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1 Introduction

Consider the following block two-by-two linear system

Ax ≡
(

W − T

T W

) (
u

v

)
=

(
p

q

)
≡ b, (1)

where the matrices W , T ∈ R
n×n are symmetric with at least one of them, e.g., W

being positive definite. For the complex symmetric linear system

A x̃ = b̃, A ∈ C
n×n and x̃, b̃ ∈ C

n, (2)

where A is a complex symmetric matrix of the form A = W + iT . Let x̃ = u + iv

and b̃ = p+ iq with u, v, p, q ∈ R
n. Then the complex linear system (2) can equiva-

lently be written to the block two-by-two linear system (1) [1]. The linear system (1)
can be regarded as a special case of the generalized saddle point problem [13]. Many
scientific and engineering applications can lead to the linear system (1), for example,
wave propagation [28], distributed control problems [25], structural dynamics [19],
FFT-based solution of certain time-dependent PDEs [15], molecular scattering [20],
lattice quantum chromo dynamics [20] and so on. For more examples about the prac-
tical backgrounds of this class of problems, we refer to [3, 12, 13] and the references
therein.

A large variety of effective iteration methods have been proposed in the literature
for solving the linear system (1), such as C-to-R iteration methods [1, 2, 5, 12, 17],
preconditioned Krylov subspace methods [14, 16, 26], splitting iteration methods
[11, 14, 22, 23, 27, 31], Hermitian and skew-Hermitian splitting (HSS) method and
its variants [4, 6–9, 18, 21, 24, 30].

Applying the splitting A = D − L − U with

D =
(

W 0
0 W

)
, L =

(
0 0

−T 0

)
, U =

(
0 T

0 0

)
,

we have the following SSOR procedure for the block two-by-two linear system (1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(D − ωL)

⎛
⎝ u

(
k+ 1

2

)

v

(
k+ 1

2

)
⎞
⎠ = ((1 − ω)D + ωU)

(
u(k)

v(k)

)
+ ω

(
p

q

)
,

(D − ωU)

(
u(k+1)

v(k+1)

)
= ((1 − ω)D + ωL)

⎛
⎝ u

(
k+ 1

2

)

v

(
k+ 1

2

)
⎞
⎠ + ω

(
p

q

)
,

(3)

where ω is a positive parameter. Then it holds that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ u

(
k+ 1

2

)

v

(
k+ 1

2

)
⎞
⎠ = Lω

(
u(k)

v(k)

)
+ ω(D − ωL)−1b,

(
u(k+1)

v(k+1)

)
= Uω

⎛
⎝ u

(
k+ 1

2

)

v

(
k+ 1

2

)
⎞
⎠ + ω(D − ωU)−1b,

(4)
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where

Lω = (D − ωL)−1((1 − ω)D + ωU)

=
(

(1 − ω)In ωW−1T

−ω(1 − ω)W−1T (1 − ω)In − ω2W−1T W−1T

)

and

Uω = (D − ωU)−1((1 − ω)D + ωL)

=
(

(1 − ω)In − ω2W−1T W−1T ω(1 − ω)W−1T

−ωW−1T (1 − ω)In

)
.

After eliminating ((u(k+ 1
2 ))T , (v(k+ 1

2 ))T )T , the SSOR iteration scheme (4) can be
written as (

u(k+1)

v(k+1)

)
= Hω

(
u(k)

v(k)

)
+ M −1

ω b, (5)

where

Hω = UωLω =
(

H11 H12
H21 H22

)
(6)

is the iteration matrix of the SSOR method, with⎧⎪⎪⎨
⎪⎪⎩

H11 = (1 − ω)2In − ω2(1 − ω)(2 − ω)W−1T W−1T ,

H12 = ω(1 − ω)(2 − ω)W−1T − ω3(2 − ω)W−1T W−1T W−1T ,

H21 = −ω(1 − ω)(2 − ω)W−1T ,

H22 = (1 − ω)2In − ω2(2 − ω)W−1T W−1T ,

and

M −1
ω = ω(2 − ω)

(
W−1 − ω2W−1T W−1T W−1 ωW−1T W−1

−ωW−1T W−1 W−1

)
.

