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Abstract In this paper, we consider the semilocal convergence of multi-point
improved super-Halley-type methods in Banach space. Different from the results
of super-Halley method studied in reference Gutiérrez, J.M. and Hernández, M.A.
(Comput. Math. Appl. 36,1–8, 1998) these methods do not require second derivative
of an operator, the R-order is improved and the convergence condition is also relaxed.
We prove a convergence theorem to show existence and uniqueness of the solution.

Keywords Semilocal convergence · Super-Halley-type method R-order of
convergence · Nonlinear equations in Banach spaces · Generalized weak condition

1 Introduction

Many problems arisen from scientific and engineering computing areas need to solve
the nonlinear equation

F(x) = 0, (1.1)

where F : � ⊆ X → Y is a nonlinear operator, X and Y are Banach
spaces, � is a non-empty open convex subset of X. The second-order New-
ton’s method [1] is widely used to solve (1.1). In recent years, some third-order
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methods have been developed since their rapid convergence speed, for example, the
Chebyshev-Halley methods [2], which are given by

xn+1 = xn −
(
I + 1

2
LF(xn)[I − αLF(xn)]−1

)
�nF(xn), (1.2)

where I is the identity operator in a Banach space X, �n = F ′(xn)
−1 and LF(xn) =

�nF′′(xn)�nF (xn). This family of methods contains some classical third-order meth-
ods, such as Chebyshev method (α = 0), Halley method (α = 1/2) and super-Halley
method (α = 1). Some results on Chebyshev-Halley methods and their variants can
be found in references[2–8, 12, 13] where in the reference [6], J.M. Gutiérrez and
M.A. Hernández have studied the convergence of super-Halley method. By assuming
that
(A1) ‖�0‖ � B,
(A2) ‖�0F(x0)‖ � η,
(A3) ‖F ′′(x)‖ � k1, x ∈ �0,

(A4) ‖F ′′(x) − F ′′(y)‖ � k2‖x − y‖, x, y ∈ �0,

where �0 = [F ′(x0)]−1, �0 is an open convex subset of �. J.M. Gutiérrez and M.A.
Hernández have proven that the R-order of super-Halley method is at least three.

Notice that under the conditions (A1)-(A4), the solution of some equations can
not be studied. Such as the nonlinear integral equation of mixed Hammerstein type
[9], which is given by

x(s) +
m∑

i=1

∫ b

a

Gi(s, t)Hi(x(t))dt = u(s), s ∈ [a, b], (1.3)

where x is a solution to be found, u, Gi and Hi are known functions (i =
1, 2, . . . , m), −∞ < a < b < +∞. To find the solution of (1.3), it needs to solve
the following equation

[F(x)](s) = x(s) +
m∑

i=1

∫ b

a

Gi(s, t)Hi(x(t))dt − u(s), s ∈ [a, b]. (1.4)

On the condition that H ′′
i (x(t)) is (Li, qi)-Hölder continuous in �0, i =

1, 2, . . . , m, considering the max-norm, then

‖F ′′(x) − F ′′(y)‖ ≤
m∑

i=1

Li‖x − y‖qi , Li ≥ 0, qi ∈ [0, 1], ∀x, y ∈ �0. (1.5)

this shows that for qi ∈ (0, 1), F ′′ is neither Lipschitz continuous nor Hölder con-
tinuous in �0. So the operator given by (1.4) does not satisfy the Lipschitz condition
(A4), the solution of this equation can not be studied by super-Halley method under
the conditions (A1)-(A4). Since the importance for nonlinear integral equation of
mixed Hammerstein type, it has been studied in many papers, such as the refer-
ences [8–11]. In reference [8], J.A. Ezquerro and M.A. Hernández have replaced the
assumption (A4) by the following conditions

(B4)‖F ′′(x)−F ′′(y)‖ � ω(‖x−y‖), x, y ∈ �,where ω(z) is a non-decreasing
continuous real function for z > 0 and ω(0) � 0.
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(B5) there exists a positive real function ν ∈ C[0, 1], with ν(t) � 1, such that
ω(tz) � ν(t)ω(z), for t ∈ [0, 1], z ∈ (0, +∞).

Under the conditions (A1)-(A3), (B4)-(B5), J.A. Ezquerro and M.A. Hernández
have proven that Halley method converges with R-order at least two. Choosing
ω(z) = ∑m

i=1 Liz
qi , they also proved that the R-order of Halley method is at least

2 + q , where q = min{q1, q2..., qm}, qi ∈ [0, 1], i = 1, 2...m.

In reference [12], a family of modified super-Halley methods with fourth-order
convergence is studied. This family of methods focus on finding a simple root of
nonlinear equation f (x) = 0, where f : D ⊂ R → R is a scalar function, D is
an open interval. Extending one family of the methods to Banach space, then the
corresponding formula can be written as

xn+1 = xn −
(
I + 1

2
KF(xn) + 1

2
KF(xn)

2(I − δ1KF(xn))
−1

)
�nF(xn), (1.6)

where I is the identity operator in a Banach space X, δ1 ∈ [0, 1], �n = F ′(xn)
−1 and

KF(xn)is an operator defined by

KF(xn) = �nF
′′
(

xn − 1

3
�nF(xn)

)
�nF(xn).

