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Abstract In this paper, we present a primal-dual interior point algorithm for lin-
early constrained convex optimization (LCCO). The algorithm uses only full-Newton
step to update iterates with an appropriate proximity measure for controlling feasible
iterations near the central path during the solution process. The favorable polyno-
mial complexity bound for the algorithm with short-step method is obtained, namely
O(

√
n log n

ε
) which is as good as the linear and convex quadratic optimization

analogue. Numerical results are reported to show the efficiency of the algorithm.

Keywords Linearly constrained convex optimization · Interior point methods ·
Short-step primal-dual algorithms · Complexity of algorithms
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1 Introduction

In this paper, we consider the following linearly constrained convex optimization
(LCCO) problem in its standard form called primal

(P) min f (x) s.t. Ax = b, x ≥ 0,
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and its Wolfe dual
(D) max

[
bT y + f (x) − xT ∇f (x)

]
s.t. AT y + z − ∇f (x) = 0, z ≥ 0,

where f : Rn → R is a convex and continuously differentiable function, and ∇f (x)

is the gradient vector of f (x), A ∈ Rm×n and b ∈ Rm.

The LCCO problem has many important applications in mathematical program-
ming and diversified areas of engineering. It includes also the linear optimization
(LO) problem and convex quadratic optimization (CQO) problem as special cases.
For years, the LCCO has received a considerable attention from researchers and
a variant of primal-dual interior point methods (IPMs) have been proposed for its
solution since this last has beautiful properties such as polynomial complexity and
numerical efficiency [6–8].

In the last decade many primal-dual IPMs for LO have been extended success-
fully to CQO, semidefinite optimization (SDO), complementarity problems (CP) and
conic optimization (CO) problems.

Darvay [4], developed a predictor-corrector algorithm for LCCO where its search
direction is based on an algebraic transformation namely the square root function
applied to the nonlinear centering equations of the system, which defines the central
path. The complexity result for this algorithm is established. We mention that this
new technique of algebraic transformations was first introduced by Darvay [3] for
LO and later on extended to CQO by Achache [1] and for LCCO by Zhang et al.
[9]. And all of them proved that their short-step algorithm matches the best known
iteration bound, namely O

(√
n log n

ε

)
.

Recently, Achache and Goutali [2] presented a feasible primal-dual path-following
interior point algorithm for CQO based only on full-Newton steps and a suitable
proximity measure for controlling feasible iterations produced by the algorithm. They
proved that the iteration bound of the short-step algorithm is O(

√
n log n

ε
) which is

as good as the CQO and LO analogue.
Motivated by their work, we propose a short-step feasible primal-dual interior

point algorithm for LCCO. We adopt the analysis used in [2]. The favorable iteration
bound, namely, O(

√
n log n

ε
) for such short-step methods is obtained. Moreover, our

analysis is straightforward to CQO analogue. We mention that our analysis is differ-
ent from the one used in [1, 3, 9]. Finally numerical results are reported to show the
efficiency of the algorithm.

The rest of the paper is organized as follows. In Section 2, the generic short step
primal-dual interior point algorithm for LCCO is presented. In Section 3, detailed
proofs of the complexity result are given. In Section 4, some numerical results are
presented. In Section 5, we end the paper with a conclusion.

Throughout the paper, the following notations are used. Rn++ denotes the set of
all positive vectors of Rn. Given x, y ∈ Rn, xT y = ∑n

i=1 xiyi is their inner
product whereas xy is the vector of their coordinatewise product. The 2-norm and
∞-norm of a vector x are denoted by ‖x‖ and ‖x‖∞, respectively. Let x, y ∈
Rn++,

√
x = (√

x1, . . . ,
√

xn

)T
, x−1 =

(
x−1
1 , . . . , x−1

n

)T

and x
y

=
(

x1
y1

, . . . , xn

yn

)T

.

Finally, g(t) = O(f (t)) ⇔ g(t) ≤ cf (t) for some positive constant c where g(t)

and f (t) are two positive real valued functions. The identity matrix and the vector of
ones are denoted by I and e, respectively.
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2 The generic primal-dual algorithm for LCCO

Throughout the paper, we make the following assumptions on (P) and (D).

Assumption 1 The matrixA is of rank(A) = m.

Assumption 2 Interior-Point-Condition (IPC). There exists
(
x0, y0, z0

)
such that

Ax0 = b, x0 > 0, AT y0 − ∇f
(
x0

)
+ z0 = c, z0 > 0.

