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Abstract We present an improved version of an infeasible interior-point method for
horizontal linear complementarity problem (J. Optim. Theory Appl.,161(3),853–869,
2014). In the earlier version, each iteration consisted of one so-called feasibility and
a few centering steps. Here, each iteration consists of only a feasibility step, whereas
the iteration bound improves the earlier bound.
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1 Introduction

Various extensions and generalizations of solution approaches for horizontal linear
complementarity problem (HLCP) have been investigated. Among them, after the
popular paper of Karmarkar [5], the interior-point methods (IPMs) earned more atten-
tion than other methods. IPMs are divided into two categories: feasible IPMs and
infeasible IPMs (IIPMs). Feasible IPMs start with a strictly feasible interior-point and
maintain feasibility during the solution process. IIPMs begin from a positive point
and feasibility is reached as the optimality is approached. In [1, 3, 4, 7] the authors
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proposed some feasible IPMs for solving HLCP. Zhang [14] presented a class of
IIPMs for HLCP and showed that the algorithm hasO(n2 log 1

ε
) iteration complexity.

Stoer et al. [13] described a short-step IIPM of predictor-corrector type for solving
HLCP.

The primal-dual full-Newton step feasible IPM for linear optimization (LO) was
first analyzed by Roos et al. [11] and was later extended to infeasible version by
Roos [10]. For a comprehensive study of IIPM and a motivation for using full-
Newton steps methods we refer to [10, 11]. Kheirfam [6] extended both versions
of the method to HLCP based on a new proximity measure, and developed a dif-
ferent analysis from the mentioned works for full-Newton step feasible IPMs and
IIPMs. The obtained iteration bounds coincide with the currently best known iteration
bounds for HLCP.

Motivated by recent developments on IIPMs, we present an improved and sim-
plified version of an IIPM with full-Newton step for solving HLCP introduced by
Kheirfam [6]. The new algorithm starts from an infeasible point, located in a small
neighborhood of the central path of a perturbed HLCP. Then, after a full-Newton step
the new iterate is well-centered for the new perturbed HLCP. This kind of strategy
reduces the number of iterations and the resulting complexity coincides with the best
known bound.

The following lemma is fundamental for the analysis of the IIPM pro-
posed in this paper, its proof is exactly similar to the proof of the lemma
A.1 in [12].

Lemma 1 Let a, b ∈ Rn and

f (a, b) =
n∑

i=1

u(aibi),

where u(x) = 1+ x + 1
1+x

− 2, x > −1. If ‖a‖2 + ‖b‖2 = 2r2, with r ∈ [0, 1), then
f (a, b) ≤ (n − 1)u(0) + max{u(r2), u(−r2)}.

Above Lemma enables us to obtain an upper bound for the proximity mea-
sure after a full-Newton step. In the terminologies of [6], it means that after
a feasibility step the new iterates are well-centered. The main advantage of the
new algorithm is that each iteration requires only one feasibility step, whereas
the previous algorithm needed three additional centering steps in each (main)
iteration.

Given two matrices Q, R ∈ Rn×n, and a vector q ∈ Rn, the HLCP consists in
finding a pair of vectors (x, s) ∈ R2n such that

(P ) Qx + Rs = q, x, s ≥ 0, xs = 0.

Let κ ≥ 0 be a given constant. We assume that the HLCP is P∗(κ) in the sense that

Qx + Rs = 0 implies xT s ≥ −4κ
∑

i∈I+
xisi,
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where I+ = {i : xisi ≥ 0}. If the above condition is satisfied, then we say that
(Q, R) is a P∗(κ)-pair. In accordance with the available results on IIPMs, e.g.,
see [6], it is assumed that there exists a solution (x∗, s∗) such that ‖x∗‖∞ ≤ ρp

and ‖s∗‖∞ ≤ ρd , where ρp and ρd are sufficiently large positive constants. In
our algorithm, the initial iterates will be (x0, s0) = (ρpe, ρde). In this case,
we have

0 ≤ x0 − x∗ ≤ ρpe, 0 ≤ s0 − s∗ ≤ ρde.

The remainder of our work is organized as follows: After a brief introduction to
the perturbed problem and its central path, the algorithm is presented in Section 2.
Section 3 contains the analysis of the new algorithm. In Section 3.1 we derive an
upper bound for the proximity measure after a step. This result depends on Lemma 1
and expresses this bound in terms of a quantity ω(v). One should note that the defi-
nition of ω(v) slightly differs from ω(v) in [6]. The Sections 3.2, 3.3 and 3.4 serve to
derive an upper bound for ω(v) and complexity analysis. Finally, we reported some
numerical results in Section 4.