Notice that the Chebyshev-Halley methods and the methods (1.6) require second
Fréchet derivative of operator F , when F ′′ is hard to compute or the computational
cost is large, then the Chebyshev-Halley methods and the methods (1.6) become
less useful. In reference [13], M.A. Hernández has introduced a modified Chebyshev
method free from second Fréchet derivative given by⎧⎨

⎩
yn = xn − �nF(xn),

zn = xn + (1/2)(yn − xn),

xn+1 = yn − �n[F ′(zn) − F ′(xn)](yn − xn), n � 0,
(1.7)

where �n = F ′(xn)
−1. Under the conditions (A1)-(A4), M.A. Hernández has

proven that the R-order of method (1.7) is three.
In order to reduce the computational cost of second Fréchet derivative , to improve

the R-order of convergence, also in order to relax the convergence condition used in
reference [6], in this paper, we consider the semilocal convergence for multi-point
improved super-Halley-type methods in Banach space given by{

zn = xn −
[
I + 1

2Q(xn) + 1
2Q(xn)

2(I − δ1Q(xn))
−1

]
�nF(xn),

xn+1 = zn − [
I + Q(xn) + δ2Q(xn)

2
]
�nF(zn), n � 0,

(1.8)

where δ1 ∈ [0, 1], δ2 ∈ [−1, 1], �n = F ′(xn)
−1, I is the identity operator in Banach

space X, Q(xn) = 3�n[F ′(xn) − F ′(un)] and un = xn − 1
3�nF(xn). The first step

of these methods can be viewed as variants of the methods (1.6), where KF(xn) is
approximated by Q(xn).

The derivation of this approximation can be stated as:
Since un = xn − 1

3�nF(xn), F(xn) → F(x∗) = 0 as n → ∞, where x∗ is a solution
of F(x) = 0, then xn − un → 0 as n → ∞.
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By Taylor expansion, it follows that

F ′(xn) = F ′(un) + F ′′(un)(xn − un) + O((xn − un)
2),

Omitting O((xn − un)
2), it holds that

F ′(xn) ≈ F ′(un) + F ′′(un)(xn − un).

So
F ′(xn) − F ′(un) ≈ F ′′(un)(xn − un).

Notice that un = xn − 1
3�nF(xn), then

F ′′(un)�nF (xn) ≈ 3[F ′(xn) − F ′(un)].
Moreover

�nF
′′(un)�nF (xn) ≈ 3�n[F ′(xn) − F ′(un)].

That is KF(xn) ≈ Q(xn). This approximation is a small modification of the one
used in reference [13], where in the reference [13], a third-order variant of Chebyshev
method free from second Fréchet derivative given by (1.7) is introduced. Applying
Q(xn) to replace KF(xn) in the methods (1.6), the first step of methods (1.8) can
be obtained. The second step adds the function evaluation at another point. Conse-
quently, under the conditions (A1)-(A4), the R-order of methods (1.8) is increased
to five, which is higher than the ones of super-Halley method, the methods (1.6) and
method (1.7).

Applying a condition similar to the one used in reference [8], suppose that:
(C4) ‖F ′′(x) − F ′′(y)‖ � ω(‖x − y‖), x, y ∈ �0,

where ω(μ) is a continuous and non-decreasing real function for μ > 0 and satisfies
ω(0) � 0, ω(tμ) � tqω(μ), for μ ∈ (0, +∞), t ∈ [0, 1], q ∈ [0, 1].
Notice that the condition (C4) is weaker than the assumption (A4), since it contains
the Lipschitz continuity ( assumption (A4)) and Hölder continuity as its special cases,
and it is effective for many problems where neither Lipschitz nor Hölder continuity
is effective, such as the nonlinear integral equation of mixed Hammerstein type given
by (1.3).

Under the conditions (A1)-(A3) and (C4), the semilocal convergence of methods
(1.8) is analyzed and a existence-uniqueness theorem is proved to show the R-order
of these methods. Finally, the efficiency index analysis and numerical results are also
carried out.

2 Some preliminary results for convergence analysis

DefineB(x, r) = {y ∈ X : ‖y−x‖ < r} andB(x, r) = {y ∈ X : ‖y−x‖ ≤ r} in this
paper. Let the nonlinear operator F : � ⊆ X → Y be twice Fréchet differentiable
in a non-empty open convex subset �0 ⊆ � , where X and Y are Banach spaces.
Moreover, let x0 ∈ �0 and assume that
(C1) �0 exists and ‖�0‖ � β,
(C2) ‖�0F(x0)‖ � η,
(C3) ‖F ′′(x)‖ � M, x ∈ �0, M � 0,
(C4) ‖F ′′(x) − F ′′(y)‖ ≤ ω(‖x − y‖), x, y ∈ �0, where ω(μ) is a continuous
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non-decreasing real function for μ > 0 and satisfies ω(0) ≥ 0, ω(tμ) ≤ tqω(μ), for
μ ∈ (0, +∞), t ∈ [0, 1], q ∈ [0, 1].

Now we define the following functions as:

g(t) = p(t) + t

2

(
1 + t + |δ2|t2

) [
1 + t

1 − δ1t
+ p(t)2

]
, (2.1)

h(t) = 1

1 − g(t)t
, (2.2)

ϕ(t, u) =
[

u

(q + 1)3q
+ t2(1 + |δ2| + |δ2|t) + 1

q + 1
(1 + t + |δ2|t2)u

]
φ(t, u)

+ t2

2

(
1 + t

1 − δ1t

) (
1 + t + |δ2|t2

)
φ(t, u)

+ t

2

(
1 + t + |δ2|t2

)2
φ(t, u)2, (2.3)

where

p(t) = 1 + 1

2
t + t2

2(1 − δ1t)
, (2.4)

φ(t, u) = t2

2

(
1 + 1

1 − δ1t
+ t

1 − δ1t

)
+ t3

8

(
1 + t

1 − δ1t

)2

+ u

2(q + 1)3q
+ u

(q + 1)(q + 2)
. (2.5)

Let f (t) = g(t)t −1, since f (0) = −1 < 0, f
(
1
2

)
� 27

256 > 0, we can know that

f (t) = 0 has at least a root in
(
0, 1

2

)
. Let s∗ be the smallest positive root of equation

g(t)t − 1 = 0, then s∗ < 1
2 .