Based on the above discussions, the SSOR method for the block two-by-two linear
system (1) can be described as follows.

The SSOR method Given any initial vectors u(0), v(0) ∈ R
n, and relaxation factor

ω with ω > 0. For k = 0, 1, 2, · · · , until the iteration sequence {((u(k))T , (v(k))T )T }
converges, compute{

v(k+1) =(1 − ω)2v(k) − ω(2 − ω)W−1((1 − ω)T u(k)+ ωT W−1(T v(k)+p)−q),

u(k+1) =(1 − ω)2u(k) + ωW−1((1 − ω)T v(k) + T v(k+1) + (2 − ω)p).

(7)
Since the SSOR method is parameter dependent, the choice of optimal parame-

ters which result in fast convergence rate is very important for the efficiency of this
method. In this paper, the optimal parameters of the SSOR method for solving the
block two-by-two linear system (1) are given. Furthermore, an accelerated variant
of the SSOR (ASSOR) method is introduced. Numerical experiments reveal that the
SSOR and ASSOR methods with the optimal parameters are of great feasibility and
effectiveness.

The organization of this paper is as follows. In Section 2, we study the selection
of optimal iteration parameters for the SSOR method. In Section 3, an accelerated
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variant of the SSOR method is given. Its convergence analysis and a practical way of
choosing iteration parameters are discussed. In Section 4, numerical experiments are
presented to examine the feasibility and effectiveness of the SSOR and ASSOR meth-
ods for solving the linear system (1). Finally, in Section 5, we give some concluding
remarks.

2 The optimal parameters of the SSOR method

In this section, we discuss the convergence and the selection of optimal parameters
for the SSOR method. We need the following lemmas.

Lemma 1 [29] Both roots of the real quadratic equation λ2 − φλ + ψ = 0 have
modulus less than one if and only if |ψ | < 1 and |φ| < 1 + ψ .

Lemma 2 [27] Let the matrices W and T ∈ R
n×n be symmetric positive definite and

symmetric, respectively. Then the eigenvalues of the matrix S := W−1T are all real.

In the following, the spectral set and the spectral radius of a square matrix H

are denoted by σ(H) and ρ(H), respectively. Based on Lemmas 1 and 2, we have
the following convergence results about the SSOR method for the block two-by-two
linear system (1).

Theorem 1 Let the matrices W and T ∈ R
n×n be symmetric positive definite and

symmetric, respectively. Then the SSOR method (7) for the block two-by-two linear
system (1) is convergent if one of the following conditions holds:

i) if ρ(S) � 1, 0 < ω < 2 should be satisfied;

ii) if ρ(S) > 1, 0 < ω < 1−
√

ρ(S)−1
ρ(S)+1 or 1+

√
ρ(S)−1
ρ(S)+1 < ω < 2 should be satisfied.

Proof From Lemma 2, we know that S has the spectral decomposition S = V �V −1,
where V ∈ R

n×n is an invertible matrix and � = diag(μ1, μ2, · · · , μn) with μi

(i = 1, 2, · · · , n) being eigenvalues of S. Define

P :=
(

V 0
0 V

)
.

Then from (6), we get

PHωP−1

=
(

(1 − ω)2In − ω2(1 − ω)(2−ω)�2 ω(1−ω)(2 − ω)� − ω3(2 − ω)�3

−ω(1 − ω)(2 − ω)� (1 − ω)2In − ω2(2 − ω)�2

)
,

which is similar to Hω. So they have the same eigenvalues. It is easy to verify that
the 2n eigenvalues of the above matrix satisfy the real quadratic equations

λ2 − (2(1 − ω)2 − ω2(2 − ω)2μ2)λ + (1 − ω)4 = 0, (μ = μ1, μ2, · · · , μn). (8)
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From Lemma 1, we know that the roots of the quadratic equations (8) hold |λ| < 1 if
and only if { |(1 − ω)4| < 1,

|2(1 − ω)2 − ω2(2 − ω)2μ2| < 1 + (1 − ω)4,

which are equivalent to

0 < ω < 2 and (1 + (1 − ω)2)2 > ω2(2 − ω)2μ2. (9)

Since μ � ρ(S), the second inequality in (9) holds if

(1 + (1 − ω)2)2 > ω2(2 − ω)2ρ2(S).