2 Infeasible full-Newton step IPM

In the case of an IIPM, we call the pair (x, s) an ε-solution of P∗(κ)-HLCP if
the 2-norm of the residual vector q − Qx − Rs does not exceed ε, and also
xT s ≤ ε. In this section, we present an infeasible-start algorithm that guaran-
tees an ε-solution of P∗(κ)-HLCP, if it exists, or establishes that no such solution
exists.

2.1 The perturbed problem

Denote the initial residual vector r0q , as r0q := q − Qx0 − Rs0. In general,

r0q �= 0. For any ν, with 0 < ν ≤ 1, we consider the perturbed problem (Pν),
defined by

(Pν) q − Qx − Rs = νr0q , (x, s) ≥ 0.

Note that if ν = 1, then (x, s) = (x0, s0) yields a strictly feasible solution of (Pν),
which implies that if ν = 1, then (Pν) satisfies the interior point condition (IPC).
Without proof we cite the following result ([6], Lemma 3.1).

Lemma 2 Let the original problem (P) be feasible and 0 < ν ≤ 1. Then, the
perturbed problem (Pν) satisfies the IPC.

2.2 The central path of the perturbed problem

Let (P) be feasible and 0 < ν ≤ 1. Then, Lemma 2 implies that the problem (Pν)

satisfies the IPC, for 0 < ν ≤ 1, and hence its central path exists. This means that
the system

q − Qx − Rs = νr0q , x, s ≥ 0, (1)

xs = μe, (2)
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has a unique solution for any μ > 0, as the μ-center of the perturbed problem (Pν).
In what follows, the parameters μ and ν always satisfy the relation μ = νμ0.

2.3 An iteration of our algorithm

We just established that if ν = 1 and μ = μ0, then (x, s) = (x0, s0) is
the μ-center of the perturbed problem (Pν). As stated before the initial iterates
are given by

x0 = ρpe, s0 = ρde, μ0 = ρpρd.

Let (x, s) be a feasible solution of (Pν), and μ = νμ0. Then, we measure proximity
to the μ-center of the perturbed problem (Pν) by the quantity

δ(x, s; μ) := δ(v) := 1

2
‖v−1 − v‖, where v :=

√
xs

μ
. (3)

As an immediate consequence, we have the following lemma.

Lemma 3 (Lemma II.62 in [11]) Let δ := δ(v) be given by (3). Then, for each i,

−δ +
√
1 + δ2 ≤ vi ≤ δ +

√
1 + δ2.

Initially, we have δ(x, s; μ) = δ(x0, s0; μ0) = 0. In what follows,
we assume that at the start of each iteration, just before the μ-update,
δ(x, s; μ) ≤ τ with τ > 0. This certainly holds at the start of the first
iteration.

Now we briefly describe one (main) iteration of our algorithm. Suppose that
for some μ ∈ (0, μ0] we have x and s satisfying the feasibility condition
(1) for ν = μ

μ0 and such that δ(x, s; μ) ≤ τ . We reduce μ to μ+ =
(1 − θ)μ with θ ∈ (0, 1), and find new iterates x+ and s+ satisfying (1),

with μ replaced by μ+ and ν by ν+ = μ+
μ0 , such that δ(x+, s+; μ+) ≤ τ .

Note that ν+ = (1 − θ)ν. So, the relation μ = νμ0 is maintained in every
iteration.

We proceed by describing the search direction in the algorithm, which is the same
as in [6], namely the unique solution of the following system

Q
x + R
s = θνr0q ,

s
x + x
s = (1 − θ)μe − xs, (4)

where r0q denotes the initial residual vector. After a full Newton step the iterates are
given by

x+ := x + 
x, s+ := s + 
s. (5)

We conclude that iterates (x+, s+) satisfy the affine equation in (1), with ν replaced
by ν+. In the analysis, we should also guarantee that x+ and s+ are positive and
satisfy δ(x+, s+; μ+) ≤ τ. Proving this is the crucial part in the analysis of the
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Fig. 1 The algorithm

algorithm.

2.4 The algorithm

A formal description of the new algorithm is given in Fig. 1.