Lemma 1 Let the functions g, h and ϕ be defined by (2.1)-(2.3) and s∗ be
the smallest positive root of equation g(t)t − 1 = 0. Then we have (a) g(t)

and h(t) are increasing and g(t) > 1, h(t) > 1 for t ∈ (0, s∗); (b) for
t ∈ (0, s∗) and a fixed u > 0, ϕ(t, u) is increasing as the function of t;
for u > 0 and a fixed t ∈ (0, s∗), ϕ(t, u) is increasing as the function
of u.

Lemma 2 Let θ ∈ (0, 1) , the definitions of functions g, h and ϕ be given by (2.1)-
(2.3). Then g(θt) < g(t), h(θt) < h(t), ϕ(θt, θ (1+q)u) < θ(2+2q)ϕ(t, u) for t ∈
(0, s∗), u > 0, where s∗ is the smallest positive root of equation g(t)t − 1 = 0.

Define the following sequences as:

ηn+1 = dnηn, (2.6)

βn+1 = h(an)βn, (2.7)
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an+1 = Mβn+1ηn+1, (2.8)

bn+1 = βn+1ηn+1ω(ηn+1), (2.9)

dn+1 = h(an+1)ϕ(an+1, bn+1), (2.10)

where n � 0. Here, we choose η0 = η, β0 = β, a0 = Mβη , b0 = βηω(η) and
d0 = h(a0)ϕ(a0, b0).

Lemma 3 Let s∗ be the smallest positive root of equation g(t)t − 1 = 0. If

a0 < s∗ and h(a0)d0 < 1, (2.11)

then
(a) h(an) > 1 and dn < 1 for n � 0,
(b) the sequences {ηn}, {an}, {bn} and {dn} are decreasing,
(c) g(an)an < 1 and h(an)dn < 1 for n � 0.

The following lemma will be used in latter developments.

Lemma 4 Assume that the nonlinear operator F : � ⊆ X → Y is twice Fréchet dif-
ferentiable in a non-empty open convex subset �0 ⊆ �, where X and Y are Banach
spaces. Then

F(xn+1) = 3
∫ 1

0

[
F ′′ (xn + t (un − xn)) − F ′′(xn)

]
(un − xn)dt�nF (zn)

+3δ2
[
F ′(un) − F ′(xn)

]
Q(xn)�nF (zn)

−F ′′(xn)(yn − xn)
[
Q(xn) + δ2Q(xn)

2
]
�nF(zn)

+
∫ 1

0

[
F ′′ (xn + t (yn − xn)) − F ′′(xn)

]
(yn − xn)dt (xn+1 − zn)

+
∫ 1

0
F ′′ (yn + t (zn − yn)) (zn − yn)dt (xn+1 − zn)

+
∫ 1

0

[
F ′ (zn + t (xn+1 − zn)) − F ′(zn)

]
(xn+1 − zn)dt, (2.12)

where yn = xn − �nF(xn) , zn and xn+1 are given in (1.8), δ2 ∈ [−1, 1] , the
definitions of �n, un, Q(xn) are same to the ones in (1.8) .

Proof By Taylor expansion, it holds that

F(xn+1) = F(zn) + F ′(zn)(xn+1 − zn)

+
∫ 1

0

[
F ′ (zn + t (xn+1 − zn)) − F ′(zn)

]
(xn+1 − zn)dt, (2.13)
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F ′(zn) = F ′(yn) +
∫ 1

0
F ′′ (yn + t (zn − yn)) (zn − yn)dt, (2.14)

F ′(yn) = F ′(xn) + F ′′(xn)(yn − xn)

+
∫ 1

0

[
F ′′ (xn + t (yn − xn)) − F ′′(xn)

]
(yn − xn)dt. (2.15)

Then we have

F(xn+1) = F(zn) − F ′(xn)
[
I + Q(xn) + δ2Q(xn)

2
]
�nF(zn)

−F ′′(xn)(yn − xn)
[
I + Q(xn) + δ2Q(xn)

2
]
�nF(zn)

+
∫ 1

0

[
F ′′ (xn + t (yn − xn)) − F ′′(xn)

]
(yn − xn)dt (xn+1 − zn)

+
∫ 1

0
F ′′ (yn + t (zn − yn)) (zn − yn)dt (xn+1 − zn)

+
∫ 1

0

[
F ′ (zn + t (xn+1 − zn)) − F ′(zn)

]
(xn+1 − zn)dt

= 3
[
F ′(un) − F ′(xn)

]
�nF(zn) + F ′′(xn)�nF (xn)�nF(zn)

+3δ2
[
F ′(un) − F ′(xn)

]
Q(xn)�nF (zn)

−F ′′(xn)(yn − xn)
[
Q(xn) + δ2Q(xn)

2
]
�nF(zn)

+
∫ 1

0

[
F ′′ (xn + t (yn − xn)) − F ′′(xn)

]
(yn − xn)dt (xn+1 − zn)

+
∫ 1

0
F ′′ (yn + t (zn − yn)) (zn − yn)dt (xn+1 − zn)

+
∫ 1

0

[
F ′ (zn + t (xn+1 − zn)) − F ′(zn)

]
(xn+1 − zn)dt. (2.16)

Notice that

F ′(un) = F ′(xn) + F ′′(xn)(un − xn)

+
∫ 1

0

[
F ′′ (xn + t (un − xn)) − F ′′(xn)

]
(un − xn)dt. (2.17)

Substituting (2.17) into (2.16), then (2.12) can be obtained.

