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1 Introduction

A matrix A = [aij ] ∈ Cn,n is called an H -matrix if its comparison matrix < A >=
[mij ] defined by

< A >= [mij ] ∈ Cn,n, mij =
{ |aii |, i = j

−|aij |, i �= j,

is an M-matrix, i.e., < A >−1≥ 0, [1, 3, 4]. H -matrices are widely used in many
subjects such as computational mathematics, mathematical physics, economics and
dynamical system theory [10]. A special interesting problem among them is to find
upper bounds of the infinity norm of H -matrices, since it can be used to prove the
convergence of matrix splitting and matrix multi-splitting iterative methods for solv-
ing large sparse systems of linear equations, see [1, 5–7]. Many researchers have
obtained some bounds. In 1975, J.M. Varah [11] provided the following upper bound
for strictly diagonally dominant (SDD) matrices as one of the most important sub-
class of H -matrices. Here a matrix A = [aij ] ∈ Cn,n is called SDD if for each
i ∈ N = {1, 2, . . . , n},

|aii | > ri(A),

where ri(A) = ∑
j �=i

|aij |.

Theorem 1 [11] Let A = [aij ] ∈ Cn,n be SDD. Then

||A−1||∞ ≤ 1

min
i∈N

(|aii | − ri(A))
.

We call the bound in Theorem 1 the Varah’s bound. As Cvetković et al. [5] pointed
out, the Varah’s bound works only for SDD matrices, and even then it is not always
good enough. Hence, it can be useful to obtain new upper bounds for a wider class of
matrices which sometimes are tighter in the SDD case. In 2013, Cvetković et al. [5]
study the class of Nekrasov matrices which contains SDD matrices and is a subclass
of H -matrices, and give the following bounds by applying the Varah’s bound to the
matrix C = I − (|D| − |L|)−1|U | , where D is the diagonal part, −L is the strict
lower triangular part, and −U is the strict upper triangular part of a Nekrasov matrix.

Definition 1 [4, 5] A matrix A = [aij ] ∈ Cn,n is called a Nekrasov matrix if for
each i ∈ N ,

|aii | > hi(A),

where h1(A) = r1(A) = ∑
j �=1

|a1j | and hi(A) =
i−1∑
j=1

|aij |
|ajj |hj (A) +

n∑
j=i+1

|aij |, i =
2, 3, . . . , n.
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Theorem 2 [5, Theorem 2] Let A = [aij ] ∈ Cn,n be a Nekrasov matrix. Then

||A−1||∞ ≤
max
i∈N

zi(A)
|aii |

1 − max
i∈N

hi(A)
|aii |

, (1)

and

||A−1||∞ ≤
max
i∈N

zi(A)

min
i∈N

(|aii | − hi(A))
, (2)

where z1(A) = 1 and zi(A) =
i−1∑
j=1

|aij |
|ajj |zj (A) + 1, i = 2, 3, . . . , n.

Since a SDD matrix is a Nekrasov matrix [4, 8], the bounds (1) and (2) can be also
applied to SDD matrices. However, the Varah’s bound cannot be used to estimate the
infinity norm of the inverse of Nekrasov matrices. Furthermore bounds (1) or (2) are
tighter than Varah’s bound when min

i∈N
(|aii | − ri(A)) is very small for the SDD matrix

A (for details, see [5]).
As shown in [5], each bound (1) or (2) can work better than the other one. So,

in general case, for Nekrasov matrices, one can take the smallest estimation of these
two.

To estimate the infinity norm of the inverse of Nekrasov matrices more precisely,
we in this paper give new bounds which involve a parameter μ based on the bounds in
Theorem 2, and then determine the optimal value of μ such that the new bounds are
better than bounds (1) or (2) in Theorem 2 (Theorem 2 in [5]). Numerical examples
are given to illustrate the corresponding results.

2 New bounds for the infinity norm of the inverse of Nekrasov matrices

First, some lemmas and notation are listed. Given a matrix A = [aij ], by A = D −
L−U we denote the standard splitting of A into its diagonal (D), strictly lower (−L)

and strictly upper (−U) triangular parts. And by [A]ij we denote the (i, j)-entry of
A, that is, [A]ij = aij .

Lemma 1 [2] Let A = [aij ] ∈ Cn,n be a nonsingular H -matrix. Then

|A−1| ≤ < A >−1 .