By simple calculations, we have

(1 + ρ(S))ω2 − 2(1 + ρ(S))ω + 2 > 0.

Solving the above inequality, we immediately obtain the convergence results.

Remark 1 When ρ(S) > 1, we know that the convergence interval length of the

SSOR method is 2(1 −
√

ρ(S)−1
ρ(S)+1 ) from Theorem 1. Besides, we know that the GSOR

method is convergent if 0 < ω < 2
1+ρ(S)

from Theorem 1 in [27]. So the convergence

interval length of the GSOR method is 2
1+ρ(S)

. Note that

2

(
1 −

√
ρ(S) − 1

ρ(S) + 1

)
− 2

1 + ρ(S)
=

2
(
ρ(S) − √

ρ(S)2 − 1
)

1 + ρ(S)
> 0.

Then we know that the SSOR method has larger range of convergence than the GSOR
method.

Next, by minimizing the spectral radius of the iteration matrix Hω, which is
defined in (6), we discuss the choice of the optimal relaxation parameters ω. The
technique we used here is similar to Theorem 2 of [27].

Theorem 2 Let the matrices W and T ∈ R
n×n be symmetric positive definite and

symmetric, respectively. Assume that the conditions of Theorem 1 are satisfied. Then
the optimal parameters of the SSOR method (7) are given by

ωopt = 1 ±
√

ρ(S)2 + 1 − 1

ρ(S)
, (10)

and the corresponding optimal convergence factor of the SSOR method is

ρ(Hωopt) = 1 − 2√
ρ(S)2 + 1 + 1

. (11)

Proof From (8) we know that the eigenvalues λ of the iteration matrix Hω satisfy

λ − (1 − ω)2 = ±ω(2 − ω)μ
√−λ. (12)



660 Numer Algor (2016) 71:655–671

It can be viewed as the intersection points of the straight line

fω(λ) = −λ − (1 − ω)2

ω(2 − ω)

that passes through the point (1, −1), and the parabolas

g(λ) = ±μ
√−λ, (μ = μ1, μ2, · · · , μn).

The discriminant of (8) or (12) is denoted by

	(ω, μ) := (ω2(2 − ω)2μ2 + 4ω(2 − ω) − 4)ω2(2 − ω)2μ2.

When 	(ω, μ) � 0, the quadratic equation (8) has two real roots λ1 and λ2. For
each μ, these roots are abscissas of the intersections of fω(λ) and g(λ), as illustrated
in Fig. 1.

The largest abscissa of the intersection point decreases when the slope of fω(λ)

decreases until it becomes tangent to g(λ). Under this condition, we have λ1 = λ2.
Then 	(ω, μ) = 0, or equivalently,

ω2(2 − ω)2μ2 + 4ω(2 − ω) − 4 = 0 or μ = 0. (13)

If μ = 0, |λ1| = |λ2| = (1 − ω)2. So ω = 1 is the best choice as λ1 = λ2 = 0.
If μ �= 0, (13) is equivalent to μ2ω̃2 + 4ω̃ − 4 = 0 with ω̃ := ω(2 − ω).

From Theorem 1 we know that ω̃ > 0, so

ω̃ = 2√
1 + μ2 + 1

.

Then by simple calculations, we have

ω = 1 ±
√

μ2 + 1 − 1

μ
and λ1 = λ2 = −(1 − ω)2.

Note that ±ρ(S)
√−λ is an envelope for all the curves g(λ). So the minimum value

of ρ(Hω) is attained at (1 − ω)2 with

ω = 1 ±
√

ρ(S)2 + 1 − 1

ρ(S)
and ρ(Hω) = 1 − 2√

ρ(S)2 + 1 + 1
.

Fig. 1 Condition for
minimization of ρ(Hω)
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When 	(ω, μ) < 0, the quadratic equation (8) has two conjugate complex roots
λ1 and λ2. By some calculations, we have |λ1| = |λ2| = (1 − ω)2 with

0 < ω < 1 −
√

μ2 + 1 − 1

μ
or 1 +

√
μ2 + 1 − 1

μ
< ω < 2.