3 Analysis of the algorithm

Let (x, s) be the iterate at the start of an iteration, and assume δ(x, s; μ) ≤ τ .

3.1 Upper bound for δ(v+)

As established in Section 2.3, the full-Newton step generates new iterates (x+, s+)

that satisfy the feasibility condition for (Pν+), except for possibly the nonnegativity
constraints. A crucial element in the analysis is to show that, after the full-Newton
step, δ(x+, s+; μ+) ≤ τ.

Defining

dx := d
x
√

μ+ , ds := d−1
s
√

μ+ , where d :=
√

s

x
, (6)

we have, using the second equation of (4) and (6),

x+s+ = xs + (s
x + x
s) + 
x
s = (1 − θ)μe + 
x
s

= (1 − θ)μe + μ+dxds = (1 − θ)μ(e + dxds). (7)
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Lemma 4 The full-Newton step is strictly feasible if and only if e + dxds > 0.

Proof The proof is similar to the proof of Lemma II.48 in [11], and is therefore
omitted.

Corollary 1 The iterates (x+, s+) are strictly feasible if ‖dxds‖∞ ≤ 1.

Proof By Lemma 4, x+ and s+ are strictly feasible if and only if e + dxds > 0.
Since the last inequality holds if ‖dxds‖∞ ≤ 1, the corollary follows.

In the sequel, we use the notation

ω(v) := 1

2

(
‖dx‖2 + ‖ds‖2

)
. (8)

It follows that

‖dxds‖∞ ≤ ‖dxds‖ ≤ ‖dx‖‖ds‖ ≤ 1

2

(
‖dx‖2 + ‖ds‖2

)
= ω(v). (9)

Corollary 2 If ω(v) < 1, then the iterates (x+, s+) are strictly feasible.

Proof Due to (9), ω(v) < 1 implies ‖dxds‖∞ < 1. By Corollary 1 this implies the
desired result.

Assuming ω(v) < 1, which guarantees strict feasibility of the iterates (x+, s+), we
proceed by deriving an upper bound for δ(x+, s+; μ+). By definition (3), we have

δ(x+, s+; μ+) = 1

2

∥∥v+ − (v+)−1
∥∥, where v+ =

√
x+s+
μ+ .

In what follows, we denote δ(x+, s+; μ+) shortly by δ(v+).

Lemma 5 Let ω(v) < 1. Then, we have

4δ(v+)2 ≤ (n − 1)u(0) + max {u(ω(v)), u(−ω(v))} .

Proof After dividing both sides in (7) by μ+ we get

(v+)2 = (1 − θ)μ(e + dxds)

μ+ = e + dxds.

Hence, we have

4δ(v+)2 =
∥∥∥
√

e + dxds − 1√
e + dxds

∥∥∥
2

=
∥∥∥
√

e + dxds

∥∥∥
2 +

∥∥∥
1√

e + dxds

∥∥∥
2 − 2n

=
n∑

i=1

(
1 + dxidsi + 1

1 + dxidsi

− 2

)
=

n∑

i=1

u(dxidsi).
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Using Lemma 1 this implies that

4δ(v+)2 ≤ (n − 1)u(0) + max {u(ω(v)), u(−ω(v))} ,

proving the lemma.

3.2 Upper bound for ω(v)

We start by finding some bounds for the unique solution of the linear system (4).

Lemma 6 (Lemma 3.3 in [9]) If HLCP is P∗(κ), then for any a, b̃ ∈ R
n and any

z = (xT , sT )T ∈ R
2n++ the linear system

Qu + Rv = b̃, su + xv = a, (10)

has a unique solution w := (uT , vT )T and the following inequality is satisfied:

‖w‖z ≤ √
1 + 2κ‖ã‖2 + (1 + √

2 + 4κ) ζ(z, b̃),

where

ã = (xs)−
1
2 a,D = X− 1

2 S
1
2 , ‖w‖2z = ‖(uT , vT )T ‖2z = ‖Du‖2 + ‖D−1v‖2,

and

ζ(z, b̃)2 = min{‖(ũT , ṽT )T ‖2z : Qũ + Rṽ = b̃} = b̃T (QD−2QT + RD2RT )−1b̃.