Lemma 2 [9] Given any matrix A = [aij ] ∈ Cn,n, n ≥ 2, with aii �= 0 for all i ∈ N ,
then

hi(A) = |aii |
[
(|D| − |L|)−1|U |e

]
i
,

where e ∈ Cn,n is the vector with all components equal to 1.
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Lemma 3 [9] A matrix A = [aij ] ∈ Cn,n, n ≥ 2 is a Nekrasov matrix if and only if

(|D| − |L|)−1|U |e < e,

i.e., then I − (|D| − |L|)−1|U | is a SDD matrix, where I is the identity matrix.

Let
C = I − (|D| − |L|)−1|U | = [cij ]

and
B = |D|C = |D| − |D|(|D| − |L|)−1|U | = [bij ],

and then from Lemma 3, B and C are SDD when A is a Nekrasov matrix. Note that
c11 = 1, ck1 = 0, k = 2, 3, . . . , n, and c1k = −|a1k ||a11| , k = 2, 3, . . . , n, and that
b11 = |a11|, bk1 = 0, k = 2, 3, . . . , n, and b1k = −|a1k|, k = 2, 3, . . . , n, which
lead to the following lemma.

Lemma 4 Let A = [aij ] ∈ Cn,n be a Nekrasov matrix, and let μ >
r1(A)
|a11| . Then the

matrices
C(μ) = CD(μ) =

(
I − (|D| − |L|)−1|U |

)
D(μ), (3)

and
B(μ) = BD(μ) =

(
|D| − |D|(|D| − |L|)−1|U |

)
D(μ) (4)

are SDD, where D(μ) = diag(μ, 1, · · · , 1). In addition,

||C(μ)−1||∞ ≤ max

⎧⎪⎨
⎪⎩

1

μ − h1(A)
|a11|

,
1

1 − max
i �=1

hi(A)
|aii |

⎫⎪⎬
⎪⎭ , (5)

and

||B(μ)−1||∞ ≤ 1

min

{
μ|a11| − h1(A), min

i �=1
(|aii | − hi(A))

} . (6)

Proof It is not difficult from (3) to see that [C(μ)]k1 = μck1 for all k ∈ N and
[C(μ)]kj = ckj for all k ∈ N and j �= 1. Hence

[C(μ)]11 = μ, r1(C(μ)) = r1(C) = r1(A)

|a11|
and for i = 2, . . . , n,

[C(μ)]ii = cii , ri(C(μ)) = ri(C).

Since C is SDD and μ >
r1(A)
|a11| , we have that C(μ) is SDD.

Moreover, by applying the Varah’s bound to estimate the infinity norm of C(μ)−1,
we obtain

||C(μ)−1||∞ ≤ max
i∈N

1

|[C(μ)]ii | − ri(C(μ))
= max

{
1

μ − r1(C)
, max

i �=1

1

|cii | − ri(C)

}
.
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Note that C = I − (|D| − |L|)−1|U | = [cij ] and all diagonal entries of matrix
(|D| − |L|)−1|U | are less than 1. Then we have that for i ∈ N, i �= 1,

|cii | = 1 −
[
(|D| − |L|)−1|U |

]
ii

and that for each i ∈ N ,

ri(C) =
∑
k �=i

[
(|D| − |L|)−1|U |

]
ik

.

Then (also see the proof of Theorem 2 in [5]) for i ∈ N, i �= 1,

|cii | − ri(C) = 1 −
∑
k∈N

[
(|D| − |L|)−1|U |

]
ik

= 1 −
[
(|D| − |L|)−1|U |e

]
i
= 1 − hi(A)

|aii | .

Since r1(C) = r1(A)
|a11| = h1(A)

|a11| , we have

||C(μ)−1||∞ ≤ max

{
1

μ − r1(C)
, max

i �=1

1

|cii | − ri(C)

}

= max

{
1

μ − h1(A)
|a11|

, max
i �=1

1

1 − hi(A)
|aii |

}

= max

⎧⎪⎨
⎪⎩

1

μ − h1(A)
|a11|

,
1

1 − max
i �=1

hi(A)
|aii |

⎫⎪⎬
⎪⎭ .

Inequality (6) can be proved analogously.

Now, we give the main result of this paper.