3 Semilocal convergence for the method

For n = 0, the existence of �0 shows that y0, u0 exist. Furthermore,

‖y0 − x0‖ = ‖ − �0F(x0)‖ � η0. (3.1)
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‖u0 − x0‖ =
∥∥∥∥−1

3
�0F(x0)

∥∥∥∥ � 1

3
η0. (3.2)

This means that y0 ∈ B(x0, Rη) and u0 ∈ B(x0, Rη), where R = g(a0)
1−d0

.
Moreover,

‖Q(x0)‖ � 3Mβ‖x0 − u0‖ � Mβη = a0. (3.3)

Since δ1 ∈ [0, 1] and a0 < s∗ < 1/2, we have δ1a0 < 1. By the Banach lemma, it
follows that [I − δ1Q(x0)]−1 exists and

‖(I − δ1Q(x0))
−1‖ � 1

1 − δ1a0
. (3.4)

Then

‖z0 − x0‖ �
[
1 + 1

2
a0 + a20

2(1 − δ1a0)

]
‖�0F(x0)‖

= p(a0)‖�0F(x0)‖ � p(a0)η0 (3.5)

and

‖z0 − y0‖ �
[
1

2
a0 + a20

2(1 − δ1a0)

]
‖�0F(x0)‖

�
[
1

2
a0 + a20

2(1 − δ1a0)

]
η0. (3.6)

From Taylor expression, it holds that

F(zn) = F(xn) + F ′(xn)(zn − xn) +
∫ 1

0

[
F ′ (xn + t (zn − xn)) − F ′(xn)

]
(zn − xn)dt

= −3

2

[
F ′(xn) − F ′(un)

]
�nF(xn)

−3

2

[
F ′(xn) − F ′(un)

]
Q(xn)(I − δ1Q(xn))

−1�nF(xn)

+
∫ 1

0

[
F ′ (xn + t (zn − xn)) − F ′(xn)

]
(zn − xn)dt. (3.7)

Then we have

‖F(z0)‖ � 1

2

[
1 + a0

1 − δ1a0
+ p(a0)

2
]

M‖�0F(x0)‖η0

� 1

2

[
1 + a0

1 − δ1a0
+ p(a0)

2
]

Mη20 (3.8)

and

β0‖F(z0)‖ � a0

2

[
1 + a0

1 − δ1a0
+ p(a0)

2
]

‖�0F(x0)‖

� a0

2

[
1 + a0

1 − δ1a0
+ p(a0)

2
]

η0. (3.9)
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Notice that

‖x1 − z0‖ �
(
1 + a0 + |δ2|a20

)
β0‖F(z0)‖

� a0

2

(
1 + a0 + |δ2|a20

) [
1 + a0

1 − δ1a0
+ p(a0)

2
]

‖�0F(x0)‖

� a0

2

(
1 + a0 + |δ2|a20

) [
1 + a0

1 − δ1a0
+ p(a0)

2
]

η0, (3.10)

so

‖x1 − x0‖ � ‖x1 − z0‖ + ‖z0 − x0‖ � g(a0)‖�0F(x0)‖ � g(a0)η0. (3.11)

From the assumption d0 < 1/h(a0) < 1, it follows that x1 ∈ B(x0, Rη).
Since a0 < s∗ and g(a0) < g(s∗), we have

‖I − �0F
′(x1)‖ � ‖�0‖‖F ′(x0) − F ′(x1)‖

� Mβ0‖x1 − x0‖
� g(a0)a0 < 1.

It follows by the Banach lemma that �1 = [F ′(x1)]−1 exists and

‖�1‖ � ‖�0‖
1 − ‖�0‖‖F ′(x0) − F ′(x1)‖

� ‖�0‖
1 − g(a0)a0

= h(a0)‖�0‖ � h(a0)β0 = β1. (3.12)

From Lemma 4, we have

‖F(x1)‖ �
[

1

(q + 1)3q
η0ω(η0) + a0(1 + |δ2| + |δ2|a0)Mη0

]
β0‖F(z0)‖

+ 1

q + 1
(1 + a0 + |δ2|a20)η0ω(η0)β0‖F(z0)‖

+a0

2

(
1 + a0

1 − δ1a0

)(
1 + a0 + |δ2|a20

)
Mη0β0‖F(z0)‖

+1

2

(
1 + a0 + |δ2|a20

)2
M[β0‖F(z0)‖]2. (3.13)

Since

F(zn) = 3

2

∫ 1

0

[
F ′′ (xn + t (un − xn)) − F ′′(xn)

]
(un − xn)dt�nF (xn)

−3

2

[
F ′(xn) − F ′(un)

]
Q(xn) (I − δ1Q(xn))

−1 �nF(xn)

+
∫ 1

0

[
F ′′ (xn + t (yn − xn)) − F ′′(xn)

]
(yn − xn)

2(1 − t)dt

+
∫ 1

0
F ′′ (xn + t (yn − xn)) (yn − xn)dt (zn − yn)

+
∫ 1

0

[
F ′ (yn + t (zn − yn)) − F ′(yn)

