
Numer Algor (2016) 71:181–206
DOI 10.1007/s11075-015-0021-7

ORIGINAL PAPER

High order discontinuous Galerkin methods
on simplicial elements for the elastodynamics
equation

Paola F. Antonietti1 ·Carlo Marcati2 ·
Ilario Mazzieri1 ·Alfio Quarteroni3

Received: 24 February 2015 / Accepted: 19 June 2015 / Published online: 11 July 2015
© Springer Science+Business Media New York 2015

Abstract In this work we apply the discontinuous Galekin (dG) spectral element
method on meshes made of simplicial elements for the approximation of the elastody-
namics equation. Our approach combines the high accuracy of spectral methods, the
geometrical flexibility of simplicial elements and the computational efficiency of dG
methods. We analyze the dissipation, dispersion and stability properties of the result-
ing scheme, with a focus on the choice of different sets of basis functions. Finally,
we apply the method on benchmark as well as realistic test cases.
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1 Introduction

In many geophysical research fields as, for example, seismic exploration, volcano
seismology, seismic tomography, rupture mechanics and seismic hazard analysis,
advanced numerical strategies provide an effective tool for data analysis, early warn-
ing and planning purposes and can enhance the mitigation of hazards and decrease
the risk near densely urbanized areas. Recently, discontinuous Galerkin (dG) spec-
tral element methods on tensor product elements have become very attractive for
the simulation of wave propagation and have found remarkable applications in geo-
physics owing to the ever increasing progress in computer algorithms and large-scale
computing facilities.

Spectral element methods have been introduced in 1984 by Patera [35] for com-
putational fluid dynamics and are nowadays well-established techniques for the
approximation of partial differential equations [10]. In the last two decades, they have
been extensively used in the context of computational seismology, see, e.g., [16, 26,
37, 45, 47], where both high order accuracy and computational efficiency are manda-
tory. In the early days, spectral element methods were invariably used on meshes
made of tensor product elements (i.e., affinely deformed squares and cubes) since
this is the context in which the extension from one spatial dimension to two or three
dimensions naturally occurs [9]. Their extension to triangles and tetrahedra (see [24,
46]) has historically been less developed, and different approaches have been pro-
posed and analysed in the last years, see again [24] and e.g, [23, 44]. Several of these
formulations have been employed for seismic wave propagation, e.g., [33, 36].

On their side, discontinuous Galerkin methods for the solution of partial differ-
ential equations have been greatly developed since they were first introduced in the
seventies for the numerical approximation of hyperbolic problems [41] and, indepen-
dently, in the context of elliptic and parabolic equations [5, 13]. See [6] for a unified
review of dG methods for elliptic problems. Combining the best of both, the finite
elements and the finite volumes methods, they exhibit many interesting properties
and they are highly scalable and flexible, at the expense of more degrees of freedom.
On one hand, since many algorithmic operations take place at the element level, dG
methods are well suited for highly parallel environments [25]. On the other hand,
they can handle naturally non-matching grids and variable approximation orders.
Such flexibility has been successfully exploited in conjunction with spectral element
methods in the context of elastodynamics problems on tensor product grids [30].

In this work, we analyze the discontinuous Galerkin spectral element method
(dGSEM) on simplicial meshes for the approximation of seismic wave propagation in
heterogeneous media. We consider two different approaches for the construction of
the element-wise discrete space: the former exploits modal Legendre-Dubiner basis
functions [14, 27] and is typically used within fully discontinuous approximations,
since imposing continuity with such shape functions may not be very handy. The
latter approach is based on boundary-adapted modal basis functions [10, 14, 24],
suitably modified to allow for a continuous scheme.
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The paper is organized as follows. In Section 2 we introduce the model problem;
we discuss its numerical discretization in Section 3. Starting from the work presented
in [31], we derive in Section 4 a thorough analysis of the dispersion and dissipation
errors introduced by the numerical method. Low dispersion and dissipation errors are
indeed relevant in order to accurately approximate fast waves in extended domains.
Furthermore, the requirements for the numerical stability of the method (of compu-
tational relevance) are investigated and the convergence properties of the method are
verified. Then, the method is applied to some classical seismic wave propagation
problems in Section 5. Finally, conclusions and perspectives are drawn in Section 6.

The results we obtained show that the dGSEM on simplicial elements provides
a highly accurate and rapidly convergent approximation. We are also able to quan-
tify the low dispersion and dissipation errors introduced, as well as the stability
requirements of the method.

Throughout the paper, we use the standard notation for Sobolev spaces [1]. For a
bounded domain D ⊂ R

d , d ∈ {2, 3}, we denote by Hm(D) the L2-Sobolev space
of order m ≥ 0 and by ‖ · ‖m,D and | · |m,D the usual Sobolev norm and seminorm,
respectively. For m = 0, we write L2(D) instead of H 0(D). The space H 1

0,�(D) is

the subspace of H 1(D) of functions with zero trace on � ⊆ ∂D. Due to the nature of
the problem, we write in boldface vector-valued functions. Finally, we write a ≈ b if
there exists two positive constants C1 and C2 that do not depend on the discretization
parameters such that C1a ≤ b ≤ C2a.

2 The mathematical model

Let � be a sufficiently smooth bounded domain of Rd , d ∈ {2, 3} and let � be its
boundary with outward normal unit vector n. We suppose that � is subdivided into
a part �D , where Dirichlet conditions (i.e., displacements) are prescribed, and a part
�N , where Neumann conditions (i.e., surface loads) are imposed. We suppose that
�D and �N are non overlapping, i.e., �D ∩�N = ∅, and that �N can be empty. Given
a final observation time T > 0, the linear elastodynamics equation takes the form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρut t − ∇ · σ(u) = f, in � × (0, T ],
u = 0, on �D × (0, T ],

σ (u)n = g, on �N × (0, T ],
u = u0, in � × {0},
ut = v0, in � × {0}.