Theorem 3 Let A = [aij ] ∈ Cn,n be a Nekrasov matrix. Then for μ >
r1(A)
|a11| ,

||A−1||∞ ≤ max{μ, 1} max
i∈N

zi(A)

|aii | max

⎧⎪⎨
⎪⎩

1

μ − h1(A)
|a11|

,
1

1 − max
i �=1

hi(A)
|aii |

⎫⎪⎬
⎪⎭ , (7)

and

||A−1||∞ ≤
max{μ, 1} max

i∈n
zi(A)

min

{
μ|a11| − h1(A), min

i �=1
(|aii | − hi(A))

} , (8)

where zi(A) is defined in Theorem 2.
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Proof We only prove that (7) holds, and in an analogous way, (8) is proved
easily. Let C(μ) = CD(μ) = (

I − (|D| − |L|)−1|U |)D(μ), where D(μ) =
diag(μ, 1, · · · , 1). From (3), we have

C(μ) =
(
I − (|D| − |L|)−1|U |

)
D(μ) = (|D| − |L|)−1 < A > D(μ),

which implies that

< A >= (|D| − |L|)C(μ)D(μ)−1.

Furthermore, since a Nekrasov matrix is an H -matrix, we have from Lemma 1,

||A−1||∞ ≤ || < A >−1 ||∞ ≤ ||D(μ)||∞||C(μ)−1||∞||(|D| − |L|)−1||∞. (9)

Note that |D| − |L| is an M-matrix, and then similar to the proof of Theorem 2 in
[5], we easily obtain

||(|D| − |L|)−1||∞ = ||y||∞ = max
i∈n

zi(A)

|aii | , (10)

where y = (|D| − |L|)−1e = [y1, y2, . . . , yn]T and zi(A) = |aii |yi , i.e.,

z1(A) = 1, and zi(A) =
i−1∑
j=1

|aij |
|ajj |zj (A) + 1, i = 2, . . . , n.

From (5), (9), (10) and the fact that ||D(μ)||∞ = max{μ, 1}, we obtain

||A−1||∞ ≤ max{μ, 1} max
i∈N

zi(A)

|aii | max

⎧⎪⎨
⎪⎩

1

μ − h1(A)
|a11|

,
1

1 − max
i �=1

hi(A)
|aii |

⎫⎪⎬
⎪⎭ .

The conclusions follows.

Example 1 Consider the Nekrasov matrix A1 in [5], where

A1 =

⎡
⎢⎢⎣

−7 1 −0.2 2
7 88 2 −3
2 0.5 13 −2

0.5 3.0 1 6

⎤
⎥⎥⎦ .

By computation, h1(A) = 3.2000, h2(A) = 8.2000, h3(A) = 2.9609, h4(A) =
0.7359, z1(A) = 1, z2(A) = 2, z3(A) = 1.2971 and z4(A) = 1.2394, and
||A−1

1 ||∞ = 0.1921. By Theorem 2 (Theorem 2 in [5]), we have

||A−1
1 ||∞ ≤ 0.3805, (T he bound (1) of T heorem 2)
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and

||A−1
1 ||∞ ≤ 0.5263. (T he bound (2) of T heorem 2)

By Theorem 3, we have

μ=0.5 μ=0.8 μ=1.1 μ=1.4 μ=1.7
bound(7) 4.8198 0.6025 0.3535 0.3745 0.4547

μ=0.6 μ=0.9 μ=1.2 μ=1.5 μ=1.8
bound(8) 2.0000 0.6452 0.4615 0.5699 0.6839

Remark 1 Example 1 shows that for some values of μ, bounds (7) and (8) of Theorem
3 are better than bounds (1) and (2) of Theorem 2 respectively. Figures 1 and 2 show
that there is an interval such that for any μ in this interval, the bound (7) ((8), resp.)
of Theorem 3 for the matrix A1 is always smaller than the bound (1) ((2), resp.) of
Theorem 2.

An interesting problem arises: whether there is an interval of μ such that the
bound (7) ((8), resp.) of Theorem 3 for any Nekrasov matrix is smaller than the
bound (1) ((2), resp.) of Theorem 2? In the following section, we will study this
problem.

3 Optimal values of the parameter μ

In this section, we determine the values of μ in the bounds (7) and (8) such that
the bounds (7) and (8) for ||A−1||∞ are less or equal to the bounds (1) and (2),
respectively.
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0.4

0.45

0.5

0.55

0.6

0.65

0.7

μ

T
he

 b
ou

nd
 o

f |
|A

1−
1 || ∞

← (1.2294, 0.3288)

The bound (7) of Theorem 7
The bound (1) of Theorem 2

Fig. 1 The bounds (1) and (7)
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Fig. 2 The bounds (2) and (8)

3.1 Optimal value of μ for the bound (7)

We distinguish two cases:

h1(A)

|a11| > max
i �=1

hi(A)

|aii | , and
h1(A)

|a11| ≤ max
i �=1

hi(A)

|aii |
to determine the optimal value for the bound (7).

