ, S (τ, u))S (3)(τ, u)

)
dτ +O(t5), (6.8)
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with the third-order Peano kernel K3(τ, t) = 1
6 τ (t − τ)2 associated with the error of

the underlying Hermite quadrature rule defining P , and the third-order defect

S (3)(t, u) =
{
EA( 12 t)∂2EB(t, v)

( 1
2 [[B,A], A](v) + 1

2 [[B,A], B](v)
)

− EA( 12 t)
( 3
4 [[B,A], A](w) + [[B,A], B](w)

) + O(t)
} ∣

∣
∣ v=EA( 12 t)u

w=EB(t,EA( 12 t)u)

.

We now collect coefficients of t4 in (6.8),

P(t, u) − L (t, u) = Ct4
(
1
4 [A, [B, [B,A]]](u) + 1

4 [A, [A, [B,A]]](u) − [B, [B, [B,A]]](u)

− 1
2 [A, [B, [B,A]]](u)− 3

4 [B, [A, [B,A]]](u)− 3
8 [A, [B, [B,A]]](u)

)
+ O(t5)

= Ct4
(

− 1
4 [A, [B, [B,A]]](u) − 1

8 [A, [A, [B,A]]](u)
)

+ O(t5).

Herewe have used the identity [A, [B, [B, A]]](u) = [B, [A, [B, A]]](u) and the
fact that, for a cubic nonlinearity and a harmonic potential, [B, [B, [B, A]]] = 0.

The appearing commutators can be estimated as ‖[A, [B, [B, A]]](u)‖L2 ≤
ε0C(‖u‖H 4) and ‖[A, [A, [B, A]]](u)‖L2 ≤ ε2C(‖u‖H 6), such that

‖PStrang(t, u) − LStrang(t, u)‖L2 � Ct4
(
1 + ε2

)
, (6.9)

with C depending in particular on ‖u‖H 6 . From (6.8) we deduce that the coefficients

hidden in the O(t5) remainder are of the form O( t5

ε
+ t5ε), which is also observed

numerically, see Fig. 1.

7 Numerical results

In our numerical experiments we solve a cubic Schrödinger (2.1), with either no
potential U = 0 or a quadratic potential U : R

d → R, x �→ 1
2 |x|2. For ϑ = 1 we

speak of a defocussing nonlinearity, for ϑ = −1 we have a focussing nonlinearity.
For the computation of reference solutions we have used a fourth-order scheme

with 7 stages and a sixth-order scheme with 11 stages from [10]. Besides these
two and the Lie and Strang splitting methods we have tested a third-order scheme

Table 1 Coefficients of a new 5-th order scheme obtained on the basis of order conditions set up according
to [2]

a1 0.475018345144539497 b1 −0.402020995028838599

a2 0.021856594741098449 b2 0.345821780864741783

a3 −0.334948298035883491 b3 0.400962967485371350

a4 0.512638174652696736 b4 0.980926531879316517

a5 −0.011978701020553904 b5 −1.362064898669775625

a6 −0.032120004263046859 b6 0.923805029000837468

a7 0.369533888781149572 b7 0.112569584468347105
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from [28], a fourth-order scheme from [31], and a new fifth-order scheme (see
Table 1).

7.1 Numerical order estimation

We compare the numerically observed local error behavior for different choices of ε

as well as for a time stepsize t proportional to this parameter (t = ε).
For ε = 1, we observe the classical orderO(tp+1). For small ε ≈ 10−2, a different

local error behavior is in fact observed. We also have noticed distinct asymptotics in
dependence of the smoothness of the initial value.

Smooth initial state We may express the observed dependencies as

‖L (t, u)‖L2 ≈ tp+1 ·
{

C
(
1 + t

ε

)
, p odd,

C 1
ε
, p even .