Thus it holds

ρ(Hω) = (1 − ω)2 > 1 − 2√
ρ(S)2 + 1 + 1

.

Combining with the above two situations, we obtain that (10) holds, and the
optimal convergence factor is

ρ(Hωopt) = (1 − ωopt)
2 = 1 − 2√

ρ(S)2 + 1 + 1
.

Remark 2 From Theorem 2, we see that the optimal convergence factor of the SSOR
method here is the same as that of the GSOR method in [27]. However, the SSOR
method has two choices for the optimal iteration parameter but the GSOR method has
only a single choice. Thus, the SSOR method may be more practical to implement
under certain situations.

Assume that the matrices W and T are symmetric positive definite and symmet-
ric positive semi-definite, respectively. Then the eigenvalues of S = W−1T are all
nonnegative. Denote the largest eigenvalue of S as μmax. Based upon Theorem 2, we
can obtain the following convergence conditions for the SSOR method, which can be
used easily in practical applications.

Corollary 1 Let the matrices W and T ∈ R
n×n be symmetric positive definite and

symmetric positive semi-definite, respectively. Then the SSOR method (7) for the
block two-by-two linear system (1) is convergent if one of the following conditions
holds:

i) if μmax � 1, 0 < ω < 2 should be satisfied;

ii) ifμmax > 1, 0 < ω < 1−
√

μmax−1
μmax+1 or 1+

√
μmax−1
μmax+1 < ω < 2 should be satisfied.

Moreover, the optimal parameters of the SSOR method for the block two-by-two
linear system (1) are given by

ωopt = 1 ±
√

μ2
max + 1 − 1

μmax
,

and the corresponding optimal convergence factor is

ρ(Hωopt) = 1 − 2√
μ2

max + 1 + 1
. (14)
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3 Accelerated variant of the SSOR method

From Theorem 2 and Corollary 1, we see that ρ(Hωopt) defined as in (11) or (14),
respectively, is increasing functions with respective to ρ(S) or μmax. To speed up the
convergence rate of the SSOR method, ρ(S) or μmax should be small enough. The
accelerated variant of the SSOR method proposed in this part can help to realize this
aim.

We consider the following preconditioned form of (1) [1, 23](
I I

−I I

) (
W −T

T W

) (
u

v

)
=

(
I I

−I I

) (
p

q

)
,

or equivalently, (
W̃ −T̃

T̃ W̃

)(
u

v

)
=

(
p̃

q̃

)
, (15)

where W̃ := W + T , T̃ := T − W and p̃ := p + q, q̃ := q − p. Applying the
SSOR method to the linear system (15), we have the ASSOR method for the linear
system (1).

The ASSOR method Given any initial vectors u(0), v(0) ∈ R
n, and the relax-

ation factor ω with ω > 0. For k = 0, 1, 2, · · · , until the iteration sequence
{((u(k))T , (v(k))T )T } converges, compute{

v(k+1) =(1 − ω)2v(k)− ω(2 − ω)W̃−1((1− ω)T̃ u(k)+ ωT̃ W̃−1(T v(k)+p̃) − q̃),

u(k+1) =(1 − ω)2u(k) + ωW̃−1((1 − ω)T̃ v(k) + T̃ v(k+1) + (2 − ω)p̃).

(16)

Lemma 3 Let the matrices W and T be symmetric positive definite and symmetric
positive semi-definite, respectively. Denote S̃ := W̃−1T̃ with W̃ := W + T and
T̃ := T − W . Then

ρ(S̃) = max

{∣∣∣∣1 − μmin

1 + μmin

∣∣∣, ∣∣∣1 − μmax

1 + μmax

∣∣∣∣
}

< 1,

where μmax and μmin are the largest and smallest eigenvalue of S = W−1T ,
respectively.

Proof Let (λ, x) be an eigenpair of S̃. Then S̃x = λx, or equivalently,

(T − W)x = λ(W + T )x.