Lemma 5 Let A = [aij ] ∈ Cn,n be a Nekrasov matrix with

h1(A)

|a11| > max
i �=1

hi(A)

|aii | . (11)

Then

1 < η1 < η2, (12)

where η1 = 1 + h1(A)
|a11| − max

i �=1

hi(A)
|aii | , and η2 =

1−max
i �=1

hi (A)

|aii |

1− h1(A)

|a11|
.

Proof Obviously, the first inequality in (12) holds. We only prove that the second
holds. From Inequality (11), we have that

h1(A)

|a11| max
i �=1

hi(A)

|aii | −
(

h1(A)

|a11|
)2

< 0.

Equivalently,

1−max
i �=1

hi(A)

|aii | +h1(A)

|a11| −h1(A)

|a11| +h1(A)

|a11| max
i �=1

hi(A)

|aii | −
(

h1(A)

|a11|
)2

< 1−max
i �=1

hi(A)

|aii | ,
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i.e., (
1 − max

i �=1

hi(A)

|aii | + h1(A)

|a11|
)(

1 − h1(A)

|a11|
)

< 1 − max
i �=1

hi(A)

|aii | .

Note that 1 − h1(A)
|a11| > 0, then

1 − max
i �=1

hi(A)

|aii | + h1(A)

|a11| <

1 − max
i �=1

hi(A)
|aii |

1 − h1(A)
|a11|

,

that is, η1 < η2. The conclusion follows.

We now give an interval of μ such that the bound (7) of Theorem 3 is less than the
bound (1) of Theorem 2.

Lemma 6 Let A = [aij ] ∈ Cn,n be a Nekrasov matrix with

h1(A)

|a11| > max
i �=1

hi(A)

|aii | .

Then for each μ ∈ (1, η2),

||A−1||∞ ≤ max{μ, 1} max
i∈N

zi(A)

|aii | max

⎧⎪⎨
⎪⎩

1

μ − h1(A)
|a11|

,
1

1 − max
i �=1

hi(A)
|aii |

⎫⎪⎬
⎪⎭

<

max
i∈N

zi(A)
|aii |

1 − max
i∈N

hi(A)
|aii |

.

Proof From Lemma 5, we have μ ∈ (1, η1]
⋃

[η1, η2) , and max{μ, 1} = μ.

(I) For μ ∈ (1, η1] , then

μ − h1(A)

|a11| ≤ 1 − max
i �=1

hi(A)

|aii | ,

that is,
1

μ − h1(A)
|a11|

≥ 1

1 − max
i �=1

hi(A)
|aii |

.

Therefore,

max{μ, 1} max

⎧⎪⎨
⎪⎩

1

μ − h1(A)
|a11|

,
1

1 − max
i �=1

hi(A)
|aii |

⎫⎪⎬
⎪⎭ = μ

μ − h1(A)
|a11|

.

Consider the function f (x) = x

x− h1(A)

|a11|
, x ∈ [1, η1]. It is easy from h1(A)

|a11| < 1

to prove that f (x) is a monotonically decreasing function of x. Hence, for any
μ ∈ (1, η1],

f (μ) < f (1),
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i.e.,
μ

μ − h1(A)
|a11|

<
1

1 − h1(A)
|a11|

= 1

1 − max
i∈N

hi(A)
|aii |

,

which implies that

μ max
i∈N

zi(A)
|aii |

μ − h1(A)
|a11|

<

max
i∈N

zi(A)
|aii |

1 − max
i∈N

hi(A)
|aii |

.

Hence,

max{μ, 1} max
i∈N

zi(A)

|aii | max

⎧⎪⎨
⎪⎩

1

μ − h1(A)
|a11|

,
1

1 − max
i �=1

hi(A)
|aii |

⎫⎪⎬
⎪⎭ <

max
i∈N

zi(A)
|aii |

1 − max
i∈N

hi(A)
|aii |

.

(II) For μ ∈ [η1, η2) , then

μ − h1(A)

|a11| ≥ 1 − max
i �=1

hi(A)

|aii | ,

that is,
1

μ − h1(A)
|a11|

≤ 1

1 − max
i �=1

hi(A)
|aii |

.