]
(zn − yn)dt,
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then

‖F(z0)‖ � a0

2

(
1 + 1

1 − δ1a0
+ a0

1 − δ1a0

)
M‖�0F(x0)‖η0

+a20

8

(
1 + a0

1 − δ1a0

)2

M‖�0F(x0)‖η0

+ 1

2(q + 1)3q
‖�0F(x0)‖η0ω(η0)

+ 1

(q + 1)(q + 2)
‖�0F(x0)‖η0ω(η0) (3.14)

and

β0‖F(z0)‖ �
a20

2

(
1 + 1

1 − δ1a0
+ a0

1 − δ1a0

)
‖�0F(x0)‖

+a30

8

(
1 + a0

1 − δ1a0

)2

‖�0F(x0)‖

+ b0

2(q + 1)3q
‖�0F(x0)‖ + b0

(q + 1)(q + 2)
‖�0F(x0)‖

= φ(a0, b0)‖�0F(x0)‖ � φ(a0, b0)η0. (3.15)

Substituting (3.15) into (3.13), it holds that

‖F(x1)‖ �
[

1

(q + 1)3q
η0ω(η0) + a0(1 + |δ2| + |δ2|a0)Mη0

]
φ(a0, b0)‖�0F(x0)‖

+ 1

q + 1
(1 + a0 + |δ2|a20)η0ω(η0)φ(a0, b0)‖�0F(x0)‖

+a0

2

(
1 + a0

1 − δ1a0

) (
1 + a0 + |δ2|a20

)
Mη0φ(a0, b0)‖�0F(x0)‖

+1

2

(
1 + a0 + |δ2|a20

)2
Mη0φ(a0, b0)

2‖�0F(x0)‖ (3.16)

and

β0‖F(x1)‖ �
[

b0

(q + 1)3q
+ a20(1 + |δ2| + |δ2|a0)

]
φ(a0, b0)‖�0F(x0)‖

+ 1

q + 1
(1 + a0 + |δ2|a20)b0φ(a0, b0)‖�0F(x0)‖

+a20

2

(
1 + a0

1 − δ1a0

) (
1 + a0 + |δ2|a20

)
φ(a0, b0)‖�0F(x0)‖

+a0

2

(
1 + a0 + |δ2|a20

)2
φ(a0, b0)

2‖�0F(x0)‖
= ϕ(a0, b0)‖�0F(x0)‖ � ϕ(a0, b0)η0. (3.17)
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From (3.12) and (3.17), it follows that

‖y1 − x1‖ = ‖ − �1F(x1)‖ � ‖�1‖‖F(x1)‖
� h(a0)β0‖F(x1)‖ � h(a0)ϕ(a0, b0)‖�0F(x0)‖
= d0‖�0F(x0)‖ � d0η0 = η1. (3.18)

Since g(a0) > 1, we have

‖y1 − x0‖ � ‖y1 − x1‖ + ‖x1 − x0‖
� (g(a0) + d0)η0

< g(a0)(1 + d0)η < Rη, (3.19)

which shows y1 ∈ B(x0, Rη). Similarly, it can obtain that u1 ∈ B(x0, Rη). In
addition, we have

M‖�1‖‖�1F(x1)‖ � h(a0)d0a0 = a1, (3.20)

‖�1‖‖�1F(x1)‖ω(‖�1F(x1)‖) � β1η1ω(η1) = b1. (3.21)

Applying induction, the existence of �n = [F ′(xn)]−1 and the following items
can be obtained.
(I) ‖�n‖ � h(an−1)‖�n−1‖ � h(an−1)βn−1 = βn,
(II) ‖�nF(xn)‖ � h(an−1)ϕ(an−1, bn−1)‖�n−1F(xn−1)‖ � dn−1ηn−1 = ηn,
(III) M‖�n‖‖�nF(xn)‖ � an,
(IV) ‖�n‖‖�nF(xn)‖ω(‖�nF(xn)‖) � bn,
(V) ‖zn − xn‖ � p(an)‖�nF(xn)‖ � p(an)ηn,
(VI) ‖xn+1 − xn‖ � g(an)‖�nF(xn)‖ � g(an)ηn.
Moreover, we have the following lemma.

Lemma 5 Let the assumptions of Lemma 3 and the conditions (C1)-(C4) hold. Then
‖un − x0‖ � Rη, ‖zn − x0‖ � Rη, ‖xn+1 − x0‖ � Rη, where R = g(a0)

1−d0
.

Proof By (II), (V) and (VI), it follows that

‖un − x0‖ � ‖un − xn‖ + ‖xn − x0‖ � 1

3
ηn +

n−1∑
i=0

‖xi+1 − xi‖

� 1

3
ηn +

n−1∑
i=0

g(ai)ηi � g(a0)

n∑
i=0

ηi,

‖zn − x0‖ � ‖zn − xn‖ + ‖xn − x0‖ � p(an)ηn +
n−1∑
i=0

‖xi+1 − xi‖

� p(an)ηn + g(a0)

n−1∑
i=0

ηi � g(a0)

n∑
i=0

ηi
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and

‖xn+1 − x0‖ �
n∑

i=0

‖xi+1 − xi‖ � g(a0)

n∑
i=0

ηi

= g(a0)η0 + g(a0)

n∑
i=1

η0

⎛
⎝i−1∏

j=0

dj

⎞
⎠ . (3.22)

Let γ = h(a0)d0, λ = 1/h(a0). Since a1 = γ a0, b1 = β1η1ω(η1) =
h(a0)β0d0η0ω(d0η0) � h(a0)d

(1+q)

0 b0 < γ (1+q)b0, by Lemma 2, it holds that

d1 < h(γ a0)ϕ(γ a0, γ
(1+q)b0) < γ (2+2q)d0 = γ (3+2q)1−1d0 = λγ (3+2q)1 .