By simple calculations, we have λ = ξ−1
ξ+1 with ξ := x∗T x

x∗Wx
� 0. Since λ is an

increasing function with respect to ξ , we can obtain the result of Lemma 3 obviously.

Based on Theorems 1 and 2 and Lemma 3, we can obtain the following result.

Theorem 3 Suppose the conditions of Lemma 3 are satisfied. Then the ASSOR
method for the block two-by-two linear system (1) is convergent if 0 < ω < 2. The
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optimal parameters of the ASSOR method (16) for the block two-by-two linear system
(15) are given by

ωopt = 1 ±
√

ρ(S̃)2 + 1 − 1

ρ(S̃)
, (17)

and the corresponding optimal convergence factor of the iteration matrix is

1 − 2√
ρ(S̃)2 + 1 + 1

. (18)

Remark 3 From Theorem 3, we see that the ASSOR method has a weaker condition
to guarantee convergence comparing with the SSOR method. Besides, from Lemma
3, we know that ρ(S̃) < 1. Thus, when ρ(S) > 1, the convergence factor of the
former is always smaller than that of the latter.

The SSOR and ASSOR methods are all parameter dependent, so the choice of
iteration parameters is crucial for their implementations. The optimal parameters pro-
posed in Theorem 2, Corollary 1 and Theorem 3 may be the best ones. However, all of
them are related to the eigenvalues of S or S̃. When the problem size is large enough,
it is not easy to calculate the eigenvalues of the two matrices. Now, we propose a
more practical way for the choice of iteration parameters for the ASSOR method.

From Lemma 3, we know that ρ(S̃) < 1. Then the optimal parameter ωopt in (17)
satisfies

ωopt = 1 +
√

ρ(S)2 + 1 − 1

ρ(S)
<

√
2 ≈ 1.4142

or

ωopt = 1 −
√

ρ(S)2 + 1 − 1

ρ(S)
> 2 − √

2 ≈ 0.5858.

The corresponding optimal convergence factor in (18) satisfies

ρ(Hωopt) = 1 − 2√
ρ(S̃)2 + 1 + 1

< 1 − 2√
2 + 1

≈ 0.1716.

Thus, we may simply choose ω = 1.41 or ω = 0.59 for the ASSOR method in the
practical implements.

4 Numerical experiments

In this section, three examples from [7] are used to illustrate the numerical feasibility
and effectiveness of the SSOR and ASSOR methods for solving the block two-by-
two linear system (1). These methods are compared with the HSS [10], MHSS [7]
and GSOR [27] methods. We denote the number of iteration steps as “IT”, the elapsed
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CPU time in seconds as “CPU”, and the relative residual norm as “RES”. Here, the
“RES” is defined by

RES := ‖ b − Ax(k) ‖2

‖ b ‖2
,

where x(k) = ((u(k))T , (v(k))T )T with u(k), v(k) ∈ R
n being the current approximate

solutions.
All numerical experiments are implemented in MATLAB (version 8.0.0.783

(R2012b)) with machine precision 10−16 on a personal computer with Genuine Inter
(R) Dual-Core CPU T4300 2.09 GHz, and 1.93GB memory. We list the numerical
results (IT, CPU times, and RES) for Examples 1–3. The initial guess for all exam-
ples are chosen to be zero vectors and the iteration is terminated if the current iterate
x(k) satisfies RES ≤ 10−6.

Example 1 [1, 7] Consider the complex symmetric linear system of the form:
[(

K + 3 − √
3

τ
Im

)
+ i

(
K + 3 + √

3

τ
Im

)]
x̃ = b̃, (19)

where τ is the time step-size, and K = Im ⊗ Vm + Vm ⊗ Im with Vm =
h−2tridiag(−1, 2, −1) ∈ R

m×m. K is the five-point centered difference approxi-
mation of the negative Laplacian operator L = −	 with homogeneous Dirichlet
boundary conditions on uniform mesh in the unit square [0, 1]× [0, 1]. Here ⊗ is the
Kronecker product symbol and h = 1

m+1 is the discretization mesh-size.