(7.1)

Fig. 2 Dependence of the local error for WKB initial values. First row: t -dependence. The plot on the
left shows the empirical local error for several splitting methods, while the plot on the right shows the
associated observed orders. For all methods the order O(tp+1) can be observed (We have chosen ε = 10−2

and 2 · 104 gridpoints.). Second row: (t = ε)-dependence. The plot on the left shows the empirical local
error for several splitting methods, while the plot on the right shows the associated observed orders. It can
be seen that for all methods the order decreases by one, starting below t ≈ ε. To resolve the error also for
ε = 10−5, 4 · 105 gridpoints have been used. For all computations the initial condition is given in (7.4)
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The dependence on t
ε
for odd order methods is visible in Fig. 1 as a kink, while the

dependence on 1
ε
for even order methods appears as an order reduction in Fig. 4 for

the specific choice t = ε. This reflects the theoretical results in (5.9) and (5.13) for
smooth initial values,

∥∥LLie(t, u)
∥∥

L2 � C
(
t2 + t3 ( 1

ε
+ ε) + t4 ( 1

ε2
+ 1)

)
, (7.2)

with C depending on the H 2 -norm of u and on ‖U u‖L2 , and for the Strang splitting,
∥∥LStrang(t, u)

∥∥
L2 � t3

(
C1

1
ε

+ C2ε
) + t4

(
C3

1
ε2

+ C4
)
, (7.3)

with constants depending on the H 4 -norm of u, as well as C1, C3 depending on
‖U u‖L2 , and C4 depending on ‖U2u‖L2 .

WKB initial state Oscillatory initial data given in WKB form leads to less regular
solutions, which reveals a different aspect of the theoretical estimates.

For our numerical experiments we chose

ψ(x, y, 0) = e−x2 · e−i/ε
(
log(exp(x)+exp(−x))

)
, (7.4)

which features oscillations in dependence of ε.
The numerical observations in Fig. 2 yield

‖L (t, u)‖L2 ≈ Ctp+1 1
ε
, (7.5)

also in accordance with [17]. The theoretical results (5.9) and (5.13) would imply
too pessimistic estimates, since higher powers of 1

ε
are introduced by the estimates

in Sobolev spaces. In particular for this situation where the time stepsize would be
underestimated a priori, the use of automatic stepsize control is indicated.

Global error observations The influence of higher order terms in the estimates is
observed in numerical experiments more distinctly in the global error. Thus in Fig. 3,
we observe that for small ε, the effects for the local error may sum up critically in
dependence of ε. For t � ε < 1, the classical global order O(tp) is observed, for

Fig. 3 t-dependence of the global error for Gaussian initial values. For ε = 1/250, the error initially
stagnates for t � ε and resumes the classical order for smaller t � ε, as likewise observed for WKB initial
values. A total integration time of T = 0.5 and 2 · 104 gridpoints in space have been used
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ε � t < 1, the contributions of terms involving higher powers of t
ε
imply stagnation

at a constant value (see Fig. 3).

7.2 Observed behavior of the deviation of the error estimator

For ε ≈ 1 the deviation of the local error estimator (6.2) associated with a method
of order p shows an O(tp+2) behavior, but for smaller values of ε, we have observed
a different behavior for some methods, as shown in Figs. 1 and 4.

In detail, the following dependencies have been observed for smooth initial values
independent of ε,

‖P(t, u) − L (t, u)‖L2 ≈ tp+2 ·
{

C 1
ε

t
ε+t

, p odd,
C 1

ε
t , p even.