Suppose that dk � λγ (3+2q)k , k � 1. From Lemma 3, we have h(ak) > 1 ,
ak+1 < ak and h(ak)dk < 1. Then

dk+1 < h(ak)ϕ
(
h(ak)dkak, h(ak)d

(1+q)
k bk

)
< h(ak)ϕ

(
h(ak)dkak, h(ak)

(1+q)d
(1+q)
k bk

)

< h(ak)
(2+2q)d

(3+2q)
k < λγ (3+2q)k+1

.

Therefore dj � λγ (3+2q)j , j � 0.
Furthermore,

i−1∏
j=0

dj �
i−1∏
j=0

λγ (3+2q)j = λiγ
∑(i−1)

j=0 (3+2q)j = λiγ
(3+2q)i−1

2+2q , i ≥ 1. (3.23)

Substituting (3.23) into (3.22), it follows that

‖xn+1 − x0‖ � g(a0)

n∑
i=0

η0λ
iγ

(3+2q)i−1
2+2q

� g(a0)η
1 − λn+1γ

(3+2q)n+1+2q
2+2q

1 − d0
< Rη.

Similarly, ‖un − x0‖ � Rη, ‖zn − x0‖ � Rη. The proof is completed.

Lemma 6 Let R = g(a0)
1−d0

. If a0 < s∗ and h(a0)d0 < 1, then R < 1/a0.

The following theorem shows the existence-uniqueness of a solution.

Theorem 1 Let F : � ⊆ X → Y be twice Fréchet differentiable in a non-
empty open convex subset �0, where X and Y are two Banach spaces. Assume
that x0 ∈ �0 and all conditions (C1)-(C4) hold. Let a0 = Mβη , b0 = βηω(η),
d0 = h(a0)ϕ(a0, b0) satisfy a0 < s∗ and h(a0)d0 < 1, where s∗ is the smallest pos-
itive root of the equation g(t)t − 1 = 0 and g, h, ϕ are defined by (2.1)-(2.3). Let
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B(x0, Rη) ⊆ �0, where R = g(a0)
1−d0

, then starting from x0, the sequence {xn} gener-
ated by methods (1.8) converges to a solution x∗ of F(x) = 0 with xn, x

∗ belong to
B(x0, Rη) and x∗ is the unique solution of F(x) = 0 in B(x0,

2
Mβ

− Rη)
⋂

�0.
Furthermore, a priori error estimate is given by

‖xn − x∗‖ � g(a0)ηλnγ
(3+2q)n−1

2+2q
1

1 − λγ (3+2q)n
, (3.24)

where γ = h(a0)d0 and λ = 1/h(a0).

Proof By Lemma 5, it follows that the sequence {xn} is well-defined in B(x0, Rη).
Now we prove that {xn} is a Cauchy sequence. Since

‖xn+m − xn‖ �
n+m−1∑

i=n

‖xi+1 − xi‖ � g(a0)

n+m−1∑
i=n

ηi

� g(a0)ηλnγ
(3+2q)n−1

2+2q
1 − λmγ

(3+2q)n((3+2q)m−1+(1+2q))
2+2q

1 − λγ (3+2q)n
, (3.25)

we have that {xn} is a Cauchy sequence. So there exists a x∗ such that limn→∞ xn =
x∗.

Let n = 0, m → ∞ in (3.25), then

‖ x∗ − x0 ‖� Rη. (3.26)

It shows that x∗ ∈ B(x0, Rη).
Next we prove that x∗ is a solution of F(x) = 0. From Lemma 4, we have

‖F(xn+1)‖ �
[

1

(q + 1)3q
ω(η0) + a0(1 + |δ2| + |δ2|a0)M

]
φ(a0, b0)η

2
n

+ 1

q + 1
(1 + a0 + |δ2|a20)ω(η0)φ(a0, b0)η

2
n

+a0

2

(
1 + a0

1 − δ1a0

)(
1 + a0 + |δ2|a20

)
Mφ(a0, b0)η

2
n

+1

2

(
1 + a0 + |δ2|a20

)2
Mφ(a0, b0)

2η2n. (3.27)

Letting n → ∞ in (3.27), then it follows that ‖F(xn)‖ → 0 since ηn → 0. By
the continuity of F in �0, then F(x∗) = 0. Now we prove the uniqueness of x∗ in
B(x0,

2
Mβ

− Rη)
⋂

�0. From Lemma 6, we have that

2

Mβ
− Rη =

(
2

a0
− R

)
η >

1

a0
η > Rη

and B(x0, Rη) ⊆ B(x0,
2

Mβ
− Rη)

⋂
�0. Then x∗ ∈ B(x0,

2
Mβ

− Rη)
⋂

�0. Let

x∗∗ be another root of F(x) = 0 in B(x0,
2

Mβ
− Rη)

⋂
�0. Define H = ∫ 1

0 F ′((1 −
t)x∗ + tx∗∗)dt . Notice that

0 = F(x∗∗) − F(x∗) = H(x∗∗ − x∗). (3.28)
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Since

‖�0‖
∥∥H − F ′(x0)

∥∥
� Mβ

∫ 1

0
[(1 − t)‖x∗ − x0‖ + t‖x∗∗ − x0‖]dt

<
Mβ

2

[
Rη + 2

Mβ
− Rη

]
= 1, (3.29)

it follows by the Banach lemma that H is invertible, hence x∗∗ = x∗.
Finally, by letting m → ∞ in (3.25), then (3.24) can be obtained. Moreover, it

holds that

‖xn − x∗‖ � g(a0)η

γ 1/(2+2q)(1 − d0)
(γ 1/(2+2q))(3+2q)n , (3.30)

where γ = h(a0)d0 and λ = 1/h(a0).