(1)

Here, u represents the displacement of the body, ρ > 0 the medium mass density and
f, g assigned loads. We define the strain tensor ε(u) = 1

2

(∇u + ∇uT
)
, and we con-

sider the stress tensor σ for a linear isotropic elastic medium prescribed by Hooke’s
law, given component-wise by

σij (u) =
d∑

k,�=1

Cijk� εk�(u), i, j ∈ {1, ..., d}, (2)
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where C is the fourth order stiffness tensor. For isotropic media, relation (2) reduces
to

σij (u) = λ

d∑

k=1

εkk(u)δij + 2μεij (u) i, j ∈ {1, ..., d}, (3)

where λ and μ are referred to as the first and second Lamé parameter, respectively.
We assume the parameters ρ, λ and μ to be piece-wise positive constant functions,
therefore ρ, λ, μ ∈ L∞(�). Under these hypotheses, we remark that the stiffness
tensor C is positive definite and satisfies the bounds

2μ

d∑

i,j=1

x2
ij ≤

d∑

i,j,k,�=1

xijCijk� xk� ≤ (dλ + 2μ)

d∑

i,j=1

x2
ij ∀x ∈ R

d×d . (4)

Here and in the sequel we define the speed of a compressional and of a shear
wave as cP = √

(λ + 2μ)/ρ and cS = √
μ/ρ, respectively. The P-wave (resp. S-

wave) moves in a longitudinal (resp. transverse) way, so motion is parallel (resp.
perpendicular) to the direction of wave propagation.

Next, we consider the variational formulation of (1): for all t ∈ (0, T ] find u =
u(t) ∈ H1

0,�D
(�) such that:

(ρut t , v)� + A (u, v) = F (v) ∀ v ∈ H1
0,�D

(�), (5)

with u(0) = u0 and ut (0) = v0. Here, A (·, ·) : H1
0,�D

(�) × H1
0,�D

(�) → R is
defined by

A (u, v) = (σ (u), ε(v))�,

and F : H1
0,�D

(�) → R by

F (v) = (f, v)� + (g, v)�N
.

The following well-posedness result holds, cf. [40, Theorem 8.3-1].

Lemma 1 If u0 ∈ H1
0,�D

(�), v0 ∈ L2(�), f ∈ L2((0, T ];L2(�)) and

g ∈ C1((0, T ];H1/2(�N)), then problem (5) admits a unique solution u ∈
C((0, T ];H1

0,�D
(�)) ∩ C1((0, T ];L2(�)).

3 Numerical approximation

In this section, we describe the numerical method employed for the approximation of
(1). After introducing the basic notation, we derive the corresponding semi-discrete
and fully discrete formulation, giving particular emphasis to the choice of the basis
function and the quadrature rules adopted in this framework.

3.1 Space discretization

Let us consider a family {Th, 0 < h ≤ 1} of shape-regular conforming triangulations
of � made of disjoint open elements K such that � = ∪K∈Th

K , where each K ∈
Th is the image of a fixed master d-simplicial element K̂ ∈ R

d , d ∈ {2, 3}, i.e.,
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K = FK(K̂). We define the mesh size of Th as h = maxK∈Th
hK with hK =

diam(K). We define an interior face of Th (edge for d = 2) as the non–empty interior
of ∂K

+ ∩ ∂K
−

, where K+ and K− are two adjacent elements of Th. Similarly, a
boundary face of Th is defined as the non–empty interior of ∂K ∩ �, where K is
a boundary element of Th. We collect all the interior (resp. boundary) faces in the
set E I

h (resp. E ∂
h ) and set Eh = E I

h ∪ E ∂
h . In particular E ∂ = E D ∪ E N , where E D

and E N contain all Dirichlet and Neumann boundary faces, respectively. Moreover
we implicitly assume that the triangulation Th respects the decomposition of ∂�,
i.e., any e ∈ E ∂ belongs to the interior of exactly one of E D or E N . Finally, we
suppose that for any pair of elements K+ and K− sharing a (d − 1)–dimensional
face hK+ ≈ hK− (cf. [18, 19]).

Next, we introduce the average {{·}} and jump �·� operators for vector-valued and
tensor-valued functions. For any face e ∈ E I

h , shared by two neighbouring elements
K+ and K−, we define

�u� = u+ ⊗ n+ + u− ⊗ n−, �σ(u)� = σ(u+)n+ + σ(u−)n−,

{{u}} = 1
2 (u+ + u−), {{σ(u)}} = 1

2 (σ (u+) + σ(u−)),

where n+ (resp. n−) is the outward normal unit vector to K+ (resp. K−) and a⊗b ∈
R

d×d is the tensor whose entries are (a ⊗ b)ij = aibj for i, j = 1, ..., d . For any
boundary edge e ∈ E ∂ we define

{{u}} = u, {{σ(u)}} = σ(u), �u� = u ⊗ n, �σ(u)� = σ(u)n.

Finally, for any p > 0, we consider the finite-dimensional approximation space

Vh = {v ∈ L2(�) : v ◦ FK ∈ P
p(K̂) ∀ K ∈ Th},

where P
p(K̂) is the space of polynomials of total degree at most p on K̂ .