This complex symmetric linear system arises in centered difference discretization
of R22-Padé approximations in the time integration of parabolic partial differential
equations [1]. In this example, K is an n × n block diagonal matrix with n = m2.
In our tests, we take τ = h. Furthermore, we normalize coefficient matrix and right-
hand side of (19) by multiplying both by h2. We take

W = K + 3 − √
3

τ
Im and T = K + 3 + √

3

τ
Im.

The right-hand vector b̃ is given with its j th entry

b̃j = (1 − i)j

τ (j + 1)2
, j = 1, 2, · · · , n.

Example 2 [7] Consider the complex symmetric linear system of the form:

[(−ν2M + K) + i(νCV + CH )]x̃ = b̃, (20)

where M and K are the inertia and the stiffness matrices, CV and CH are the viscous
and hysteretic damping matrices, respectively. ω is the driving circular frequency and
K is defined the same as in Example 1.
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This complex symmetric linear system arises in direct domain analysis of an n-
degree-of-freedom (n-DOF) linear system [12]. In this example, K is an n × n block
diagonal matrix with n = m2. We take

W = −ν2M + K and T = νCV + CH ,

with CH = μK and μ being a damping coefficient, M = Im, CV = 10Im. In
addition, we set ν = π , μ = 0.02 and the right-hand-side vector b̃ is chosen such that
the exact solution of the linear system (20) is (1 + i)(1, 1, · · · , 1)T ∈ R

n. Similar to
Example 1, the linear system is normalized by multiplying both sides with h2.

Example 3 [7] Consider the complex symmetric linear system of the form

(W + iT )x̃ = b̃

with T = Im ⊗V +V ⊗Im and W = 10(Im ⊗Vc +Vc ⊗Im)+9(e1e
T
m +emeT

1 )⊗
Im,where V = tridiag(−1, 2, −1) ∈ R

m×m, Vc = V − e1e
T
m − emeT

1 ∈ R
m×m

with e1 and em being the first and the last unit vectors in R
m, respectively. The right-

hand-side vector b̃ is chosen such that the exact solution of this linear system is
(1 + i)(1, 1, · · · , 1)T ∈ R

n.

This complex symmetric linear system is an artificially constructed one, which
is challenging for iteration solvers. Here T and W correspond to the five-point cen-
tered difference approximation of the negative Laplacian operator with homogeneous
Dirichlet boundary conditions and periodic boundary conditions, respectively, on
uniform mesh in the unit square [0, 1] × [0, 1] with the mesh-size h = 1

m+1 .
In Table 1, the optimal iteration parameters of the tested methods for the above

three examples are listed. The optimal parameters of the HSS and MHSS methods are
those presented in [7], and those of the GSOR method are chosen based on Theorem
2 of [27]. As for the SSOR and ASSOR methods, the optimal parameters are chosen
based on Theorems 2 and 3, which are

1 −
√

ρ(S)2 + 1 − 1

ρ(S)
and 1 −

√
ρ(S̃)2 + 1 − 1

ρ(S̃)
,

respectively. From this table, we see that the optimal parameters decrease with the
increasing of problems size, except for the ASSOR method. The optimal parameters
for the ASSOR method keep almost unchanged with the increasing of problem size
for each example. Besides, the optimal parameters of the GSOR and SSOR methods
for Example 2 are also almost unchanged.

In Fig. 2, we depict the theoretical optimal parameters ωopt of the GSOR, SSOR
and ASSOR methods with respect to the changing of problem sizes. From Fig. 2,
we see that, for each fixed m, the two optimal iteration parameters of the SSOR or
ASSOR method are centered exactly on 1. The smaller optimal iteration parameters
of the ASSOR method are always larger than those of the SSOR and GSOR meth-
ods for Examples 1 and 2. However, for Example 3, they are smaller than those of
the SSOR and GSOR methods when m is small, and larger when m is large. Also,
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Table 1 The optimal parameters for the tested methods