From (3.30), we know that the R-order of methods (1.8) is at least 3 + 2q under
the conditions (C1)-(C4). Especially, when q = 1, The R-order becomes five, which
is higher than the one of super-Halley method.

4 Numerical results and efficiency analysis

Example 1 We consider the solution for a integral equation of mixed Hammerstein
type which is given by

x(s) = 1 +
∫ 1

0
G(s, t)

(
3

5
x(t)7/3 + 6

15
x(t)3

)
dt, s ∈ [0, 1], (4.1)

where x ∈ C[0, 1], t ∈ [0, 1] and G is the Green function

G(s, t) =
{

(1 − s)t, t � s,

s(1 − t), s � t.

Solving the equation (4.1) is equivalent to find the solution for F(x) = 0, where
F : � ⊆ C[0, 1] → C[0, 1],

[F(x)](s) = x(s) − 1 −
∫ 1

0
G(s, t)

(
3

5
x(t)7/3 + 6

15
x(t)3

)
dt, s ∈ [0, 1]. (4.2)

Taking �0 = B(0, 2). Obviously, F(x) is twice Fréchet differentiable in �0 ⊆ �.
The Fréchet derivatives of F are given by

F ′(x)y(s) = y(s) −
∫ 1

0
G(s, t)

(
7

5
x(t)4/3 + 6

5
x(t)2

)
y(t)dt, y ∈ �0,

F ′′(x)yz(s) = −
∫ 1

0
G(s, t)

(
28

15
x(t)1/3 + 12

5
x(t)

)
y(t)z(t)dt, y, z ∈ �0.
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Notice that F ′′ can not satisfy the assumption (A4), but it can satisfy the condition
(C4). Here, we define

ω(μ) = 7

30
μ

1
3 + 3

10
μ,

and

q = 1

3
.

Then F ′′ can satisfy the condition (C4). Taking the constant function x0(t) = 1 as
the initial approximate solution, then we have that

‖F(x0)‖ = 1

8
,

‖�0‖ � 40

27
≡ β,

‖�0F(x0)‖ � 5

27
≡ η,

‖F ′′(x)‖ � 0.894 · · · ≡ M.

Here, the max norm is used. Moreover, we compute

a0 � 0.2453.

Since

g(a0) = p(a0) + a0

2

(
1 + a0 + |δ2|a20

) [
1 + a0

1 − δ1a0
+ p(a0)

2
]

,

where

p(a0) = 1 + 1

2
a0 + a20

2(1 − δ1a0)
,

we write

g̃(δ1, δ2) = g(a0),

then

g(a0)a0 ≤ g̃(1, 1)a0 � 0.3902 < 1,

this shows that a0 < s∗. Since

ϕ(a0, b0) =
[

b0

(q + 1)3q
+ a20(1 + |δ2| + |δ2|a0) + 1

q + 1
(1 + a0 + |δ2|a20)b0

]
φ(a0, b0)

+a20

2

(
1 + a0

1 − δ1a0

) (
1 + a0 + |δ2|a20

)
φ(a0, b0)

+a0

2

(
1 + a0 + |δ2|a20

)2
φ(a0, b0)

2, (4.3)
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Table 1 Existence ball and uniqueness ball of the solution

δ1 δ2 existence ball uniqueness ball

0 0 B(1, 0.295 · · · ) B(1, 1.214 · · · ) ∩ �0

0 .5 1 B(1, 0.306 · · · ) B(1, 1.203 · · · ) ∩ �0

1 1 B(1, 0.311 · · · ) B(1, 1.198 · · · ) ∩ �0

where

φ(a0, b0) = a20

2

(
1 + 1

1 − δ1a0
+ a0

1 − δ1a0

)
+ a30

8

(
1 + a0

1 − δ1a0

)2

+ b0

2(q + 1)3q
+ b0

(q + 1)(q + 2)
, (4.4)

define

ϕ̃(δ1, δ2) = ϕ(a0, b0), (4.5)

then

h(a0)d0 �
[

1

1 − g̃(1, 1)a0

]2
ϕ̃(1, 1) � 0.0876 < 1.

As a result, the conditions of Theorem 1 are satisfied. Taking different parameters
δ1 and δ2, the existence ball and uniqueness ball of the solution are listed in Table 1

From Table 1, one can know that as tested here, choosing δ1 = δ2 = 1, the radius
of existence ball is larger than the others.

Example 2 Consider the following problem that find the minimizer of the chained
Rosenbrock function [14]

Table 2 The iterative errors (‖xk − x∗‖2) of various methods

k NM CM HM SHM KM VCM OPM

1 5.62e-1 3.26e-1 2.27e-1 6.01e-2 6.59e-2 3.36e-1 4.54e-2

2 4.81e-2 1.31e-3 4.51e-3 1.91e-5 9.97e-6 1.72e-2 5.70e-7

3 4.67e-3 1.10e-7 2.05e-8 1.46e-14 4.71e-16 4.70e-6 0

4 2.52e-6 0 0 0 0 0 0

5 1.08e-10 0 0 0 0 0 0
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Table 3 The comparison of various methods

order F F ′ F ′′ Efficiency index

Newton method 2 1 1 0 21/(m+m2)

Chebyshev-Halley methods 3 1 1 1 31/(m+m2+m2(m+1)/2)

Methods (1.6) 4 1 1 1 41/(m+m2+m2(m+1)/2)

Method (1.7) 3 1 2 0 31/(m+2m2)

Methods (1.8) 5 2 2 0 51/(2m+2m2)

g(x) =
m∑

i=1

[4(xi − x2
i+1)

2 + (1 − xi+1)
2], x ∈ R

m.