Assumption 3 f is a convex and twice continuously differentiable function. This
implies that the hessian matrix ∇2f (x) of f is positive semidefinite. Finding an
optimal solution of (P) and (D) is equivalent to solving the following system, which
represents the Karush-Khun-Tucker optimality conditions

⎧⎨
⎩

Ax = b, x ≥ 0,
AT y + z − ∇f (x) = 0, z ≥ 0,
xz = 0.

(1)

The basic idea of the primal-dual IPMs is to replace the complementarity equation
xz = 0 in (1) by the parameterized equation xz = μe. Thus we consider the system

⎧⎨
⎩

Ax = b, x > 0,
AT y + z − ∇f (x) = c, z > 0,
xz = μe,

(2)

with μ > 0.

2.1 The central path of LCCO

As rank(A) = m and the IPC hold, then for a fixedμ > 0 the system (2) has a unique
solution denoted by (x(μ), y(μ), z(μ)) (see [5]). We call x(μ) the μ−center of (P)
and ( y(μ), z(μ)) the μ−center of (D). The set of μ−center defines a homotopy
path, which is called the central path of (P) and (D). If μ goes to zero, then the
limit of the central path exists and since the limit point satisfies the complementarity
condition, the limit yields an optimal solution for both problems (P) and (D).

2.2 The Newton direction and proximity

Now, we proceed to describe a full-Newton step produced by the algorithm for a
given μ > 0. Applying Newton’s method for (2) for a given feasible point (x, y, z)

i.e., the IPC condition holds, we get the following system
⎛
⎝

A 0 0
−∇2f (x) AT I

Z 0 X

⎞
⎠

⎛
⎝

�x

�y

�z

⎞
⎠ =

⎛
⎝

0
0

μe − Xz

⎞
⎠ , (3)
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where X :=diag(x), Z :=diag(z). Under our assumptions, the linear system has a
unique solution (�x, �y, �z). Hence a full-Newton step is defined as

x+ = x + �x, y+ = y + �y and z+ = z + �z.

For the analysis of the algorithm, we define also a norm-based proximity measure
δ(xz; μ) to the central-path as follows

δ(xz; μ) = 1

2

∥∥∥∥∥∥

√(
xz

μ

)−1

−
√

xz

μ

∥∥∥∥∥∥
.

Thus we have
δ(xz; μ) = 0 ⇔ xz = μe.

Hence, the value of δ(xz; μ) can be considered as a measure for the distance from
a given pair (x, y, z) to the μ-center (x(μ), y(μ), z(μ)). We use also a threshold
value β and we suppose that a strictly feasible starting point (x0, y0, z0) such that
δ(x0z0; μ0) ≤ β for certain μ0 is known. This defines a β-neighborhood of the
central-path. The details of the generic interior point algorithm is stated in the next
sub-section.

2.3 Algorithm

Generic Primal-dual interior point algorithm for LCCO (Fig. 1).

3 Analysis of Algorithm 2.3

In this section, we show that Algorithm 2.3 solves the LCCO in polynomial time. For
its analysis, we introduce the notation

v :=
√

xz

μ
, d :=

√
x

z
.

Fig. 1 Algorithm 2.3
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The vector d is used to scale the vectors x and z to the same vector v

d−1x√
μ

= dz√
μ

= v.

The scaled search directions are then

dx := d−1�x√
μ

, dz := d�z√
μ

.

In addition, we have
x�z + z�x = μv(dx + dz), (4)

and
�x�z = μdxdz. (5)

Using the notations in (4) and (5), the linear system in (3) and the proximity become⎛
⎝

Ā 0 0
−H̄ ĀT I

I 0 I

⎞
⎠

⎛
⎝

dx

dy

dz

⎞
⎠ =

⎛
⎝
0
0
v−1 − v

⎞
⎠ (6)

where Ā = √
μAD and H̄ = D∇2f (x)D with D := diag (d) and

δ(v) := δ(xz; μ) = 1

2
‖v−1 − v‖.

Since H̄ is a symmetric positive semidefinite matrix,we have

dT
x dz = dT

x (H̄dx − ĀT dy) = dT
x H̄dx ≥ 0.

This means that the directions are not orthogonal in LCCO, in contrast with LO case.
Thus makes the analysis different.

The next technical lemma will be used later in the analysis of the algorithm.

Lemma 3.1 Let (dx, dy, dz) be a solution of (6) and if δ := δ(xz; μ) and μ > 0.
Then one has

0 ≤ dT
x dz ≤ 2δ2 (7)

and
‖dxdz‖∞ ≤ δ2, ‖dxdz‖ ≤ √

2δ2. (8)

Proof Since 0 ≤ dT
x dz, the first part of the lemma follows immediately from (6) and

the following equality

‖dx‖2 + ‖dz‖2 + 2dT
x dz = ‖dx + dz‖2 =

∥∥∥v−1 − v

∥∥∥
2 = 4δ2.