Therefore,

max{μ, 1} max

⎧⎪⎨
⎪⎩

1

μ − h1(A)
|a11|

,
1

1 − max
i �=1

hi(A)
|aii |

⎫⎪⎬
⎪⎭ = μ

1 − max
i �=1

hi(A)
|aii |

.

Consider the function g(x) = x

1−max
i �=1

hi (A)

|aii |
, x ∈ [η1, η2]. Obviously, g(x) is a

monotonically increasing function of x. Hence, for any μ ∈ [η1, η2),

g(μ) < g

⎛
⎜⎝

1 − max
i �=1

hi(A)
|aii |

1 − h1(A)
|a11|

⎞
⎟⎠ ,

that is,
μ

1 − max
i �=1

hi(A)
|aii |

<
1

1 − h1(A)
|a11|

= 1

1 − max
i∈N

hi(A)
|aii |

,

which implies that

μ max
i∈N

zi(A)
|aii |

1 − max
i �=1

hi(A)
|aii |

<

max
i∈N

zi(A)
|aii |

1 − max
i∈N

hi(A)
|aii |

.
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Hence,

max{μ, 1} max
i∈N

zi(A)

|aii | max

⎧⎪⎨
⎪⎩

1

μ − h1(A)
|a11|

,
1

1 − max
i �=1

hi(A)
|aii |

⎫⎪⎬
⎪⎭ <

max
i∈N

zi(A)
|aii |

1 − max
i∈N

hi(A)
|aii |

.

The conclusion follows from (I) and (II).

Lemma 6 provides an interval of μ such that the bound (7) in Theorem 3 is better
than the bound (1) in Theorem 2. Moreover, we can determine the optimal value of
μ by the following theorem.

Theorem 4 Let A = [aij ] ∈ Cn,n be a Nekrasov matrix with

h1(A)

|a11| > max
i �=1

hi(A)

|aii | .

Then

min
μ∈(1,η2)

⎧⎨
⎩max{μ, 1} max

⎧⎨
⎩ 1

μ− h1(A)

|a11|
, 1

1−max
i �=1

hi (A)

|aii |

⎫⎬
⎭
⎫⎬
⎭ =

1+ h1(A)

|a11| −max
i �=1

hi (A)

|aii |

1−max
i �=1

hi (A)

|aii |
. (13)

Furthermore,

||A−1||∞ ≤
max
i∈N

zi(A)
|aii |

(
1 + h1(A)

|a11| − max
i �=1

hi(A)
|aii |

)

1 − max
i �=1

hi(A)
|aii |

<

max
i∈N

zi(A)
|aii |

1 − max
i∈N

hi(A)
|aii |

. (14)

Proof From the proof of Lemma 6, we have that

f (x) = x

x − h1(A)
|a11|

, x ∈ [1, η1]

is decreasing, and that

g(x) = x

1 − max
i �=1

hi(A)
|aii |

, x ∈ [η1, η2]

is increasing. Therefore, the minimum of f (x), which is equal to that of g(x), is

f

(
1 + h1(A)

|a11| − max
i �=1

hi(A)

|aii |
)

= g

(
1 + h1(A)

|a11| − max
i �=1

hi(A)

|aii |
)

=
1 + h1(A)

|a11| − max
i �=1

hi(A)
|aii |

1 − max
i �=1

hi(A)
|aii |

,

which implies that (13) holds. Again by Lemma 6, (14) follows easily.
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Remark 2 Theorem 4 provides a method to determine the optimal value of μ for a
Nekrasov matrix A = [aij ] ∈ Cn,n with

h1(A)

|a11| > max
i �=1

hi(A)

|aii | .

Also consider the matrix A1. By computation, we get

h1(A1)

|a11| = 0.4571 > 0.2278 = max
i �=1

hi(A1)

|aii | .

Hence, by Theorem 4, we can obtain that the bound (7) in Theorem 3 reaches its
minimum

max
i∈N

zi(A1)|aii |
(

1 + h1(A1)|a11| − max
i �=1

hi(A1)|aii |
)

1 − max
i �=1

hi(A1)|aii |
= 0.3288

at μ = η1 = 1.2294 (also see Fig. 1).

Next, we study the bound in Theorem 3 for a Nekrasov matrix A = [aij ] ∈ Cn,n

with
h1(A)

|a11| ≤ max
i �=1

hi(A)

|aii | . (15)

Theorem 5 Let A = [aij ] ∈ Cn,n be a Nekrasov matrix with (15) holds. Then we
can take μ = η1 such that

||A−1||∞ ≤ max{μ, 1} max
i∈N

zi(A)

|aii | max

⎧⎪⎨
⎪⎩

1

μ − h1(A)
|a11|

,
1

1 − max
i �=1

hi(A)
|aii |

⎫⎪⎬
⎪⎭

=
max
i∈N

zi(A)
|aii |

1 − max
i∈N

hi(A)
|aii |

.