Comparing system (10) with the system (4) and considering (u, v) = (
x, 
s),
b̃ = θνr0q and a = (1 − θ)μe − xs in (10), we get

‖D
x‖2 + ‖D−1
s‖2 ≤
(√

1 + 2κ‖(xs)−
1
2 ((1 − θ)μe − xs)‖

+(1 + √
2(1 + 2κ))ζ(z, θνr0q )

)2

≤
(√

μ(1 + 2κ)
(
(1 − θ)‖v−1 − v‖ + θ‖v‖

)

+(1 + √
2(1 + 2κ))θνζ(z, r0q )

)2
, (11)

where the last inequality follows by the following inequality

∥∥(xs)−
1
2 ((1 − θ)μe − xs)

∥∥ =
∥∥∥
(1 − θ)μe − xs√

xs

∥∥∥ =
∥∥∥
(1 − θ)μe − μv2√

μv

∥∥∥

= √
μ‖(1 − θ)v−1 − v‖ ≤ √

μ
(
(1 − θ)‖v−1 − v‖ + θ‖v‖

)
.

If δ := δ(v) is given, then ‖v‖ is maximal if v ≥ e and all elements of v are equal to
[12]

δ√
n

+
√

1 + δ2

n
,
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which implies that

‖v‖ = √
n

⎛

⎝ δ√
n

+
√

1 + δ2

n

⎞

⎠ . (12)

By using (3) and (12) we get

(1 − θ)‖v−1 − v‖ + θ‖v‖ ≤ 2(1 − θ)δ + θ
√

n

⎛

⎝ δ√
n

+
√

1 + δ2

n

⎞

⎠ . (13)

Since

r0q = q − Qx0 − Rs0 = Q(x∗ − x0) + R(s∗ − s0),

by definition of ζ(z, r0q ) and Lemma 2, we obtain

ζ(z, r0q )2 ≤ ‖D(x∗ − x0)‖2 + ‖D−1(s∗ − s0)‖2

≤ ρ2
p‖De‖2 + ρ2

d‖D−1e‖2 = ρ2
p

∥∥∥
√

s

x

∥∥∥
2 + ρ2

d

∥∥∥
√

x

s

∥∥∥
2

≤ ρ2
p

μ

∥∥∥
s

v

∥∥∥
2

1
+ ρ2

d

μ

∥∥∥
x

v

∥∥∥
2

1

≤ 1

μ(−δ + √
1 + δ2)

(
ρ2

p‖s‖21 + ρ2
d‖x‖21

)
. (14)

Using D
x = √
μ+dx, D

−1
s = √
μ+ds , and substituting two bounds (14) and

(13) into (11) and using the definition of ω(v), we obtain

ω(v) ≤
⎛

⎝
√
1 + 2κ

(
(2 − θ)δ + θ

√
n + δ2

)

√
2(1 − θ)

+ (1 + √
2(1 + 2κ))θ

μ0
√
2(1 − θ)

√
ρ2

p‖s‖21 + ρ2
d‖x‖21

−δ + √
1 + δ2

⎞

⎠
2

.

Lemma 7 (Lemma 4.5 in [6]) Let (x, s) be feasible for the perturbed prob-
lem (Pν) and (x0, s0) = (ρpe, ρde). Then for any solution (x∗, s∗) of (P),
we have

ν
(
xT s0 + sT x0

)
≤ (1+4κ)

(
ν2(x0)T s0 + ν(1 − ν)

(
(s0)T x∗ + (x0)T s∗) + xT s

)
.

Since x0 = ρpe, s0 = ρde, ‖x∗‖∞ ≤ ρp and ‖s∗‖∞ ≤ ρd , we have

(s0)T x∗ + (x0)T s∗ ≤ 2nρpρd, (x0)T s0 = nρpρd.
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Hence, by Lemma 7, xT s = μeT v2 = μ‖v‖2 and (12), we obtain

xT s0 + sT x0 ≤ (1 + 4κ)

(
2nρpρd + xT s

ν

)
= (1 + 4κ)

(
2nρpρd + μ0‖v‖2

)

≤ (1 + 4κ)

⎛

⎜⎝2 +
⎛

⎝ δ√
n

+
√

1 + δ2

n

⎞

⎠
2
⎞

⎟⎠ nρpρd.

This implies that

‖x‖1 ≤ (1 + 4κ)

⎛

⎜⎝2 +
⎛

⎝ δ√
n

+
√

1 + δ2

n

⎞

⎠
2
⎞

⎟⎠ nρp,

and

‖s‖1 ≤ (1 + 4κ)

⎛

⎜⎝2 +
⎛

⎝ δ√
n

+
√

1 + δ2

n

⎞

⎠
2
⎞

⎟⎠ nρd.