Grid

Method 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

Example 1 HSS 0.81 0.55 0.37 0.28 0.20

MHSS 1.06 0.75 0.54 0.40 0.30

GSOR 0.55 0.49 0.45 0.43 0.41

SSOR 0.33 0.29 0.26 0.24 0.24

ASSOR 0.80 0.77 0.75 0.74 0.72

Example 2 HSS 0.42 0.23 0.12 0.07 0.04

MHSS 0.21 0.08 0.04 0.02 0.01

GSOR 0.45 0.45 0.45 0.44 0.44

SSOR 0.26 0.26 0.26 0.26 0.26

ASSOR 0.61 0.60 0.60 0.59 0.59

Example 3 HSS 4.41 2.71 1.61 0.93 0.53

MHSS 1.61 1.01 0.53 0.26 0.13

GSOR 0.90 0.76 0.56 0.35 0.19

SSOR 0.69 0.52 0.34 0.19 0.10

ASSOR 0.62 0.62 0.62 0.61 0.61

we note that when the problem size is large enough, ωopt for all the three meth-
ods are almost unchanged. These phenomena are in accordance to the results in
Table 1.

In order to see the role of the iteration parameter ω in the convergence behaviors of
the SSOR and ASSOR methods, we illustrate the changing of the number of iteration
steps with respect to ω for the three examples in Fig. 3. Here, the number of iteration
steps are designated as 300 for the cases which are convergent with iteration steps
higher than 300. From Fig. 3, we see that the graphs of the ASSOR method are rather
flat near the minimum. What is more, the ASSOR method has larger convergence
regions than the SSOR method. Thus, the ASSOR method is more insensitive with
respective to ω comparing with the SSOR method.
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Fig. 2 The optimal ωopt for GSOR, SSOR and ASSOR methods with varying m
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Fig. 3 Iteration steps for SSOR and ASSOR methods with varying ω when m = 32

Tables 2, 3 and 4 list the IT, CPU and RES for Examples 1–3 with the varying
of problems size. The iteration parameters used in Tables 2–4 are chosen according
to Table 1. Note that the HSS and MHSS methods are employed to solve the origi-
nal complex symmetric linear system (2), while the GSOR and SSOR methods are
employed to solve the equivalent block two-by-two linear system (1), and the ASSOR
method is employed to solve the linear system (15).

From Tables 2–4, we see that for each example, the GSOR, SSOR and ASSOR
methods with theoretical optimal parameters are superior to the HSS and MHSS
methods. The GSOR and SSOR methods need less iteration steps and CPU times
comparing with the HSS and MHSS methods. As for the GSOR and SSOR methods,
their performances are much the same. The two methods need almost the same num-
ber of iteration steps, though the GSOR method needs less CPU times. However, the

Table 2 Numerical results for Example 1

Method 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

HSS IT 44 65 97 136 191

CPU 0.0287 0.1302 1.7926 17.8857 191.4391

RES 9.16e-07 9.82e-07 9.84e-07 9.26e-07 9.72e-07

MHSS IT 40 54 73 98 133

CPU 0.0203 0.0901 0.8911 6.0287 46.1263

RES 9.67e-07 9.61e-07 9.41e-07 9.35e-07 9.99e-07

GSOR IT 19 22 24 26 27

CPU 0.0098 0.0401 0.2504 1.4217 8.5623

RES 9.02e-07 5.57e-07 8.01e-07 5.57e-07 8.88e-07

SSOR IT 19 21 23 26 26

CPU 0.0112 0.0501 0.3004 1.9129 12.5080

RES 6.91e-07 5.63e-07 9.53e-07 6.33e-07 6.31e-07

ASSOR IT 5 5 6 6 6

CPU 0.0091 0.0124 0.0569 0.4917 2.1282

RES 3.79e-07 6.59e-07 6.26e-08 9.74e-08 2.33e-07
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Table 3 Numerical results for Example 2