(7.6)

Fig. 4 (t = ε)-dependence of the local error and of the deviation of the a posteriori error estimator. First
row: As in Fig. 1, the plot on the left shows the empirical error of different splitting methods, while the plot
on the right shows their observed orders. It is obvious that here the local order of the even order methods
is reduced to O(tp) while the odd order methods are not affected. Second row: Again, the plot on the left
shows the empirical deviation of the a posteriori error estimator for different splitting methods and the
plot on the right shows their observed orders. Compared to Fig. 1, the odd order methods suffer from an
order reduction, while the even order methods show the expected dependence O(tp+2). This advantage
can be used to overcome the disadvantage observed in the first row (see (7.6)) even for less regular initial
conditions. For all computations the initial condition was a shifted Gaussian at 2 · 104 gridpoints
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Fig. 5 Defocussing laser beam with different shapes. Absolute value of beam intensity ψ for prob-
lem (7.7) with ε = 1

100 , Tend = 5 along the x - and z-axes for y = 0. In the first two rows we compare
the absolute value (first row) and the real part (second row) of the solution. In the third row we display
the adaptive stepsizes. Left column: Modulated Gaussian ψ1(x, y, 0) = exp(−4(x2 + y2)) tanh(x). Right
column: Gaussian ψ2(x, y, 0) = exp(−4(x2 + y2))

The functional form t
ε+t

above is inferred from the kink observed in the empirical

convergence order in Fig. 1. The increased order O(tp+3) for even order methods is
present in Fig. 1 and the factor 1

ε
is apparent from Fig. 4.
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The theoretical result (6.7) shows a deviation of the a posteriori estimator of order
O(tp+2) for the Lie splitting method. In contrast, an increased order in our numeri-
cal experiments occurs in the same regime as the order reduction for the local error
behavior, showing a spurious improvement to order O(tp+3).

For the choice t = ε our observations in Fig. 4 reflect the analytical results (6.7)
and (6.9) (O(tp+1) for the Lie splitting method, O(tp+2) for the Strang splitting
method).

Numerical experiments, not reported here, show that for WKB initial values the
observed order reduction analogous to Section 7.1 is

‖P(t, u) − L (t, u)‖L2 ≈ Ctp+2 1
ε
.

Again, the theoretical estimates (6.7) and (6.9) are too pessimistic for this case.

7.3 Defocussing laser beams and soliton solutions: adaptive integration

For the following experiment we choose an application where a cubic Schrödinger
equation without external potential arises, namely a model involving a self-
defocussing laser beam in a nonlinear medium (see [27]).

The model describes the propagation of a weak intensity beam ψ(x, y, z) in z-
direction via

iε ∂
∂z

ψ(x, y, z) = − 1
2 ε2

(
∂2

∂x2
+ ∂2

∂y2

)
ψ(x, y, z) + ϑ |ψ(x, y, z)|2ψ(x, y, z), (7.7)

where ε describes the relationship between diffusion and focussing (arising from
the nonlinear medium). For the special initial distribution ψ(x, y, 0) = tanh(x) and
ε = 1, ϑ = 1, we obtain the solution

ψ(x, y, z) = tanh(x)e−i t z .

We have modified this and constructed a wave similar to a soliton by multiplying a
Gaussian by tanh, which might be more stable under diffusion. For the results shown
in Fig. 5 we have used the initial conditions

ψ1(x, y, 0) = A exp
( − x2+y2

r20

)
tanh

( y
ys

)
,

ψ2(x, y, 0) = A exp
( − x2+y2

r20

)
.

Numerical solutions have been obtained at 1000 spatial gridpoints on the x - and y -
axes and by a time-adaptive method of order four based on the a posteriori local error
estimator (6.2) with a local absolute tolerance 10−8. Comparing the two columns,
we indeed see that the tanh profile provides a more stable signal than the Gaussian,
which diffuses much faster and shows higher oscillations.

Acknowledgments This work was supported by the Austrian Science Fund (FWF) under grants
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Appendix A: Technical tools

A.1 Gröbner-Alekseev formula (nonlinear variation of constant)

Proposition 2 Given a pair of initial value problems,
{

z′(t) = G(t, z(t)) = F(z(t)) + r(t, z(t)), 0 ≤ t ≤ T

z(0) = u
(A.1a)

{
y ′(t) = F(y(t)), 0 ≤ t ≤ T

y(0) = u
(A.1b)

the solution z(t) of (A.1a) can be expressed via the nonlinear variation of constant
formula

z(t) = EG(t, u) = y(t) +
∫ t

0
∂2EF (t − τ, EG(τ, u))r(τ, EG(τ, u))dτ, 0 ≤ t ≤ T ,

(A.2)
where y(t) = EF (t, u) is the solution of (A.1b).