Substitution the bounds of ‖x‖1 and ‖s‖1 yields

ω(v) ≤
⎛

⎝
√
1 + 2κ

(
(2 − θ)δ + θ

√
n + δ2

)

√
2(1 − θ)

+
(1 + 4κ)

(
1 + √

2(1 + 2κ)
)
nθ

(
2 +

(
δ√
n

+
√
1 + δ2

n

)2
)

√
(1 − θ)(−δ + √

1 + δ2)

⎞

⎟⎟⎟⎟⎠

2

. (15)

3.3 Values for θ and τ

Our aim is to find a positive number τ such that if δ := δ(v) ≤ τ , then δ(v+) ≤ τ .
By Lemma 5, this will hold if ω := ω(v) < 1 and

1

2

√
(n − 1)u(0) + max {u(ω), u(−ω)} ≤ τ. (16)

Assuming δ(v) ≤ τ , we therefore need to find τ such that the above inequalities
hold, with θ as large as possible. We choose

θ = 1

27n(1 + 2κ)2
, τ = 1

6(1 + 2κ)
. (17)
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Using δ ≤ τ , we obtain from (15) that
⎛

⎝
√
1 + 2κ

(
(2 − θ)δ + θ

√
n + δ2

)

√
2(1 − θ)

+
(1 + 4κ)

(
1 + √

2(1 + 2κ)
)
nθ

(
2 +

(
δ√
n

+
√
1 + δ2

n

)2
)

√
(1 − θ)(−δ + √

1 + δ2)

⎞

⎟⎟⎟⎟⎠

2

≤
⎛

⎝
√
1 + 2κ

(
(2 − θ)τ + θ

√
n + τ 2

)

√
2(1 − θ)

+
(1 + 4κ)

(
1 + √

2(1 + 2κ)
)
nθ

(
2 +

(
τ√
n

+
√
1 + τ 2

n

)2
)

√
(1 − θ)(−τ + √

1 + τ 2)

⎞

⎟⎟⎟⎟⎠

2

.

We define the function h(n, τ) as follows

h(n, τ) =
⎛

⎝
√
1 + 2κ

(
(2 − θ)τ + θ

√
n + τ 2

)

√
2(1 − θ)

+
(1 + 4κ)

(
1 + √

2(1 + 2κ)
)
nθ

(
2 +

(
τ√
n

+
√
1 + τ 2

n

)2
)

√
(1 − θ)(−τ + √

1 + τ 2)

⎞

⎟⎟⎟⎟⎠

2

,

where θ = 1
27n(1+2κ)2

. This function, which provides an upper bound for ω, decreases
when n increases. In order to have (16), when defining

g+(ω) := 1

2

√
(n − 1)u(0) + u(ω), g−(ω) := 1

2

√
(n − 1)u(0) + u(−ω),

we need to show that g+(ω) ≤ τ and g−(ω) ≤ τ holds for all ω such that ω ≤
h(n, τ). Note that if n increases, then h(n, τ) converges to the positive value

h(∞, τ ) =
⎛

⎜⎝
√
2

6(1 + 2κ)
+

√
6(1 + 4κ)(

√
2(1 + 2κ) − 1)

9(1 + 2κ)
3
2

√√
1 + (6 + 12κ)2 − 1

⎞

⎟⎠

2

≤ 0.2779.

We have

(n − 1)u(0) = (n − 1) × 0 = 0.
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On the other hand, we have

u(ω) = 1 + ω + 1

1 + ω
− 2 = ω2

1 + ω
, u(−ω) = ω2

1 − ω
.

It follows that

1

2

√
(n − 1)u(0) + max {u(ω), u(−ω)} = ω

2
√
1 − ω

.

One easily verifies that the last expression is less than or equal to τ = 1
6(1+2κ)

if and
only if

ω ≤ 2τ(
√
1 + τ 2 − τ) =

√
36(1 + 2κ)2 + 1 − 1

18(1 + 2κ)2
≤ 0.2824.

Since h(∞, τ ) ≤ 0.2779, which is strictly less than 0.2824, it follows that (16) is
strictly satisfied if n goes to infinity.

Based on the above analysis, we may state the following result without further
proof.