Method 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

HSS IT 86 153 287 540 1084

CPU 0.0310 0.1302 1.7926 17.8857 865.4311

RES 9.11e-07 9.85e-07 9.81e-07 9.99e-07 9.89e-07

MHSS IT 34 38 50 81 139

CPU 0.0223 0.0710 0.6209 4.9171 48.2594

RES 9.67e-07 9.61e-07 9.41e-07 9.35e-07 9.99e-07

GSOR IT 25 24 24 24 24

CPU 0.0107 0.0398 0.2804 1.3419 7.7812

RES 9.02e-07 5.57e-07 8.01e-07 5.57e-07 8.88e-07

SSOR IT 19 21 23 26 26

CPU 0.0114 0.0499 0.3749 1.8113 11.1560

RES 9.64e-07 5.60e-07 9.73e-07 9.66e-07 9.65e-07

ASSOR IT 8 9 9 8 8

CPU 0.0093 0.0215 0.1031 0.7219 3.5156

RES 4.93e-07 1.49e-07 5.80e-07 4.71e-07 3.42e-07

ASSOR method performs the best. It needs the least iteration steps and CPU times.
Hence, the numerical results show that the SSOR and ASSOR methods with optimal
parameters proposed in this paper can effectively solve the block two-by-two linear
systems comparing with the HSS, MHSS and GSOR methods.

Table 4 Numerical results for Example 3

Method 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

HSS IT 84 137 223 390 746

CPU 0.0301 0.3605 4.1259 49.8517 674.0512

RES 9.26e-07 9.28e-07 9.72e-07 9.86e-07 9.98e-07

MHSS IT 53 76 130 246 468

CPU 0.0221 0.2512 2.3277 24.0692 241.5209

RES 9.67e-07 9.61e-07 9.41e-07 9.35e-07 9.99e-07

GSOR IT 7 11 18 34 67

CPU 0.0121 0.0301 0.2992 2.7439 31.8258

RES 2.95e-07 2.46e-07 5.16e-07 7.32e-07 8.47e-07

SSOR IT 6 10 17 33 66

CPU 0.0131 0.0401 0.4206 4.0258 46.1263

RES 9.68e-07 5.12e-07 8.00e-07 9.64e-07 9.38e-07

ASSOR IT 8 8 8 8 8

CPU 0.0104 0.0314 0.2250 1.0240 6.3181

RES 4.30e-07 4.34e-07 4.31e-07 4.31e-07 4.33e-07
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Table 5 Numerical results of the ASSOR method with ω = 0.59

16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

Example 1 IT 8 8 8 8 8

CPU 0.0119 0.0146 0.0571 0.5804 2.2953

RES 6.37e-07 6.40e-07 6.38e-07 6.37e-07 6.37e-07

Example 2 IT 8 9 8 8 8

CPU 0.0102 0.0286 0.1213 0.7813 3.7109

RES 6.74e-07 1.60e-07 7.72e-07 4.71e-07 3.42e-07

Example 3 IT 8 8 8 8 8

CPU 0.0132 0.0382 0.2551 1.1423 6.9354

RES 6.10e-07 5.45e-07 4.98e-07 4.77e-07 4.64e-07

In practical applications, it is a tough thing to calculate the optimal ωopt when the
problem size is too large. In Table 5 we list the IT, CPU and RES for Examples 1–3
with the varying of problems size. The iteration parameters for the ASSOR method
are 0.59 based on the discussions at the end of Section 3. The numerical results of
Table 5 is to show that ω = 0.59 can be considered as a reasonable approximation of
the optimal ωopt.

For comparison, we observe from the numerical results in Table 5 that the perfor-
mances of the ASSOR methods with ω = 0.59 are almost the same as those with
the optimal parameters, see numerical results of the ASSOR methods in Tables 2–4.
From the numerical results of Table 5 we see that ω = 0.59 can be consid-
ered as a reasonable approximation of the optimal ωopt. Thus, we may simply
choose ω = 0.59 in practical computation as a substitution for the ASSOR
method.

5 Conclusions

In this paper, we shed some light on the choice of optimal iteration parameters of the
SSOR method for solving a class of block two-by-two linear systems. The optimal
iteration parameters of this method are obtained under suitable convergence analysis.
Besides, an accelerated variant of the SSOR method, namely the ASSOR method,
is established, which is more effective than the SSOR method. Numerical experi-
ments show that the SSOR and ASSOR methods with optimal parameters proposed
in this paper can solve the block two-by-two linear systems more effectively com-
paring with the HSS, MHSS and GSOR methods. Hence, this work gives a better
parameter choice for the SSOR method to solve a class of block two-by-two linear
systems.
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