Proof Since h1(A)
|a11| ≤ max

i �=1

hi(A)
|aii | , we have μ = η1 ≤ 1, max{μ, 1} = 1 and

max

⎧⎪⎨
⎪⎩

1

μ − h1(A)
|a11|

,
1

1 − max
i �=1

hi(A)
|aii |

⎫⎪⎬
⎪⎭ = 1

1 − max
i �=1

hi(A)
|aii |

= 1

1 − max
i∈N

hi(A)
|aii |

.

Hence,

max{μ, 1} max
i∈N

zi(A)

|aii | max

⎧⎪⎨
⎪⎩

1

μ − h1(A)
|a11|

,
1

1 − max
i �=1

hi(A)
|aii |

⎫⎪⎬
⎪⎭ =

max
i∈N

zi(A)
|aii |

1 − max
i∈N

hi(A)
|aii |

.

The proof is completed.
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3.2 Optimal value of μ for the bound (8)

We also distinguish two cases:

|a11| − h1(A) < min
i �=1

(|aii | − hi(A)), and |a11| − h1(A) ≥ min
i �=1

(|aii | − hi(A))

to determine the optimal value for the bound (7). Before that we give a lemma which
is proved easily.

Lemma 7 Let a, b and c be positive real numbers, and 0 < a − b < c. Then

b + c

a
<

c

a − b
.

Lemma 8 Let A = [aij ] ∈ Cn,n be a Nekrasov matrix with

|a11| − h1(A) < min
i �=1

(|aii | − hi(A)).

Then
1 < η3 < η4, (16)

where η3 =
min
i �=1

(|aii |−hi(A))+h1(A)

|a11| , and η4 =
min
i �=1

(|aii |−hi(A))

|a11|−h1(A)
.

Proof Since A is a Nekrasov matrix, we have |a11| − h1(A) > 0, consequently,
the first inequality in (16) holds. Moreover, Let a = |a11|, b = h1(A) and c =
min
i �=1

(|aii | − hi(A)). Then from Lemma 7, the second holds.

We now give an interval of μ such that the bound (8) of Theorem 3 is less than the
bound (2) of Theorem 2.

Lemma 9 Let A = [aij ] ∈ Cn,n be a Nekrasov matrix with

|a11| − h1(A) < min
i �=1

(|aii | − hi(A)).

Then for each μ ∈ (1, η4),

||A−1||∞ ≤
max{μ, 1} max

i∈n
zi(A)

min

{
μ|a11| − h1(A), min

i �=1
(|aii | − hi(A))

}

<

max
i∈N

zi(A)

min
i∈N

(|aii | − hi(A))
.

Proof From Lemma 8, we have μ ∈ (1, η3]
⋃

[η3, η4), and max{μ, 1} = μ.

(I) For μ ∈ (1, η3] , then

μ|a11| ≤ min
i �=1

(|aii | − hi(A)) + h1(A),
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that is,
μ|a11| − h1(A) ≤ min

i �=1
(|aii | − hi(A)).

Therefore,

max{μ, 1}
min

{
μ|a11| − h1(A), min

i �=1
(|aii | − hi(A))

} = μ

μ|a11| − h1(A)
.

Consider the function f (x) = x
|a11|x−h1(A)

, x ∈ [1, η3]. It is easy to prove
that f (x) is a monotonically decreasing function of x. Hence, for any μ ∈
(1, η3],

f (μ) < f (1),

i.e.,
μ

μ|a11| − h1(A)
<

1

|a11| − h1(A)
= 1

min
i∈N

(|aii | − hi(A))
,

which implies that

μ max
i∈N

zi(A)

μ|a11| − h1(A)
<

max
i∈N

zi(A)

min
i∈N

(|aii | − hi(A))
.

Hence,

max{μ, 1} max
i∈n

zi(A)

min

{
μ|a11| − h1(A), min

i �=1
(|aii | − hi(A))

} <

max
i∈N

zi(A)

min
i∈N

(|aii | − hi(A))
.

(II) For μ ∈ [η3, η4) , then

μ|a11| ≥ min
i �=1

(|aii | − hi(A)) + h1(A),

that is,
μ|a11| − h1(A) ≥ min

i �=1
(|aii | − hi(A)).