Proof See [23] or [17].

A.2 L2 estimates for products of functions

For the following estimates we use Hölder’s inequality and Sobolev embeddings for
estimating products in the L2 -norm, for spatial dimension d ∈ {1, 2, 3},

‖uv‖L2 ≤ ‖u‖L4 ‖v‖L4 ≤ C‖u‖H 1 ‖v‖H 1 ,

‖uv‖L2 ≤ C‖u‖H 2 ‖v‖L2 ,

‖uvw‖L2 ≤ ‖u‖L6 ‖v‖L6 ‖w‖L6 ≤ C‖u‖H 1 ‖v‖H 1 ‖w‖H 1 ,

‖uvw‖L2 ≤ C‖uv‖H 2 ‖w‖L2 ,

‖uvwz‖L2 ≤ C‖uvw‖H 2 ‖z‖L2 .

Since H 2 forms an algebra, we can moreover estimate products in H 2 as

‖uv‖H 2 ≤ C‖u‖H 2 ‖v‖H 2 .

A.3 L2 estimates for mixed powers of x and ∂ju

The following estimates are based on repeated integration by parts and the inequality
of arithmetic and geometric means.

‖xj ∂j u‖L2 ≤ C
(‖x2u‖L2 + ‖u‖H 2

)
,

‖x2
j ∂j u‖L2 ≤ C

(‖x4u‖L2 + ‖x2u‖L2 + ‖u‖H 2

)
,

‖xj ∂2j u‖L2 ≤ C
(‖x3u‖L2 + ‖u‖H 3

)
, or ‖xj ∂2j u‖L2 ≤ C

(‖x3u‖L2 + ‖u‖H 3

)
,

‖x2
j ∂2j u‖L2 ≤ C

(‖x4u‖L2 + ‖u‖H 4

)
.
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Appendix B: Derivation of integral representations for the first-
and second-order defect terms

The integral representations (3.12) and (3.13) for the first- and second-order defect
terms S (1)(t, u) and S (2)(t, u) are related to the analogous results for the general
case, with A and B nonlinear, from [3], which were derived and verified with the
help of computer algebra. Here we specialize for A linear and give a rigorous proof,
rearranging terms in a way which is appropriate for the present purpose, without
explicating all technical details.

The idea is to evaluate the defect terms in a way containing no explicit time deriva-
tives. This results in several subexpressions vanishing at t = 0 and satisfying certain
linear evolution equations. Application of the variation of constant formulas

y′(t) = 1
2 Ay(t) + r(t), y(0) = 0 ⇒ y(t) =

∫ t

0
EA( 12 (t − τ))r(τ )dτ , (B.1a)

y′(t) = B ′(EB(t, u))y(t) + r(t), y(0) = 0 ⇒ y(t) =
∫ t

0
∂2EB(t − τ,EB(τ, u))r(τ )dτ .

(B.1b)

then yields the desired integral forms.
To explain (B.1b) we note that

∂
∂t

∂2EB(t, u)z = B ′(EB(t, u))∂2EB(t, u)z,
(
∂2EB(t, u)

)−1 = ∂2EB(−τ, EB(τ, u)),

∂2EB(t, u)∂2EB(−τ, EB(τ, u)) = ∂2EB(t − τ, EB(τ, u)).

Hence by the linear variation of constant formula,

y(t) = ∂2EB(t, u)

∫ t

0

(
∂2EB(τ, u)

)−1
r(τ )dτ =

∫ t

0
∂2EB(t − τ, EB(τ, u))r(τ )dτ .