For the second statement, since

dxdz = 1

4

(
(dx + dz)

2 − (dx − dz)
2
)

and
‖dx + dz‖2 = ‖dx − dz‖2 + 4dT

x dz

it follows on one hand that

‖dx − dz‖ ≤ ‖dx + dz‖
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and on the other hand

‖dxdz‖∞ = 1

4

∥∥∥(dx + dz)
2 − (dx − dz)

2
∥∥∥∞

≤ 1

4
max

(
‖dx + dz‖2∞ , ‖dx − dz‖2∞

)

≤ 1

4
max

(
‖dx + dz‖2 , ‖dx − dz‖2

)

≤ 1

4
‖dx + dz‖2 = 1

4

∥∥∥v−1 − v

∥∥∥
2 = δ2

Hence
‖dxdz‖∞ ≤ δ2.

For the last part of the second statement, we have

‖dxdz‖2 = eT (dxdz)
2

= 1

16
eT ((dx + dz)

2 − (dx − dz)
2)2,

= 1

16

∥∥∥(dx + dz)
2 − (dx − dz)

2
∥∥∥
2

≤ 1

16

(∥∥∥(dx + dz)
2
∥∥∥
2 +

∥∥∥(dx − dz)
2
∥∥∥
2
)

≤ 1

16

(
‖dx + dz‖4 + ‖dx − dz‖4

)

≤ 1

8
‖dx + dz‖4 = 1

8

∥∥∥v−1 − v

∥∥∥
4 = 2δ4.

This implies that

‖dxdz‖ ≤ √
2δ2.

This completes the proof.

In the next lemmas, we show under the condition δ(xz; μ) < 1 that the full-
Newton step is strictly feasible.

Lemma 3.2 Let (x, z) be a strictly feasible primal-dual point. Hence x+ > 0 and
z+ > 0 if and only if e + dxdz > 0.

Proof Let x+ = x +�x and z+ = z+�z we introduce a step length α ∈ [0, 1] and
we define

x(α) = x + α�x and z(α) = z + α�z.

So x0 = x(0) = x, x(1) = x+ and one can introduce similar notations for z hence
x0z0 = xz > 0. We have

x(α)z(α) = (x + α�x) (z + α�z ) = xz + α (x�z + z�x) + α2�x�z.

Now by using again (4), we get

x(α)z(α) = xz + α (μe − xz) + α2�x�z.
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Suppose that e + dxdz > 0, we deduce that μe + �x�z > 0 which is equivalent to
�x�z > −μe. Substitution gives

x(α)z(α) > xz + α (μe − xz) − α2μe

= (1 − α) xz +
(
α − α2

)
μe

= (1 − α) xz + α (1 − α) μe.

Since xz and μe are positive, it follows that x(α)z(α) > 0 for α ∈ [0, 1]. Hence,
none of the entries of x(α) and z(α) vanish for α ∈ [0, 1] , and by continuity the
vectors x (1) and z (1) must be positive. This completes the proof.

For convenience, we may write

v2+ = x+z+
μ

and it is easy to have
v2+ = e + dxdz.

Lemma 3.3 If δ := δ(xz; μ) < 1. Then the primal-dual full-Newton step is strictly
feasible.

Proof By Lemma 3.2, x+ > 0 and z+ > 0 are strictly feasible if e + dxdz > 0. So
e + dxdz > 0 holds if 1 + (dxdz)i > 0 for all i. Since

1 + (dxdz)i ≥ 1 − |(dxdz)i | for all i
≥ 1 − ‖dxdz‖∞ ,

it follows by (8) in Lemma 3.1, that:

1 − ‖dxdz‖∞ ≥ 1 − δ2.

Thus e + dxdz > 0 holds if δ < 1. This completes the proof.

The local quadratic convergence of the full-Newton step to the target
(x(μ), y(μ), z(μ)) is proved in the following lemma.

Lemma 3.4 If δ(xz; μ) < 1. Then

δ+ := δ(x+z+; μ) ≤ δ2√
2(1 − δ2)

.

If δ ≤ 1
2 , then δ+ ≤ δ2, which means the quadratic convergence of the full-Newton

step.