Therefore,

max{μ, 1}
min

{
μ|a11| − h1(A), min

i �=1
(|aii | − hi(A))

} = μ

min
i �=1

(|aii | − hi(A))
.

Consider the function g(x) = x
min
i �=1

(|aii |−hi(A))
, x ∈ [η3, η4]. Obviously, g(x)

is a monotonically increasing function of x. Hence, for any μ ∈ [η3, η4),

g(μ) < g

⎛
⎝min

i �=1
(|aii | − hi(A))

|a11| − h1(A)

⎞
⎠ ,

that is,

μ

min
i �=1

(|aii | − hi(A))
<

1

|a11| − h1(A)
= 1

min
i∈N

(|aii | − hi(A))
,
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which implies that

μ max
i∈N

zi(A)

min
i �=1

(|aii | − hi(A))
<

max
i∈N

zi(A)

min
i∈N

(|aii | − hi(A))
.

Hence,

max{μ, 1} max
i∈n

zi(A)

min

{
μ|a11| − h1(A), min

i �=1
(|aii | − hi(A))

} <

max
i∈N

zi(A)

min
i∈N

(|aii | − hi(A))
.

The conclusion follows from (I) and (II).

Similar to the proof of Theorem 4, we can easily obtain the following theorem by
Lemma 9.

Theorem 6 Let A = [aij ] ∈ Cn,n be a Nekrasov matrix with

|a11| − h1(A) < min
i �=1

(|aii | − hi(A)).

Then

min
μ∈(1,η4)

⎧⎨
⎩ max{μ,1}

min

{
μ|a11|−h1(A),min

i �=1
(|aii |−hi(A))

}
⎫⎬
⎭ =

min
i �=1

(|aii |−hi(A))+h1(A)

|a11| min
i �=1

(|aii |−hi(A))
. (17)

Furthermore,

||A−1||∞ ≤
max
i∈N

zi(A)

(
min
i �=1

(|aii | − hi(A)) + h1(A)

)

|a11| min
i �=1

(|aii | − hi(A))
<

max
i∈N

zi(A)

min
i∈N

(|aii | − hi(A))
.

(18)

Remark 3 Theorem 6 provides a method to determine the optimal value of μ for a
Nekrasov matrix A = [aij ] ∈ Cn,n with

|a11| − h1(A) < min
i �=1

(|aii | − hi(A)).

Also consider the matrix A1. By computation, we get

|a11| − h1(A) = 3.8000 < 5.2641 = min
i �=1

(|aii | − hi(A)).

Hence, by Theorem 6, we can obtain that the bound (8) in Theorem 3 reaches its
minimum

max
i∈N

zi(A) min
i �=1

(|aii | − hi(A)) + h1(A)

|a11| min
i �=1

(|aii | − hi(A))
= 0.4594

at μ = η3 = 1.2092 (also see Fig. 2).
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Next, we study the bound (8) in Theorem 3 for a Nekrasov matrix A = [aij ] ∈
Cn,n with

|a11| − h1(A) ≥ min
i �=1

(|aii | − hi(A)).

Theorem 7 Let A = [aij ] ∈ Cn,n be a Nekrasov matrix with

|a11| − h1(A) ≥ min
i �=1

(|aii | − hi(A)).

Then we can take μ = η3 such that

||A−1||∞ ≤
max{μ, 1} max

i∈n
zi(A)

min

{
μ|a11| − h1(A), min

i �=1
(|aii | − hi(A))

}

=
max
i∈N

zi(A)

min
i∈N

(|aii | − hi(A))
.

Proof since |a11| − h1(A) ≥ min
i �=1

(|aii | − hi(A)), we have

μ = η3 =
min
i �=1

(|aii | − hi(A)) + h1(A)

|a11| ≤ 1,

max{μ, 1} = 1, and

max{μ, 1}
min

{
μ|a11| − h1(A), min

i �=1
(|aii | − hi(A))

} = 1

min
i∈N

(|aii | − hi(A))
.

Hence,

max{μ, 1} max
i∈n

zi(A)

min

{
μ|a11| − h1(A), min

i �=1
(|aii | − hi(A))

} =
max
i∈N

zi(A)

min
i∈N

(|aii | − hi(A))
.

The proof is completed.