B.1 The first-order defect S (1)(t, u)

The intermediate values of a Strang splitting step (3.2),

v = v(t, u) = EA( 12 t)u, (B.2a)

w = w(t, u) = EB(t, v), (B.2b)

(such that S (t, u) = EA( 12 t, w)) satisfy

∂
∂t

v = 1
2 Av,

∂
∂t

w = B(w) + ∂2EB(t, v) ∂
∂t

v = B(w) + 1
2 ∂2EB(t, v)Av .

Thus,

∂
∂t

S (t, u) = ∂
∂t

(
EA( 12 t)w

)

= 1
2 AS (t, u) + EA( 12 t, w) ∂

∂t
w

= 1
2 AS (t, u) + EA( 12 t)B(w) + 1

2 EA( 12 t)∂2EB(t, v)Av,
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and for the defect S (1) this gives

S (1)(t, u) = ∂
∂t

S (t, u) − AS (t, u) − B(S (t, u))

= EA( 12 t)B(w) + 1
2 EA( 12 t)∂2EB(t, v)Av − 1

2 AS (t, u) − B(S (t, u))

= EA( 12 t)B(w) + 1
2 EA( 12 t)∂2EB(t, v)Av − 1

2 AEA( 12 t)w − B(EA( 12 t)w)

= EA( 12 t)B(w) + 1
2 EA( 12 t)∂2EB(t, v)Av − 1

2 EA( 12 t)Aw − B(EA( 12 t)w),

which can be written in the form

S (1)(t, u) = EA( 12 t)B(w) − B(EA( 12 t)w) (B.3a)

+ 1
2 EA( 12 t)

(
∂2EB(t, v)Av − AEB(t, v)

)
. (B.3b)

In order to find an integral representation for S (1)(t, u), we separately consider the
terms (B.3a) and (B.3b), with v and w fixed. Differentiating with respect to t we find
that they satisfy the following evolution equations.

(B.3a): S (1)
(a) (t) = EA( 12 t)B(w) − B(EA( 12 t)w) satisfies S (1)

(a) (0) = 0, and

∂
∂t

S (1)
(a) (t) = 1

2 AS (1)
(a) (t) + 1

2 [A, B](EA( 12 t)w). (B.4a)

In (B.3b), we consider the expression within
(
. . .

)
:

(B.3b): S (1)
(b) (t) = ∂2EB(t, v)Av − AEB(t, v) satisfies S (1)

(b) (0) = 0, and

∂
∂t

S (1)
(b) (t) = B ′(EB(t, v))S (1)

(b) (t, v) + [B, A](EB(t, v)). (B.4b)

Finally, applying (B.1a) and (B.1b), recombination and substituting v = EA( 12 t)u,
w = EB(t, EA( 12 t)u) leads to the integral representation (3.12) for S (1)(t, u).

B.2 The second-order defect S (2)(t, u)

To evaluate S (2) defined in (3.8b), we proceed in an analogous way as for S (1),
with v, w defined in (B.2).

We start by differentiating the expression for S (1) from (3.6) with respect to t ,

∂
∂t

S (1)(t, u) = (
A + B ′(S (t, u))

)
S (1)(t, u)

− B ′(EA( 12 t)w)EA( 12 t)∂2EB(t, v)Av+EA( 12 t)B ′(w)∂2EB(t, v)Av

− AEA( 12 t)B(w) + AB(EA( 12 t)w) − 1
2 AEA( 12 t)∂2EB(t, v)Av

+ 1
4 EA( 12 t)∂2EB(t, v)A2v + 1

4 A2EA( 12 t)w

+ 1
4 EA( 12 t)∂22 EB(t, v)(Av,Av) + EA( 12 t)B ′(w)B(w)

+ B ′(EA( 12 t)w)B(EA( 12 t)w) − 2B ′(EA( 12 t)w)EA( 12 t)B(w).
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Subtracting F ′(S (t, u))S (1)(t, u) = (A+B ′(S (t, u)))S (1)(t, u) and rearranging
terms yields