Proof We have

4δ2+ =
∥∥∥v−1+ − v+

∥∥∥
2

=
∥∥∥v−1+

(
e − v2+

)∥∥∥
2
.
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But v2+ = e + dxdz and v−1+ = e√
e+dxdz

, then it follows that

4δ2+ =
∥∥∥∥

dxdz√
e + dxdz

∥∥∥∥
2

≤ ‖dxdz‖2
1 − ‖dxdz‖∞

.

In view of Lemma 3.1, the result follows.

In the following lemma, we investigate the effect on the proximity measure of a
full-Newton step followed by an update of the barrier parameter μ.

Lemma 3.5 If δ(xz; μ) ≤ 1√
2
and μ+ = (1 − θ) μ where 0 < θ < 1. Then

δ2(x+z+; μ+) ≤ (1 − θ)δ2+ + θ2(n + 1)

4(1 − θ)
+ θ

2
.

Furthermore, if δ ≤ 1√
2
, θ = 1

2
√

n
and n ≥ 2, then we have

δ(x+z+; μ+) ≤ 1√
2
.

Proof Let v+ =
√

x+z+
μ

and μ+ = (1 − θ) μ.Then

4δ2(x+z+; μ+) =
∥∥∥∥
(√

μ+
x+z+

)
−

(√
x+z+
μ+

)∥∥∥∥
2

=
∥∥∥∥
√
1 − θv−1+ − 1√

1 − θ
v+

∥∥∥∥
2

=
∥∥∥∥
√
1 − θ(v−1+ − v+) − θ√

1 − θ
v+

∥∥∥∥
2

= (1 − θ)

∥∥∥v−1+ − v+
∥∥∥
2 + θ2

1 − θ
‖v+‖2 − 2θ(v−1+ − v+)T v+

= 4(1 − θ)δ2+ + θ2

1 − θ
‖v+‖2 − 2θ(v−1+ − v+)T v+

= 4(1 − θ)δ2+ + θ2

1 − θ
‖v+‖2 − 2θn + 2θ ‖v+‖2 ,

since (v−1+ )T v+ = n and vT+v+ = ‖v+‖2 . As

xT+z+ = μ
(
n + dT

x dz

)
,

then by Lemma 3.1 (7) and if δ ≤ 1√
2
, it follows

‖v+‖2 = 1

μ
xT+z+ ≤ (n + 1).
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Consequently,

δ2(x+z+; μ+) ≤ (1 − θ)δ2+ + θ2(n + 1)

4(1 − θ)
+ θ

2
.

For the last statement the proof goes as follows. If δ ≤ 1√
2
, then δ2+ ≤ 1

4 and this

yields

δ2(x+z+; μ+) ≤ θ2(n + 1)

4(1 − θ)
+ (1 − θ)

4
+ θ

2
.

Letting θ = 1
2
√

n
so θ2 = 1

4n , it follows that

δ2(x+z+; μ+) ≤
1
4n (n + 1)

4(1 − θ)
+ (1 − θ)

4
+ θ

2
.

As n+1
4n ≤ 3

8 for all n ≥ 2, we get

δ2(x+z+; μ+) ≤ 3

32(1 − θ)
+ (1 − θ)

4
+ θ

2
.

If n ≥ 2, then 0 ≤ θ ≤ 1
2
√
2
. The function

f (θ) = 3

32(1 − θ)
+ (1 − θ)

4
+ θ

2

is continuous and monotonic increasing on 0 ≤ θ ≤ 1
2
√
2
, consequently

f (θ) ≤ f

(
1

2
√
2

)
= 0.48341 <

1

2
, ∀θ ∈

[
0,

1

2
√
2

]
.

Hence δ(x+z+; μ+) ≤ 1√
2
. This completes the proof.

We deduce from Lemma 3.5, that for the defaults θ = 1
2
√

n
, and β = 1√

2
, the

conditions x > 0, z > 0 and δ2(x+z+; μ+) ≤ 1√
2
are maintained during the solution

process. Hence the algorithm is well defined.
Next lemma gives an upper bound of the duality gap after a full-Newton step.

Lemma 3.6 If δ := δ(xz; μ) ≤ 1√
2
. Then after a full-Newton step the duality gap

satisfies:

xT+z+ ≤ μ(n + 1). (9)

Proof It follows straightforwardly from the proof in Lemma 3.5.

The following lemma gives an upper bound for the total number of iterations
produced by Algorithm 2.3.
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Lemma 3.7 Let xk+1 and zk+1be the (k + 1) − th iteration produced by Algorithm
2.3 with μ := μk. Then (xk+1)T zk+1 ≤ ε if

k ≥
[
1

θ
log

2μ0n

ε

]
.