In order to recast all of the Interior Penalty (IP) schemes in a unique variational
formulation we introduce the following bilinear forms. Let Hm(Th) be the Sobolev
space of piecewise Hm functions, m > 3/2, we define B : Hm(Th)×Hm(Th) → R

as
B(u, v) =

∑

K∈Th

AK(u, v) +
∑

e∈E

Ie(u, v) +
∑

e∈E I ∪E D

Se(u, v), (6)

where AK is the restriction of A to the element K , i.e., AK(u, v) = (σ (u), ε(v))K ,
Ie is defined by

Ie(u, v) = − ({σ(u)}, �v�)
e
− η({σ(v)}, �u�)e (7)

for η ∈ {−1, 0, 1}, and Se by

Se(u, v) = (Se�u�, �v�)e, (8)

where
Se = αh−1

e p2{C}H ∀e ∈ E I ∪ E D, (9)

is the penalty function, α is a strictly positive constant and {a}H is the harmonic aver-
age of the quantity a, i.e., {a}H = 2a+a−/(a+ + a−). For tensor-valued functions
the harmonic average is meant to be applied component-wise. We remark that other



186 Numer Algor (2016) 71:181–206

penalty functions can be selected for the term (8) as, for instance, the one proposed
in [4, 42]:

Se = αh−1
e dp2{(λ + 2μ)I}H ∀e ∈ E I ∪ E , (10)

being I the identity tensor.
The semi-discrete approximation of (1) is then given by: for all t ∈ (0, T ] find

uh = uh(t) ∈ Vh such that:

(ρuh
tt , v)� + B(uh, v) = F (v) ∀ v ∈ Vh. (11)

Notice that with η = 1 in (7) we obtain the Symmetric Interior Penalty (SIP)
method [5, 52], with η = −1 the Non-symmetric Interior Penalty (NIP) method
[43] and with η = 0 the Incomplete Interior Penalty (IIP) method [52]. Employing
standard techniques it is possible to prove that problem (11) is well posed. Moreover,
optimal a-priori error bounds can be drawn for the semi-discrete solution uh, see [2]
for further details.

We next fix a basis for Vh (whose precise definition will be discussed in
Section 3.3) and rewrite (11) as a system of ordinary differential equations. To ease
the reading, here and in the following we discuss the case � ⊂ R

2; the extension
to d = 3 is straightforward. We start defining on each triangle K ∈ Th the basis
functions {ψ�

i }�=1,2
i by setting

ψ1
i =

(
ψi

0

)

, ψ2
i =

(
0
ψi

)

,

where {ψi}i is a basis for Vh on K . We denote by Np = (p + 1)(p + 2)/2 the
number of degrees of freedom per element and by nel the number of elements of Th.
The total number of degrees of freedom per component is thus Ntot = Npnel .Since

Vh = span{ψ�
i }�=1,2

i , the trial function uh can be expanded as

uh =
2∑

�=1

nel−1∑

j=0

jNp+Np∑

i=jNp+1

u�
i ψ

�
i .

Writing (6) for any test function {ψ�
i }�=1,2

i in Vh, we obtain the following system of
second order ordinary differential equations

MÜ + (A + J + S)U = F (12)

for the unknowns U =
(
u1

1, ..., u
1
Ntot

, u2
1, ..., u

2
Ntot

)T

, where M is the mass matrix

and A, J and S are the matrix representations of the bilinear forms A , I and S ,
respectively. Now, let us decompose any of the matrices M , A, J and S in (12) into
four blocks of the form

C =
(

C11 C12

C21 C22

)

, C = M, A, J, S.

Since we are considering an element-wise discontinuous basis, M is block-
diagonal, i.e. M12 = M21 = 0, while Mii i ∈ {1, 2} are composed of nel

diagonal blocks of size Np × Np. Each of the four square sub-blocks Aij of A are
block-diagonal matrices, see Fig. 1(a).
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(a) (b) (c)

Fig. 1 Sparsity patterns for (a) A, (b) J and (c) M on a conforming mesh

The sparsity pattern of J is the same for all the sub-blocks, with every row and
column related to the element K containing a diagonal Np × Np block and #{e ∈
∂K ∩ E I } non-diagonal blocks.

The matrix S has the same pattern as J if the penalty function is defined as in (9).
Otherwise, if it is formulated as in (10), Sii , i ∈ {1, 2}, have the same structure as
J ij , but S12 = S21 = 0. An example of those patterns is given in Fig. 1, where an
approximation with polynomial degree p = 5 and Nel = 28 elements are considered.

Next, we identify by AK (resp. MK ) the sub-block of A (resp. M) corresponding
to the element K and by JK,L and SK,L the blocks of the inter-element and stabil-
ity matrices J and S corresponding to the edge shared by the elements K and L.
Therefore,

A�m
K [i, j ] = AK(ψm

j , ψ�
i ), �, m ∈ {1, 2},

and
M��

K [i, j ] = (ρψ�
j , ψ

�
i )K, � ∈ {1, 2}.

Similarly,

J �m
K,L[i, j ] = Ie(ψ

m
j , ψ�

i ) and S�m
K,L[i, j ] = Se(ψ

m
j , ψ�

i ), �, m ∈ {1, 2},
with e = ∂K ∩ ∂L.

3.2 Time discretization

To integrate in time problem (12), we first subdivide the interval (0, T ] in NT subin-
tervals of length �t = T/S, set tn = n�t for n = 0, ..., NT and denote by
Un = U(tn). Then, setting D = A + J + S and applying the leap-frog method [38],
we get

MU1 =
(

M − (�t)2

2
D

)

U0 − �tMV0 + (�t)2

2
F0, (13)

for the first step, and

MUn+1 =
(

2M − (�t)2D
)
Un − MUn−1 + (�t)2Fn, ∀ n ∈ {1, . . . , NT − 1}.

(14)
We recall that the time integration scheme (13)–(14) belongs to the family of New-
mark methods, it is explicit and second order accurate. The numerical stability of
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the method is guaranteed by the Courant-Friedrichs-Lewy (CFL) condition [11], that
imposes the upper bound to the time step �t

�t ≤ CCFL

minK∈Th
hK

cP

, for 0 < CCFL ≤ 1. (15)

3.3 Construction of the element-wise discrete space

In this section we discuss in detail how to construct a set of shape functions to span
the discrete space at the element-wise level.

Consider the reference square Q̂ = {(η1, η2) : −1 ≤ η2, η2 ≤ 1}, and the
reference triangle

T̂ = {(ξ1, ξ2) : ξ1, ξ2 ≥ 0, ξ1 + ξ2 ≤ 1} (16)

that can be derived from Q̂ via the transformation map

ξ1 = (1 + η1)(1 − η2)

4
, ξ2 = 1 + η2

2
, (17)

shown in Fig. 2. The inverse map, often referred to as the Duffy’s transformation,
explicitly given by

η1 = 2
ξ1

1 − ξ2
− 1, η2 = 2ξ2 − 1,

is singular at the top vertex of the triangle. The map (17) is indeed “collapsing” the
square’s edge, identified by η2 = 1, onto that single vertex.