Finding the minimum of g needs to solve the nonlinear system F(x) = 0, where
F(x) = ∇g(x). Here, apply methods (1.8) with δ1 = 1, δ2 = −1 (OPM) , and
compare it with Newton method (NM), Chebyshev method (CM),

Halley method (HM), super-Halley method (SHM), the methods given by (1.6)
with δ1 = 0.9 (KM) and method given by (1.7) (VCM). In numerical tests,
the stopping criterion of each method is ‖xk − x∗‖2 � 1e − 15, where x∗ =
(1, 1, · · · , 1)T is the exact solution. We choose m = 50 and x0 = 1.2x∗.
Listed in Table 2 are the iterative errors (‖xk − x∗‖2) of various methods. From
Table 2 , we know that as tested here, OPM converges more rapidly than the
others.

For the nonlinear systems of m equations in m variables, considering the effi-
ciency index σ 1/τ [1], where σ is the order of method and τ represents the number of
evaluations for the required scalar component functions per iteration, we list the effi-
ciency index for various methods in Table 3. Moreover, we also compare the order of
various methods, the numbers for the required function, first derivative and second
derivative evaluations per iteration.

From Table 3, we can know that the order of methods (1.8) is higher than the oth-
ers. The efficiency index of methods (1.8) is always higher than the ones of Newton
method, method (1.7) and Chebyshev-Halley methods (including Chebyshev method,
Halley method, super-Halley method). When m ≥ 2, the efficiency index of meth-
ods (1.8) is higher than the one of methods (1.6). Since methods (1.8)do not need to
compute the second derivative, when the computational cost of F ′′ is large or F ′′ is
hard to compute, methods (1.8) are more efficient than methods (1.6).

5 Conclusions

This paper considers the semilocal convergence for multi-point improved super-
Halley-type methods in Banach space. To solve the problem that F ′′ is neither
Lipschitz nor Hölder continuous, the Lipschitz continuity of F ′′ used in reference [6]
is replaced by its generalized condition, and the latter is weaker than the former. The
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R-order of these methods is proved to be at least 3+2q with the generalized continu-
ity condition of F ′′, where q ∈ [0, 1]. Especially, when F ′′ is Lipschitz continuous,
The R-order becomes five, which is higher than the one of super-Halley method.
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group Project of Hubei Engineering University (No. 201501).

References

1. Ostrowski, A.M.: Solution of Equations in Euclidean and Banach Spaces, 3rd edn. Academic Press,
New York (1973)

2. Gutiérrez, J.M., Hernández, M.A.: A family of Chebyshev-Halley type methods in banach spaces.
Bull. Aust. Math. Soc 55, 113–130 (1997)

3. Candela, V., Marquina, A.: Recurrence relations for rational cubic methods I: the Halley method.
Computing 44, 169–184 (1990)

4. Ezquerro, J.A., Hernández, M.A.: Recurrence relations for Chebyshev-type methods. Appl. Math.
Optim 41(2), 227–236 (2000)

5. Chen, D., Argyros, I.K., Qian, Q.S.: A note on the Halley method in Banach spaces. App. Math.
Comput 58, 215–224 (1993)

6. Gutiérrez, J.M., Hernández, M.A.: Recurrence relations for the super-Halley method. Comput. Math.
Appl 36, 1–8 (1998)

7. Babajee, D.K.R., Dauhoo, M.Z., Darvishi, M.T., Karami, A., Barati, A.: Analysis of two Chebyshev-
like third order methods free from second derivatives for solving systems of nonlinear equations. J.
Comput. Appl. Math 233, 2002–2012 (2010)

8. Ezquerro, J.A., Hernández, M.A.: On the R-order of the Halley method. J. Math. Anal. Appl 303,
591–601 (2005)

9. Ganesh, M., Joshi, M.C.: Numerical solvability of Hammerstein integral equations of mixed type.
IMA. J. Numer. Anal 11, 21–31 (1991)

10. Ezquerro, J.A., Hernández, M.A.: New iterations of R-order four with reduced computational cost.
BIT Numer Math 49, 325–342 (2009)

11. Bruns, D.D., Bailey, J.E.: Nonlinear feedback control for operating a nonisothermal CSTR near an
unstable steady state. Chem. Eng. Sci 32, 257–264 (1977)

12. Kou, J., Li, Y.: A family of modified super-Halley methods with fourth-order convergence. Appl Math.
Comput 189, 366–370 (2007)

13. Hernández, M.A.: Second-derivative-free variant of the Chebyshev method for nonlinear equations. J.
Optim. Theory Appl 104(3), 501–515 (2000)

14. Powell, M.J.D.: On the convergence of trust region algorithms for unconstrained minimization without
derivatives. Comput Optim Appl 53, 527–555 (2012)


	Semilocal convergence of multi-point improved super-Halley-type methods without the second derivative under generalized weak condition
	Abstract
	 Introduction
	 Some preliminary results for convergence analysis
	Semilocal convergence for the method
	Numerical results and efficiency analysis
	Conclusions
	Acknowledgments
	References