Theorem 1 If θ and τ are given by (17), then there exists a number N such that for
all n ≥ N the algorithm is well defined, in the sense that the property δ(x, s; μ) ≤ τ

is maintained during the iterations.

3.4 Complexity analysis

We have found that if n is large enough and at the start of an iteration the iterates
satisfy δ(x, s, μ) ≤ τ , and τ and θ are as defined in (17), then after the full-Newton
step, the new iterates satisfy δ(x+, s+; μ+) ≤ τ . This establishes the algorithm to be
well-defined.

In each iteration, both the value of xT s and the norm of the residual vector are
reduced by the factor 1 − θ . Hence, the total number of main iterations is bounded
above by

1

θ
log

max{(x0)T s0, ‖r0q‖}
ε

.

Since θ = 1
27n(1+2κ)2

, this yields the following result.

Theorem 2 Let (P) be feasible and ρp > 0 and ρd > 0 such that ‖x∗‖∞ ≤ ρp and
‖s∗‖∞ ≤ ρd for some solution (x∗, s∗) of (P). If n is large enough, then after at most

27n(1 + 2κ)2 log
max{(x0)T s0, ‖r0q‖}

ε

iterations the algorithm finds an ε-solution of (P).

Remark 1 It is worth noting that this result improves the iteration bound in ([6],
Theorem 4.1) with factor 2.2.
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Table 1 The number of iterations and CPU

Problem ‖x∗‖∞ ‖s∗‖∞ Algor. [6] New algor.

Ou. Iter. T. Iter. Time Iter. Time

M2,3 25.4602 6.4640 1066 2123 0.541832 1442 0.803425

M2,5 27.1710 7.0309 1833 3953 1.017019 2478 1.415518

M2,7 27.7903 7.2359 2617 4687 1.575742 3536 2.312912

M2,10 28.2184 7.3775 3814 7489 2.695927 5152 3.399544

M2,15 28.5321 7.4813 5847 11763 2.936233 7896 6.973262

M2,20 28.6831 7.5312 7986 14461 3.950233 10784 8.803626

M1,3 33.6392 0.0000 1066 2935 0.716764 1442 0.840011

M1,5 33.6803 0.0000 1833 4812 1.233801 2478 1.396211

M1,7 33.6978 0.0000 2617 6649 2.014513 3536 2.044211

M1,10 33.7109 0.0000 3814 9220 2.822196 5152 3.373976

M1,15 33.7210 0.0000 5847 13347 4.837527 7896 5.960868

M1,20 33.7261 0.0000 7913 15722 4.537763 10686 9.758106

4 Numerical results

The algorithm is tested on a number of LCP problems from the literature [2, 8]. We
have written MATLAB codes for proposed algorithm and the algorithm presented
in [6]. The numerical experiments are implemented by using MATLAB version
7.8.0.347 (R2009a) on a PC with 2 GB RAM under Windows XP. In our experi-
ments, we choose x = ρpe = 50e, s = ρde = 40e and μ = ρpρd as the starting
data. We set ε = 10−4, and we take the set of parameters τ = 5× 10−6 and θ = 1

20n
for the algorithm in [6] and θ = 1

27n for proposed algorithm. The algorithms were
terminated when the duality gap satisfied xT s ≤ ε = 10−4. The numbers of itera-
tions (Iter.) and time (in second) (CPU) required for the two algorithms on two set
of problems of various sizes with the corresponding matrices and q = −e, as given
below, are noted in Table 1:

M1,n =

⎡

⎢⎢⎢⎢⎢⎣

1 2 2 . . . 2
0 1 2 . . . 2
0 0 1 . . . 2
...

...
...

...

0 0 0 . . . 1

⎤

⎥⎥⎥⎥⎥⎦
, M2,n =

⎡

⎢⎢⎢⎢⎢⎣

1 2 2 · · · 2
2 5 6 · · · 6
2 6 9 · · · 10
...

...
...

...

2 6 10 · · · 4(n − 1) + 1

⎤

⎥⎥⎥⎥⎥⎦
.

The executing time and the number of iterations for the two set of problems are
given in Table 1, which shows that the number of iterations of the algorithm depends
on the size of the corresponding matrix. The executing time of the algorithm increases
as the size of the corresponding matrix is increased. However, based on the numerical
results obtained, as shown in Table 1, the CPU times cost by the new algorithm are
larger than by the algorithm given in [6], even when the new algorithm needs less
iterations.
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