The first approach for the construction of the discrete space that we consider is
based on a modal expansion. The idea is to employ the Jacobi polynomials J

α,β
n

(see [9, 48]) to construct an orthogonal basis which still exhibits a tensor product
structure. The orthogonal basis {ψij (ξ1, ξ2)}ij , first introduced by Koornwinder [27]
and then developed by Dubiner [14], takes the form

ψij (x, y) = cijϕi(η1)ϕij (η2) = cijϕi

(

2
ξ1

1 − ξ2
− 1

)

ϕij (2ξ2 − 1) , (18)

for i, j ≥ 0, with i + j ≤ p and where

cij = √
2(2i + 1)(i + j + 1), ϕi(x) = J

0,0
i (x) and ϕij (x)=(1 − x)jJ

2i+1,0
j (x).

In the second approach we consider, the basis defined in (18) is modified in order
to build a C 0 continuous expansion, while retaining some of the advantages provided
by Jacobi polynomials. The modes in the modified basis, presented e.g. in [14, 46],
can be divided into vertex modes (which vanish on two vertices and take a unitary

Fig. 2 The mapping from the
reference square Q to the
reference triangle T
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value on the other), boundary modes (which are zero on all edges except one) and
interior modes (which vanish on all edges of the triangle). Both the Dubiner and the
modified bases are represented in Fig. 3. The modified basis will be identified in the
sequel also as boundary-adapted basis. In particular, given the reference triangle T ,
if p is the polynomial degree of the basis, the vertex modes are

ψ1 = 1 − ξ1 − ξ2, ψ2 = ξ1, ψ3 = ξ2,

the boundary modes are

ψm(i) = (1 − ξ1 − ξ2) ξ1 (1 − ξ2)
i−1 J

1,1
i−1

(
2ξ1

1 − ξ2
− 1

)

,

ψn(i) = (1 − ξ1 − ξ2) ξ2J
1,1
i−1 (2ξ2 − 1) ,

ψo(i) = ξ1ξ2J
1,1
i−1 (2ξ2 − 1) ,

for i = 1, . . . , p − 1 and the internal modes are

ψq(i,j) = (1 − ξ1 − ξ2) ξ1ξ2 (1 − ξ2)
i−1 J

1,1
i−1

(
2ξ1

1 − ξ2
− 1

)

J
2i+1,1
j−1 (2ξ2 − 1) ,

for 1 ≤ i, j ≤ p − 1, i + j ≤ p − 1. Here, m, n, o and q are permutations that put
the basis in the desired order, see Fig. 3.

A different kind of basis, not considered in this work, is the nodal basis, based
on a set of interpolation nodes and on the Lagrange functions associated to them,
see [23, 32]. The choice of a good set of interpolation points on the simplex is an
open problem, especially in d = 3 dimensions, see for instance [17, 21, 22, 34, 39,
51]. Note that Gauss-Lobatto nodes are also Fekete nodes on the square [8], while
they differ on the triangle. A full description of nodal bases is beyond the scope
of this work; their advantage resides mainly in the possibility to build a continuous
approximation, even when dealing with meshes composed of elements of different
shape.

We conclude this section discussing the quadrature rules we are going to employ
to integrate the volume terms. The standard approach to integrate volume terms is to
map the Gauss-Legendre quadrature nodes from quadrilateral elements to triangular
ones employing the transformation (17). The degree of exactness of these rules is
thus preserved, but none of the symmetries of the triangle are considered and the
points are clustered near one vertex. Other quadrature rules, which employ a smaller
number of nodes, have been proposed, for instance in [50], [49] and [15]. Those rules

Fig. 3 Left: Dubiner basis (18). Right: Boundary-adapted basis: vertex modes are represented at the
corners and edge modes on the edges of the triangle. Both bases represented for p ≤ 4
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Fig. 4 Gauss-Legendre (a) and
Dunavant (b) quadrature nodes
for p = 5

(a) (b)

take into account the symmetries of the element, but are generally more heuristic and
the nodes are not explicitly defined.

A visualization of the quadrature nodes required for a spectral element approxi-
mation of degree 5 is given in Fig. 4(a) and their sub-optimal distribution is quite
evident.

Finally, we mention the Dunavant quadrature rules, which have been derived in
[15] by solving the moment equation introduced in [29]. Nodes and weights are tab-
ulated up to a polynomial degree of p = 20. We note that the number of Dunavant
nodes needed to integrate exactly a polynomial of degree p is significantly lower than
the corresponding number of Gaussian nodes required.

4 Dissipation, dispersion and stability analysis

Dissipation and dispersion errors play a crucial role in the overall quality of an
approximation to the solution of wave propagation phenomena. Assuming that the
time advancing scheme is numerically stable, a practical way to test dissipation and
dispersion for a numerical scheme consists in observing the computed wave mov-
ing along a given direction for a long time in a homogeneous unbounded domain.
The delay in the computed wave peaks with respect to those of the analytical one
quantifies the dispersion error, whereas the decrease of the computed amplitude with
respect to the amplitude of the exact solution is due to the dissipation error.

Fig. 5 Element numbering for
dissipation and dispersion
analysis. Here, � = R

2 by
periodic boundary conditions
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In this section, following [31], we derive the dissipation and dispersion proper-
ties of the semi-discrete and fully discrete approximation. Moreover, we investigate
the numerical stability of the leap-frog scheme coupled with the proposed spatial
discretization.