Proof It follows from Lemma 3.6 (9), that
(
xk+1

)T

zk+1 ≤ μk(n + 1)

with
μk = (1 − θ)μk−1 = (1 − θ)kμ0.

Then it follows that:
(
xk+1

)T

zk+1 ≤ (1 − θ)kμ0(n + 1).

Since n + 1 ≤ 2n for all n ≥ 1, then we have
(
xk+1

)T

zk+1 ≤ (1 − θ)k2μ0n.

Thus the inequality (xk)T zk ≤ ε is satisfied if (1 − θ)k2μ0n ≤ ε.

Taking logarithms, we obtain

k log(1 − θ) ≤ log ε − log 2μ0n

and using − log(1 − θ) ≥ θ for 0 < θ < 1, then (1 − θ)k2μ0n ≤ ε holds if

kθ ≥ log
2nμ0

ε
.

This completes the proof.

Theorem 3.1 Let θ = 1
2
√

n
and μ0 = 1

2 . Then Algorithm 2.3 requires at most

O
(√

n log
n

ε

)

iterations.

Proof By taking θ = 1
2
√

n
and μ0 = 1

2 in Lemma 3.7, the proof is straightforward.

4 Numerical results

In this section, we give some numerical results on two LCCO problems. Different
values of the parameter barrier μ and the update barrier θ are presented to show
their influence in reducing the number of iterations produced by our algorithm. The
initial primal-dual point (x0, y0, z0) is chosen such that the interior point condition
holds and the proximity δ(x0z0; μ0) do not exceed the threshold β. The tolerance,
the theoretical update barrier and the threshold used in the implementation are
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Table 1 Numerical results for
Problem 1 μ0\θ theoretical θ = 1

2
√

n
relaxed θ = 1√

n

0.5 theoretical 29 14

0.05 relaxed 23 11

0.005 relaxed 17 9

0.0005 relaxed 12 6

ε = 10−6, θ = 1
2
√

n
and β = 1√

2
, respectively.

Problem 1 The LCCO problem with its data is given by

f (x) =
8∑

i=1

xi ln xi s.t. Ax = b, x ≥ 0

where

A =

⎛
⎜⎜⎝
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

⎞
⎟⎟⎠ , b =

⎛
⎜⎜⎝
1
1
1
1

⎞
⎟⎟⎠ .

The initial primal-dual point is:

x0 = (0.4, 0.6, 0.4, 0.6, 0.6, 0.4, 0.6, 0.4)T .

y0 = (0, 0, 0, 0)T .

z0 = (0.083709, 0.48917, 0.083709, 0.48917, 0.48917,

0.083709, 0.48719, 10.083709)T .

An exact optimal primal-dual solution of problem 1 is:

xopt = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)T .

yopt = (0.320702, 0.320702, 0.320702, 0.320702)T .

zopt = (0, 0, 0, 0, 0, 0, 0, 0)T .

The numerical results of this problem are stated in Table 1.

Problem 2 The convex quadratic LCCO problem is given by

f (x) = 1

2
xT Qx + cT x s.t. Ax = b, x ≥ 0

where

Q =

⎛
⎜⎜⎝
4 −2 0 0
−2 4 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , A =

(
1 1 1 0
1 5 1 1

)
, b =

(
2
5

)
and c =

⎛
⎜⎜⎝
1
2
0
0

⎞
⎟⎟⎠ .
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Table 2 Numerical results for
Problem 2 μ0\θ theoretical θ = 1

2
√

n
relaxed θ = 1√

n

0.5 theoretical 20 9

0.05 relaxed 16 8

0.005 relaxed 12 6

0.0005 relaxed 8 4

The initial starting point is:

x0 = (0.6, 0.3, 1.1, 1.8)T .

y0 = (−0.5, −0.5)T .

z0 = (3.8, 5, 1, 0.5)T .

An exact optimal solution is:

xopt = (0, 0, 2, 3)T .

yopt = (0, 0)T .

zopt = (1, 2, 0, 0)T .

The numerical results of this problem are stated in Table 2.
The tables show that the lowest iterations number produced by the algorithm, is

obtained by the relaxed update barrier parameter θ = 1√
n
and the relaxed barrier

μ0 = 0.0005.

5 Conclusion

In this paper, we have presented a feasible short-step primal-dual interior point
algorithm for solving LCCO. At each iteration, we use only full-Newton step. The
favorable iteration bound with short-steps method is deserved, namely O(

√
n log n

ε
).

Moreover, the resulting analysis is straightforward to CQO analogue. Few numerical
results are reported to show the efficiency of the proposed algorithm.
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