Remark 4

(I) Theorems 4 and 5 provide the value of μ, i.e.,

μ = η1 = 1 + h1(A)

|a11| − max
i �=1

hi(A)

|aii |
such that the bound (7) in Theorem 3 is not worse than the bound (1) in The-
orem 2 for a Nekrasov matrix A = [aij ] ∈ Cn,n. In particular, for a Nekrasov
matrix A with h1(A)

|a11| > max
i �=1

hi(A)
|aii | , the bound (7) is better than the bound (1).
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(II) Theorems 6 and 7 provide the value of μ, i.e.,

μ = η3 =
min
i �=1

(|aii | − hi(A)) + h1(A)

|a11|
such that the bound (8) in Theorem 3 is not worse than the bound (2) in The-
orem 2 for a Nekrasov matrix A. In particular, for a Nekrasov matrix A with
|a11| − h1(A) < min

i �=1
(|aii | − hi(A)), the bound (8) is better than the bound (2).

4 Numerical examples

Example 2 Consider the following five Nekrasov matrices in [5]:

A2 =

⎡
⎢⎢⎣

8 1 −0.2 3.3
7 13 2 −3

−1.3 6.7 13 −2
0.5 3 1 6

⎤
⎥⎥⎦ , A3 =

⎡
⎢⎢⎣

21 −9.1 −4.2 −2.1
−0.7 9.1 −4.2 −2.1
−0.7 −0.7 4.9 −2.1
−0.7 −0.7 −0.7 2.8

⎤
⎥⎥⎦ ,

A4 =

⎡
⎢⎢⎣

5 1 0.2 2
1 21 1 −3
2 0.5 6.4 −2

0.5 −1 1 9

⎤
⎥⎥⎦ , A5 =

⎡
⎣ 6 −3 −2

−1 11 −8
−7 −3 10

⎤
⎦ ,

A6 =

⎡
⎢⎢⎣

8 −0.5 −0.5 −0.5
−9 16 −5 −5
−6 −4 15 −3

−4.9 −0.9 −0.9 6

⎤
⎥⎥⎦ .

Obviously, A2, A3 and A4 are SDD. And it is not difficult to verify that A4, A5
satisfy the conditions in Theorems 4 and 6 and A2, A3, A6 satisfy the conditions in
Theorems 5 and 7. We compute by Matlab 7.0 the upper bounds for the infinity norm
of the inverse of Ai , i = 2, . . . , 6, which are showed in Table 1. It is easy to see from
Table 1 that this example illustrates Theorems 4, 5, 6 and 7.

Table 1 The upper bounds for ||A−1
i ||∞, i = 2, . . . , 6

Matrix A2 A3 A4 A5 A6

Exact ||A−1||∞ 0.2390 0.8759 0.2707 1.1519 0.4474

Varah 1 1.4286 0.5556 – –

The bound (1) 0.8848 1.8076 0.6200 1.4909 1.1557

Theorems 4 or 5 0.8848 1.8076 0.5270 1.4266 1.1557

The bound (2) 0.6885 0.9676 0.7937 2.4848 0.5702

Theorems 6 or 7 0.6885 0.9676 0.5895 1.5923 0.5702
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5. Cvetković, L., Dai, P.F., Doroslovački, K., Li, Y.T.: Infinity norm bounds for the inverse of Nekrasov

matrices. Appl. Math. Comput. 219, 5020–5024 (2013)
6. Hu, J.G.: Estimates of ||B−1A||∞ and their applications. Math. Numer. Sin. 4, 272–282 (1982)
7. Hu, J.G.: Scaling transformation and convergence of splittings of matrix. Math. Numer. Sin. 5, 72–78

(1983)
8. Li, W.: On Nekrasov matrices. Linear Algebra Appl. 281, 87–96 (1998)
9. Robert, F.: Blocs-H-matrices et convergence des methodes iteratives classiques par blocs. Linear

Algebra Appl. 2, 223–265 (1969)
10. Tuo, Q.: Numerical Methods for Judging Generalized Diagonally Dominant Matrices. Doctor thesis,

Xiangtan University (2011). (In chinese)
11. Varah, J.M.: A lower bound for the smallest singular value of a matrix. Linear Algebra Appl. 11, 3–5

(1975)


	Improvements on the infinity norm bound for the inverse of Nekrasov matrices
	Abstract
	Introduction
	New bounds for the infinity norm of the inverse of Nekrasov matrices
	Optimal values of the parameter 
	Optimal value of  for the bound (7)
	Optimal value of  for the bound (8)

	Numerical examples
	Acknowledgment
	References