To this end, we consider as analytical solution of the elastodynamics problem (1)
posed on the unbounded domain � a travelling plane wave of unitary amplitude, i.e.,

u(x, y, t) = ei(kxx+kyy−ωt), (19)

being kx = cos θ and ky = sin θ , θ ∈ [0, 2π), the components of the wave vector k =
[kx, ky]. We define a triangulation Th made by non-overlapping triangular elements
K , having uniform size h, see Fig. 5, which can be seen as a repetition of the pattern
Kc = K1 ∪ K2.

As usual, instead of solving on the unbounded domain �, we solve on �c and
impose periodic boundary conditions on ∂�c, cf. Figure 5. In this sense, we rewrite
the semi-discrete DG approximation (12) in Kc,

ψ̃j (x) =
{

ψj (x) x ∈ K1 ∪ ... ∪ K6,

0 otherwise,
ψ̃ i (x) =

{
ψ i (x) x ∈ Kc,

0 otherwise.

Adopting the notation of Section 3.1 and denoting by C = J + S, we obtain

M�,� =
(

M
�,�
1 0 0 0 0 0

0 M
�,�
2 0 0 0 0

)

, � ∈ {1, 2},

A�,m =
(

A
�,m
1 0 0 0 0 0

0 A
�,m
2 0 0 0 0

)

, �, m ∈ {1, 2},

C�,m =
(

C
�,m
1,1 C

�,m
1,2 0 0 C

�,m
1,5 C

�,m
1,6

C
�,m
2,1 C

�,m
2,2 C

�,m
2,3 C

�,m
2,4 0 0

)

, �, m ∈ {1, 2},

U� = (
U�

1 U�
2 U�

3 U�
4 U�

5 U�
6

)T
, � ∈ {1, 2}.

Table 1 ēS and ēP as a function of δ and p. Penalty function defined as in (9)

ēS ēP

δ p SIP NIP IIP SIP NIP IIP

0.5 3 1.21e-03 4.92e-03 3.49e-03 5.61e-04 6.07e-03 4.26e-03

0.33 3 1.24e-04 9.32e-04 6.37e-04 6.80e-05 1.27e-03 8.93e-04

0.25 3 2.36e-05 2.90e-04 1.94e-04 1.41e-05 4.07e-04 2.87e-04

0.2 3 6.41e-06 1.18e-04 7.79e-05 4.00e-06 1.68e-04 1.18e-04

0.25 4 1.95e-07 2.11e-05 1.22e-05 1.05e-07 3.02e-05 2.06e-05

0.25 5 1.07e-09 6.94e-07 4.05e-07 6.17e-10 1.01e-06 6.77e-07

0.25 6 4.06e-12 4.11e-08 2.36e-08 2.38e-12 5.92e-08 3.97e-08

0.25 7 2.33e-13 1.11e-09 6.45e-10 4.90e-14 1.74e-09 1.15e-09
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Applying periodic boundary conditions on ∂Kc we can easily get

U3 = e−i(hkx/2+√
3hky/2)U1 = α13U1, U4 = e−ihkxU1 = α14U1,

U5 = e+i(hkx/2+√
3hky/2)U2 = α25U2, U6 = e+ihkxU2 = α26U2.

Using the above relations we rewrite the problem for the reference element Kc,
obtaining the linear system

M̃Ü + (
C̃ + Ã

)
U = 0, (20)

where

C̃
�,m
K,J = C

�,m
K,J +

6∑

I=1

αKIC
�,m
K,I

and M̃ and Ã are the matrices M and A restricted to the union of the triangles K1∪K2.
Then, computing in (20) the second derivative with respect to time, we obtain

(
C̃ + Ã

)
U = �M̃U, (21)

with � = ω2. We can interpret (21) as a generalized eigenvalue problem and compute
the generalized eigenvalues �h that correspond to the frequencies of the travelling
waves ωh = √

�h. Since

ch = hωh

2πδ
= h

√
�h

2πδ
, (22)

where δ−1 = p|k|/2π is the number of degrees of freedom per wavelength, we can
compute the velocity cP,h (resp. cS,h) that is the best approximations to cP (resp. cS)
and define eP = cP,h/cP − 1 (resp. eS = cS,h/cS − 1) as the compressional (resp.
shear) grid dispersion error introduced by the numerical scheme.

In what follows, we will study the dependence of the dispersion error as a function
of θ = atan(ky/kx), on the order of the approximation p, on the number of quadra-
ture nodes, on the choice of the Interior Penalty method (i.e. the choice of η in (7))
and on different choices of penalty functions, cf. (9) and (10).

Table 2 ēS and ēP as a function of δ and p. Penalty function defined as in (10)

ēS ēP

δ p SIP NIP IIP SIP NIP IIP

0.5 3 2.13e-03 6.86e-03 6.05e-03 4.39e-03 1.15e-02 1.27e-02

0.33 3 1.28e-04 1.39e-03 1.29e-03 1.45e-04 2.42e-03 2.78e-03

0.25 3 2.18e-05 4.46e-04 4.19e-04 2.08e-05 8.24e-04 9.32e-04

0.2 3 5.78e-06 1.84e-04 1.74e-04 4.86e-06 3.49e-04 3.93e-04

0.25 4 1.75e-07 3.32e-05 2.37e-05 1.30e-07 6.40e-05 7.69e-05

0.25 5 1.11e-09 1.12e-06 9.50e-07 9.30e-10 2.20e-06 2.47e-06

0.25 6 7.10e-12 6.60e-08 4.51e-08 4.89e-12 1.30e-07 1.51e-07

0.25 7 6.10e-14 1.82e-09 1.60e-09 1.24e-14 3.86e-09 4.28e-09
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4.1 Semi-discrete grid dispersion error

To ease the presentation, in this section we report the semi-discrete dispersion analy-
sis obtained by choosing the boundary-adapted basis functions. The results obtained
by choosing the Dubiner basis functions are exactly the same up to the accuracy
shown in the corresponding table; for brevity these results have been omitted.