S (2)(t, u) = (
EA( 12 t)B ′(w) − B ′(EA( 12 t)w)EA( 12 t)

)
∂2EB(t, v)Av (B.5a)

+ (
A + B ′(EA( 12 t)w)

)(
B(EA( 12 t)w) − EA( 12 t)B(w)

)
(B.5b)

+ (
EA( 12 t)B ′(w) − B ′(EA( 12 t)w)EA( 12 t)

)
B(w) (B.5c)

+ 1
4 EA( 12 t)

(
A

(
AEB(t, v) − ∂2EB(t, v)Av

)
(B.5d)

− (
A∂2EB(t, v) − ∂2EB(t, v)A

)
Av (B.5e)

+ ∂22 EB(t, v)(Av, Av)
)
. (B.5f)

Evaluation of S (2)(t, u) at t = 0 shows S (2)(0, u) = 0, hence S (2)(t, u) = O(t).
In order to find an integral representation for S (2)(t, u), we separately consider

the terms (B.5a)–(B.5f), with v,w and z := ∂2EB(t, v)Av fixed. Differentiating with
respect to t we find that they satisfy the following linear evolution equations.

(B.5a): S (2)
(a) (t) = (

EA( 12 t)B ′(w)−B ′(EA( 12 t)w)EA( 12 t)
)
z satisfies S (2)

(a) (0) = 0,
and

∂
∂t

S (2)
(a) (t) = 1

2 AS (2)
(a) (t)

+ 1
2 [A,B ′(EA( 12 t)w)]AEA( 12 t)w + 1

2 [A,B ′(EA( 12 t)w)]EA( 12 t)
(
z − Aw

)

− 1
2 B ′′(EA( 12 t)w)

(
AEA( 12 t)w,EA( 12 t)(z − Aw + Aw)

)
. (B.6a)

(B.5b): S (2)
(b) (t) = (

A + B ′(EA( 12 t)w)
)(

B(EA( 12 t)w) − EA( 12 t)B(w)
)
satisfies

S (2)
(b) (0) = 0, and

∂
∂t

S (2)
(b) (t) = 1

2 AS (2)
(b) (t)

+ 1
2 A[B ,A](EA( 12 t)w

) + 1
2 B ′(EA( 12 t)w)[B ,A](EA( 12 t)w

)

− 1
2 B ′′(EA( 12 t)w)

(
AEA( 12 t)w, EA( 12 t)B(w) − B(EA( 12 t)w)

)

+ 1
2 [A, B ′(EA( 12 t)w)](EA( 12 t)B(w) − B(EA( 12 t)w)

)
. (B.6b)

(B.5c): S (2)
(c) (t) = (

EA( 12 t)B ′(w) − B ′(EA( 12 t)w)EA( 12 t)
)
B(w) satisfies

S (2)
(c) (0) = 0, and

∂
∂t

S (2)
(c) (t) = 1

2 AS (2)
(c) (t) + 1

2 [A, B ′(EA( 12 t)w)]EA( 12 t)B(w)

− 1
2 B ′′(EA( 12 t)w)

(
AEA( 12 t)w, EA( 12 t)B(w)

)
.

(B.6c)

In (B.5d)–(B.5f), we consider the expressions within
(
. . .

)
:
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(B.5d): S (2)
(d) (t) = A

(
AEB(t, v) − ∂2EB(t, v)Av

)
satisfies S (2)

(d) (0) = 0, and

∂
∂t

S (2)
(d) (t) = B ′(EB(t, v))

(
S (2)

(d) (t)
)

+ [A, [A,B]](EB(t, v))

+ 2[A,B ′(EB(t, v))]AEB(t, v) − [A,B ′(EB(t, v))]∂2EB(t, v)Av

− B ′′(EB(t, v))
(
AEB(t, v), AEB(t, v)

)
. (B.6d)

(B.5e): S (2)
(e) (t) = (

A∂2EB(t, v) − ∂2EB(t, v)A
)
Av satisfies S (2)