All simulations are performed by fixing the penalty parameter α = 2, the Lamé
parameters λ = 2, μ = 1 and the mass density ρ = 1. This yields a wave speed
ratio cP /cS = 2, which is of the same order of that usually considered in geophysical
applications.
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(a) Anisotropy curves cS,h /cS for the SIP (left) and NIP (right) methods.
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(b) Anisotropy curves cP,h /cP for the SIP (left) and NIP (right) methods.

Fig. 6 Anisotropy curves for p = 3 (-) and p = 4 (- -). Penalty function defined as in (9), α = 2
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In Tables 1 and 2 we show the maximum shear and compressional grid dispersion
errors, i.e., ēS = maxθ |eS(θ)| and ēP = maxθ |eP (θ)| respectively, for different
choices of δ, p and different IP schemes (η = −1, 0, 1). The results reported in
Table 1 have been obtained by choosing the penalty function (9); analogous results
obtained by choosing the penalty function (10) are reported in Table 2.

It is easy to see that the SIP (η = 1) method performs uniformly better than the
NIP (η = −1) and IIP (η = 0) variants, and that the grid dispersion errors resulting
from the discretization that employs the penalty function (9) is uniformly smaller
than the ones obtained with the penalty function (10), although being of the same
order of magnitude. Moreover, as expected, increasing the polynomial order p yields
a dramatic decrease in the dispersion error.

Figure 6 displays the behaviour of the ratio between the computed speed and the
exact one, i.e., cS,h/cS and cP,h/cP as a function of θ and p for η = 1 (SIP) and η =
−1 (NIP) methods. The results obtained with the IIP method (η = 0) are qualitatively
and quantitatively similar to those of the NIP scheme. It can be observed that the SIP
method tends to slightly overestimate the real wave speed for all incident angles, i.e.,
cS,h/cS and cP,h/cP are always bigger than 1.

Finally, it is worth noting that the distortion of the mesh elements plays a crucial
role in the magnitude and behaviour of the dispersion error. Indeed, Fig. 7 is obtained
with the SIP method and the penalty function defined as in (9) but on a structured
triangular mesh. It can be seen that the dispersion error is greater for waves travelling
parallel to the longest edge of the triangles.

Next, we fix θ = π/4 and consider the grid dispersion error versus the polynomial
degree p. The results obtained with δ = 0.2 and the SIP and NIP methods (stability
function defined as in (9)) are shown in Fig. 8. From these results we observe that for
both methods the dispersion errors decrease exponentially to zero; the SIP method
clearly outperforms the NIP scheme.
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Fig. 7 Anisotropy curves obtained with the SIP method (α = 2) with the penalty function defined as in
(9), on a structured triangular mesh: cS,h/cS (left) and cP,h/cP (right)
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Fig. 8 Grid dispersion errors eP (π/4) and eS(π/4) as a function of the polynomial degree p for the SIP
(a) and NIP (b) methods. Penalty function defined as in (9), δ = 0.2, α = 2

Finally, in Fig. 9 we show the grid dispersion errors for θ = π/4, as a function of
the sampling ratio δ. We have an optimal order of convergence O(δ2p) for the SIP
method and a sub-optimal order of convergence O(δp+1) for the NIP one, as already
observed in [20].

4.2 Semi-discrete grid dissipation errors

To compute the grid dissipation errors, we first observe that given kx, ky ∈ R,

|ei(kxx+kyy−ωt)| = eIm(ω)t .

Then, since the analytic plane wave (19) has unitary amplitude, we can define the
grid dissipation errors as a function of time t

dP = eIm(ωP,h)t , dS = eIm(ωS,h)t , (23)

(a) (b)

Fig. 9 Grid dispersion errors versus the sampling ratio δ (p = 3, log-log scale)
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where ωP,h (resp. ωS,h) is the approximated frequency of the compressional (resp.
shear) wave. A non-dissipative scheme is thus one for which

Im(ωP,h) = Im(ωS,h) = 0,

for all wave vector k. The closer to zero the above values are, the less dissipative
the scheme is. The values of Im(ωP,h) and Im(ωS,h), computed varying the approx-
imation degree p ∈ {2, . . . , 9} and for δ = 0.2, are reported in Table 3 for the
SIP method. The computed values are near machine precision and the scheme shows
evidently almost irrelevant grid dissipation errors, for both sets of basis functions
proposed.

4.3 Fully discrete grid dispersion error

To analyse the dispersion error for the fully discrete approximation, we apply the
leap-frog scheme to system (20) obtaining

M̃�t−2(e−iωhtn+1 − 2e−iωhtn + e−iωhtn−1)U0 = (
C̃ + Ã

)
e−iωhtnU0,

or, equivalently,

M̃�t−2(e−iωh�t − 2 + eiωh�t )U0 = (
C̃ + Ã

)
U0.

Noting that

e−iωh�t − 2 + eiωh�t = 4 sin2
(

ωh�t

2

)

,

we obtain a generalized eigenvalue problem of the form (21) with eigenvalues

�h = 4

(�t)2
sin2

(
ωh�t

2

)

.

Table 3 Semi-discrete grid dissipation errors for the SIP method, varying the polynomial degree p and
fixing δ = 0.2

boundary-adapted basis Legendre-Dubiner basis

p Im(ωS,h) Im(ωP,h) Im(ωS,h) Im(ωP,h)

2 −9.6715e-16 −4.2935e-17 −2.5416e-15 −1.5458e-15

3 2.0958e-15 4.7663e-16 2.3934e-15 8.9936e-15

4 −1.8285e-15 2.6355e-16 −1.0875e-14 −1.3790e-14

5 −1.1778e-14 5.7042e-16 1.1702e-14 4.6197e-14

6 1.3079e-14 2.1062e-15 4.2440e-14 −1.2404e-14

7 1.4445e-14 1.1461e-15 −1.1464e-13 −1.4941e-14

8 9.6095e-15 3.3993e-15 2.0431e-13 1.6433e-13

9 −1.5226e-14 4.9139e-15 −9.1985e-14 5.3414e-14
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Then, arguing as for the semi-discrete case we can compute the approximated
frequencies with the formula

ωh = 2

�t
arcsin

(
�t

2

√
�h

)

, (24)

and denote by

ẽP = ωP,h

ωP

− 1, ẽS = ωS,h

ωS

− 1,

the fully discrete compressional and shear dispersion error respectively. Notice that,
for a sufficiently small �t , the right hand side in (24) can be expanded as a Taylor
series giving

ωh ∼ √
�h + O

(
(�t)2

)
.

Then, we expect the semi-discrete error to be dominant until it reaches a thresh-
old ∼ C(�t)2 with C > 0 and the error due to the time discretization to be dominant
afterwards. In Fig. 10 we fix θ = π/4, δ = 0.2 and report the computed errors ẽP and
ẽS as functions of p ∈ {2, . . . , 9}, for different choices of �t ∈ {10−2, 10−3, 10−4}.
For the sake of comparison, the results are compared with the analogous semi-
discrete ones. As expected, for �t → 0 the fully discrete grid dispersion errors tend
to the semi-discrete ones.

4.4 Numerical stability of the fully discrete approximation

In this section, following [4] we analyze the stability properties of the proposed fully
discrete numerical approximation. We use the same parameters as in the previous
section, that is, we fix the penalty parameter α = 10, the Lamé parameters λ =
2, μ = 1 and the mass density ρ = 1. Moreover we set δ = 0.2 and θ = π/4. Note
that for lower ratios cP /cS the stability requirement would be stricter, but that with
this ratio we are able to discriminate between the two stability functions.
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Fig. 10 Fully discrete grid dispersion errors for S-waves (a) and P-waves (b). The dashed lines represent
the computed semi-discrete grid dispersion errors. We set �t = 10−2, 10−3, 10−4, δ = 0.2 and θ = π/2
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In the same configuration as the one shown in Fig. 5, we consider the generalized
eigenvalue problem (21), i.e.,

(
C̃ + Ã

)
U = �M̃U.

In order to make the dependence of C̃+Ã on both the mesh size h and the polynomial
approximation degree p explicit, we rewrite the above system for elements whose
edges are of length equal to 2, getting

� =
(

h

�t

)2

sin2
(

ωh�t

2

)

.

Now, defining the stability parameter q = cP �t/h, we can deduce that

q
√

� = cP sin

(
ωh�t

2

)

,

and then we can express the CFL condition (15) as

q ≤ cp√
�

= CCFL(�), (25)

with 0 < CCFL ≤ 1. Since the above relation must hold for any eigenvalue of the
system (21), in particular, it has to be verified for maxj,θ �j (θ). Then, by numeri-
cally computing this quantity, we can investigate the numerical stability of the DG
scheme. In Fig. 11, we plot the stability parameter q versus the polynomial approxi-
mation degree p, for the SIP method with the different choices of the penalty function
(cf. (9) and (10)). The results show that q ∼ p−2, in agreement with [3, 4]. We
can also observe that the stability function (10) provides less restrictive bounds than
using (9), but this comes at the price of a larger dispersion error, as already shown in
Section 4.1. Moreover, we observe that the NIP method has more restrictive stability
bounds than the SIP scheme when coupled with the leap-frog scheme, without any
gain in accuracy. This is in agreement with [4] where a similar analysis is derived for
dGSE methods for tensor-product meshes.

(a) (b)

Fig. 11 Stability parameter as a function of the polynomial degree p, for both the stability functions
defined as in (9) and (10)
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Finally, it is worth noting that those values constitute only a necessary bound,
though it has been found to be sufficient in practice [12].

5 Numerical results

In this section we test the performance of our dGSEM on simplicial elements on
classical benchmark as well as on realistic seismic wave propagation problems.

In order to study the convergence properties, we define on the space Vh the mesh-
dependent norm

||u||2Vh =
∑

K∈Th

||C1/2ε(u)||20,K +
∑

e∈E

||S1/2
e �u�||20,e, ∀ u ∈ Vh (26)

and the time dependent norm

||u||L2((0,T ];V) =
(∫ T

0
||u(t)||2Vdt

) 1
2

,

where V is either V = L2(�) or V = Vh.

5.1 Convergence test with smooth exact solution

For the first test case, we consider the domain � = (−1/2, 1/2) × (0, 1) and we set
the body force f, the initial and boundary conditions such that

uex(x, y, t) = cos(t)

(
sin(πx) sin(πy)

cos(πx) cos(πy)

)

(27)

is the exact solution to problem (1). The corresponding numerical approximation uh

is computed considering the SIP approximation with the stability function defined as
in (9), due to its best dispersion properties (cf. Section 4.1).

(a) (b)

Fig. 12 Convergence test with smooth exact solution: computed errors versus the polynomial degree
p = 2, ..., 7, for h = 1/4 (left); computed error versus mesh size h for p = 2, 3 (right)
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Fig. 13 Lamb’s problem: close up of the waves propagating away from the point source

These results have been obtained employing a structured mesh made by 32 right-
angled triangles, setting T = 1 and �t = 5 · 10−4. In Fig. 12(a) we plot the
L2

(
(0, T ];L2(�)

)
and L2

(
(0, T ];Vh

)
norms of the error as a function of the poly-

nomial degree p. We observe that the L2
(·;Vh

)
error is consistently two orders of

magnitude bigger than the L2
(·; L2

)
error, but the behaviour with respect to p is

qualitatively the same. Specifically, the convergence of the numerical solution to the
analytical one is exponential.

In Fig. 12(b) the computed errors are plotted versus the mesh size h. These results
have been obtained on a structured mesh with nel = 32, 72, 128, 200 triangles so that
the size of the catheti of the elements takes the values h = 1/4, 1/6, 1/8, 1/10. As
expected, the error converges to zero as hp+1.