(e) (0) = 0, and

∂
∂t

S (2)
(e) (t) = B ′(EB(t, v))

(
S (2)

(e) (t)
) + [A, B ′(EB(t, v))]∂2EB(t, v)Av . (B.6e)

(B.5f): S (2)
(f )(t) = ∂22 EB(t, v)(Av, Av) satisfies S (2)

(f )(0) = 0, and

∂
∂t

S (2)
(f )(t)=B ′(EB(t, v))

(
S (2)

(f )(t)
)+B ′′(EB(t, v))

(
∂2EB(t, v)Av, ∂2EB(t, v)Av

)
.

(B.6f)

Finally, applying (B.1a) and (B.1b), respectively, recombination and substituting
v = EA( 12 t)u, w = EB(t, EA( 12 t)u) and z = ∂2EB(t, v)Av leads to the integral
representation (3.13) for S (2)(t, u).

Appendix C: Auxiliary estimates for the NLS case

C.1 Estimate of
∥
∥∂2EF (τ1 − τ2, S (τ2, u)) · S (2)(τ2, u)

∥
∥

L2

For a detailed study of the estimate (5.1b), we need to estimate the arising expressions
in L (2)(t, u) as

‖∂2EF (t−τ2,S (τ2, u))S (2)(τ2, u)‖L2 ≤ C1+C2 ·‖S (2)(τ2, u)‖L2 ≤ C1+C2 ·τ2 sup
0≤τ3≤τ2

‖s(2)(τ2, τ3, u)‖L2 ,

with constants C1, C2 resulting from Gronwall estimates.
We substitute

g = S (2)(τ2, u), w = S (τ2, u)
and apply the linear variation of constant formula in the following way,

∂
∂t

∂2EF (t − τ2, w)g = F ′(EF (t − τ2, w))∂2EF (t − τ2, w)g

= A∂2EF (t − τ2, w)g + B ′(EF (t − τ2, w))∂2EF (t − τ2, w)g ,

∂2EF (t − τ2, w)

∣∣
∣
t=τ2

g = g,

⇒ ∂2EF (t − τ2, w)g = EA(t − τ2)g +
∫ t

τ2

EA(t − θ)B ′(EF (θ−τ2, w))∂2EF (θ − τ2, w)gdθ.

Hence,

‖∂2EF (t − τ2, w)g‖L2 ≤ ‖g‖L2 +
∫ t

τ2

‖B ′(EF (θ − τ2, w))∂2EF (θ − τ2, w)g‖L2 dθ

≤ ‖g‖L2 +
∫ t

τ2

1
ε
‖U ∂2EF (θ − τ2, w)g‖L2 dθ

+
∫ t

τ2

1
ε
C̃ ϑ ‖EF (θ−τ2, w)‖2

H 2‖ ∂2EF (θ − τ2, w)g‖L2 dθ.
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Applying a Gronwall argument we obtain

‖∂2EF (t − τ2, w)g‖L2 ≤ exp
(
C̃

∫ t

τ2

1
ε
|ϑ |‖EF (σ − τ2, u)‖2

H 2 dσ
)

·
(
‖g‖L2 +

∫ t

τ2

1
ε
‖U ∂2EF (θ − τ2, w)g‖L2 dθ

)
.

Now the question is how to argue a reasonable a priori estimate for 1
ε
‖U ∂2EF (θ −

τ2, w)g‖L2 . In the following this is accomplished by relating this term to a known
estimate for ‖U EF (t, u)‖L2 , see [13].

Considering the Fréchet derivative of EF (θ − τ2, w +g) with a small increment g,
‖g‖L2 ≤ δ‖EF (θ − τ2, w + g)‖ and ‖EF (θ −τ2, w+g)‖L2 = ‖EF (θ −τ2, w)‖L2 +
O(‖g‖L2),

EF (θ − τ2, w + g) = EF (θ − τ2, w) + ∂2EF (θ − τ2, w)(g) + O(‖g‖2
L2),

we obtain

U · (
∂2EF (θ − τ2, w)(g)

) + O(‖g‖2) = U · EF (θ − τ2, w + g) − U · EF (θ − τ2, w),

‖U · (
∂2EF (θ − τ2, w)(g)

)‖L2 ≤ ‖U · EF (θ − τ2, w) − U · EF (θ − τ2, w + g)‖L2 + O(‖g‖2
L2 ),

‖U · (
∂2EF (θ − τ2, w)(g)

)‖L2 ≤ ‖U · EF (θ − τ2, w)‖L2 + ‖U · EF (θ − τ2, w + g)‖L2 + O(‖g‖2
L2 ),

where the size of the increment g = S (2)(t, u) becomes negligible for sufficiently
small choice of t . Applying [13, pp. 532sqq.] allows to bound UEF in L2 by a
constant 1

2 C∗, which depends on EF . Altogether, we obtain the crude estimate

sup
τ2≤θ≤t

‖U∂2EF (θ − τ2, w)g‖L2 ≤ C∗ . (C.1)

Actually, the above derivation lets us expect that C∗ contains a factor t . However, we
have not been able to prove this in a rigorous way.

Altogether we obtain (5.1b),

‖∂2EF (t−τ2,S (τ2, u))g‖L2 ≤ exp
( ∫ t

τ2

1
ε
C̃ |ϑ |‖EF (σ −τ2,S (τ2, u))‖2

H 2 dσ
)(‖g‖L2+ t

ε
C∗

)
.

(C.2)
A similar result can be obtained in the H 2 -norm,

‖∂2EF (t − τ2, u)g‖H 2 ≤ exp
(
C̃

∫ t

τ2

1
ε
|ϑ |‖EF (σ − τ2, u)‖2

H 2 dσ
)(‖g‖H 2 + t

ε
C∗

)
,

(C.3)
with a constant C̃∗ such that

sup
τ2≤θ≤t

‖U∂2EF (θ − τ2, u)g‖H 2 ≤ C̃∗ . (C.4)

For simplicity of denotation, let C∗ be defined as the maximum of the constants
appearing in (C.1) and C.4). In this sense the estimates from this section enter the
local error estimates in Section 5.
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C.2 Estimate of
∥
∥∂22EF (t − τ2, S (τ2, u))

(

(S (1)(τ2, u)
)2∥

∥
L2

For the estimate of ‖∂22EF (t − τ2, S (τ2, u))
(
S (1)(τ2, u)

)2‖L2 in (5.2b), we proceed
in a similar way as for (C.2) with the help of the identity
∂
∂t

∂22EF (t, u)
(
v,w

) = F ′′(EF (t, u))
(
∂2EF (t, u)v, ∂2EF (t, u)w

) + F ′(EF (t, u))∂22EF (t, u)
(
v,w

)

= A∂22EF (t, u)
(
v,w

) + B ′′(EF (t, u))
(
∂2EF (t, u)v, ∂2EF (t, u)w

)

+B ′(EF (t, u))∂22EF (t, u)
(
v,w

)
,

where
B ′′(u)(v, w) = −2i 1

ε
ϑ

(
uvw + uvw + uvw

)

does not depend on U .
Again we can apply the variation of constant formula and obtain, with the help of

Sobolev embeddings and (C.3),

‖∂22EF (t − τ2, S (τ2, u))(S (1)(τ2, u), S (1)(τ2, u))‖L2

≤ exp
(
C

∫ t

τ2

1
ε
|ϑ |‖EF (σ − τ2, S (τ2, u))‖2

H 2 dσ
)

·
(
Ĉ t3

ε
‖u‖L2

(
sup

0≤τ3≤τ2

‖s(1)(τ2, τ3, u)‖H 2 + 1
ε
C∗

)2 + t2

ε
C∗

)
,

for some constants C and Ĉ depending on the Sobolev imbedding of H 2 in L2.
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