(a) (b)

Fig. 14 Lamb’s problem: computed displacements and errors (the latter magnified by a factor of 10)
registered at the receivers r1 and r2. SIP method with α = 10
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Table 4 Elastic wedge
problem: properties of the
materials

Material cP [m/s] cS [m/s] ρ [kg/m3]

I 2500 1250 2000

II 4000 2000 2200

5.2 The Lamb’s problem

We next consider Lamb’s problem [28], which involves the propagation of seismic
waves in an elastic half plane, due to a point source located just below the surface and
imposing null stress conditions on the surface. The elastic domain � is a rectangle of
width 4000 m and height 2000 m, with mass density ρ = 2000 kg/m3, cP = 3200
m/s and cS = 1847, 5 m/s. A point source is located at pf = (1500 m, 1950 m), 50
meters below the free surface and it is modulated in time as the Ricker wavelet

f(x, t) = (1 − 2(fmπ)2(t − t0)
2)e−(fmπ)2(t−t0)

2
δ0(x − pf ), (28)

where δ0(·) is the Dirac distribution and fm (resp. t0) is a frequency (resp. time delay)
to be specified. Two receivers r1 and r2 are located respectively at the points r1 =
(2200 m, 2000 m) and r2 = (2700 m, 2000 m).

Figure 13 provides a close up of the physical phenomena: after the source activa-
tion, there is a P-wave travelling towards the bottom of the domain, followed by an
S-wave travelling almost horizontally. At the top edge of the domain, the Rayleigh
wave is clearly visible.

In Fig. 14 we show the computed displacements obtained with h = 50 m, p = 5,
�t = 2.5 10−4 s and fixing fm = 10 Hz and t0 = 0.1 s for the Ricker wavelet
(28). For the Lamb’s problem, we are able to recover the analytical structure of the
surface wave (via the EX2DDIR software [7]). The difference between the analyt-
ical and the numerical solution is also shown, magnified by a factor of 10. Notice
that the main event recorded by the receivers is the transit of the surface wave. It
is furthermore interesting to compare the computed surface wave speed with the

500 m 2000 m

1

500 m

20
00

 m
50

0 
m

1

50 50

 

Fig. 15 Elastic wedge problem: domain, mesh, receivers (shown in bold lines at corners) and zoom of
receivers numbering at the corners
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exact one. The temporal distance between the peaks recorded by the receivers r1
and r2 in Fig. 14(b) (computed at the available time steps) is δt � 0.294 ± 0.001s.
Then, considering the distance between the receivers, we get an empirical speed
ch,surf � 1700 ± 6 m/s, while a direct (analytical) calculation of the surface wave-
speed gives csurf � 1698.6 m/s. Therefore, the error is clearly below the temporal
resolution of the approximation.

5.3 The elastic wedge problem

In the elastic wedge problem the propagation of a surface wave in a square domain
divided by its diagonal into two different materials is considered. Here, we set up the
material properties as in Table 4. Specifically, material I (resp. material II) occupies
the top-left (resp. bottom-right) side of the square. We set a Rayleigh wave as the
initial data of system (1) and Neumann boundary conditions are imposed on ∂�.
The Rayleigh wave is analytically computed in a half space with the properties of
Material I.

We have considered the grid depicted in Fig. 15; such a choice allows for a
constant number of degrees of freedom per wavelength. In particular, the results pre-
sented have been computed with approximately 5 degrees of freedom per wavelength.
The setup of the receivers and the mesh are shown in Fig. 15: the domain is a square
of edge length 2000 m, while the 100 receivers are located at the two top corners,
spanning 500 meters both on the top and lateral edges.

In Figs. 16 and 17 we report the approximated solution recorded by the receivers
placed on the corners of the domain (see Fig. 15). Here, we use p = 8, �t = 5 ·
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Fig. 16 Seismograms at the top left (homogeneous) corner (cf. Fig. 15). Horizontal (above) and vertical
(below) components of the discrete displacement. Time is on the abscissa, the receiver numbers are shown
on the ordinate. SIP method with α = 10
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Fig. 17 Seismograms at the top right (heterogeneous) corner (cf. Fig. 15). Horizontal (above) and vertical
(below) components of the discrete displacement. Time is on the abscissa, the receiver numbers are shown
on the ordinate. SIP method with α = 10

10−5s and a final observation time T = 1.5 s. We employed the SIP method with
the stability function defined as in (10), with α = 10. In the homogeneous corner
(Fig. 17) the effect of the transmitted Rayleigh wave travelling downwards and of the
reflected wave travelling backwards is clearly visible.

On the other hand, in the heterogeneous corner, as expected, the reflected wave is
evident, while the transmitted one if of definitely inferior amplitude. The difference
in speed between the reflected and the transmitted surface wave is also observable,
in agreement with [33].

6 Conclusions and perspectives

We have implemented and analyzed a discontinuous Galerkin spectral element
approximation of the elastodynamics equation on meshes made of simplicial ele-
ments.

We were particularly interested in the simulation of wave propagation phenomena
and therefore concerned by the dissipation and dispersion errors introduced by the
method. The results we obtained show that the method introduces very low dissipa-
tion and that its dispersion error converges exponentially to machine precision with
respect to the polynomial order p. The approximation is also exponentially conver-
gent to the solution (in the standard norms and with respect to p) in the case of the
model problem with exact analytical solution. In general, the quality of the approxi-
mation is comparable with that obtained on tensor product grids. Furthermore, when
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applied to realistic cases, the scheme accurately captures phenomena such as the for-
mation and propagation of surface waves and the differences in propagation speed
for heterogeneous materials.

On the other hand, the constraints on the stability of the method are stricter than
in the tensor product case; additionally, a tensor product discrete space allows for
more computational efficiency. Since the discontinuous nature of the scheme gives
the possibility to easily combine multiple shapes in the same grid and allows for
hanging nodes, a scheme built on meshes composed by elements of different shapes
is advisable. With such a scheme, either the efficiency of tensor product methods and
the flexibility of simplicial elements can be exploited.
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