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Abstract New algorithms are developed for estimating the condition number of
f (A)b, where A is a matrix and b is a vector. The condition number estimation
algorithms for f (A) already available in the literature require the explicit compu-
tation of matrix functions and their Fréchet derivatives and are therefore unsuitable
for the large, sparse A typically encountered in f (A)b problems. The algorithms
we propose here use only matrix-vector multiplications. They are based on a modi-
fied version of the power iteration for estimating the norm of the Fréchet derivative
of a matrix function, and work in conjunction with any existing algorithm for com-
puting f (A)b. The number of matrix-vector multiplications required to estimate the
condition number is proportional to the square of the number of matrix-vector multi-
plications required by the underlying f (A)b algorithm. We develop a specific version
of our algorithm for estimating the condition number of eAb, based on the algorithm
of Al-Mohy and Higham (SIAM J. Matrix Anal. Appl. 30(4), 1639–1657, 2009).
Numerical experiments demonstrate that our condition estimates are reliable and of
reasonable cost.
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1 Introduction

The computation of f (A)b arises in a wide variety of applications in science and
engineering. Here A ∈ C

n×n, b ∈ C
n and f (A) is a matrix function. A particularly

important example is the action of the matrix exponential eAb, which is central to the
solution of differential equations using exponential integrators [23]. Further exam-
ples include the application of sign(A)b in problems in control theory and lattice
quantum chromodynamics [14], and the solution of fractional differential equations
using Aαb, α ∈ R [6].

In applications, typically A ∈ C
n×n is large and sparse, but f (A) and b may be

dense. This imposes constraints on how f (A)b can be computed. Storing O(n2) data
is not feasible and operating on A using dense matrix techniques requiring O(n3)

flops (such as Schur decomposition) is impractical. In particular, it is undesirable
to explicitly compute f (A). In practice, this means that a successful algorithm for
computing f (A)b should only require products of the form Av or A∗v where v is a
vector.

Much of the early work on the numerical computation of f (A)b was based on
Krylov subspace projection methods [15, 27, 30, 34]. The EXPOKIT software pack-
age [32] for computing eAb is based on these methods. More recently, algorithms
have been developed using rational Krylov methods (see [16] and the references
therein).

An alternative approach, suggested in [9] and extended with the use of confor-
mal mappings in [17], is to apply quadrature to a contour integral representation of
f (A)b.

The final class of methods we mention here are polynomial expansions of the form
f (A) ≈ pk(A)b where pk(A) is a polynomial obtained by truncating an expansion
for f in terms of a complete system of polynomials. For example, Sheehan, Saad
and Sidje [31] use Chebyshev and Laguerre polynomial expansions. The most widely
used example of this type of method is that of Al-Mohy and Higham [2], which
uses scaling and a truncated Taylor series to compute eAb. An error analysis in exact
arithmetic is used to obtain optimal scaling and truncation parameters. Fischer [13]
has recently performed a rounding error analysis for eAb algorithms based on the
scaling method. Although a full backward error analysis is not obtained, some classes
of (A, b) for which the algorithms are backward stable are identified.

Implementations of f (A)b algorithms are available in many programming lan-
guages. A comprehensive list is given in [20].

The three classes of methods described above each have their own weaknesses. For
example rational Krylov methods require large, sparse linear systems to be solved at
each iteration. Quadrature and Chebyshev expansion methods are inefficient without
some knowledge of the eigensystem of A. The Taylor series method for eAb can
become very expensive when ‖A‖ is large.

Condition number estimation for f (A) is now a well-developed field. Kenney and
Laub [25, 26] developed some general algorithms for condition estimation. More
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recently, specific algorithms have been developed for estimating condition numbers
for the matrix exponential [1], the matrix logarithm [4] and matrix powers [21], all
in the 1-norm. The approach taken by these algorithms is to estimate the norm of
the Fréchet derivative of f (A), which is equal to the absolute condition number of
f (A) [29]. Despite this, the condition number of f (A)b, in which perturbations in b

must also be considered, has received little attention in the literature. Some bounds
are available. For example Al-Mohy and Higham [2] show that the relative condition
number of f (A)b, cond(f, A, b), is bounded above in the Frobenius norm by a term
involving the relative condition number of f (A), cond(f, A):

cond(f, A, b) ≤ ‖f (A)‖F ‖b‖F

‖f (A)b‖F

(1 + cond(f, A)).

However, the available algorithms for estimating cond(f, A) require the computa-
tion of f (A) and its Fréchet derivatives. This approach is not feasible for the large,
sparse A typically of interest in f (A)b problems. We know of no algorithms designed
for estimating the condition number of f (A)b.

The contribution in this work is the development of a general algorithm for esti-
mating the condition number of f (A)b. The algorithm works in conjunction with any
method for computing f (A)b that relies only on matrix-vector products or the solu-
tion of linear systems. Hence the algorithm itself requires only matrix-vector products
and linear system solves, and is suitable for large, sparse A. We have developed a
specific version of our algorithm for the action of the matrix exponential, based on
Al-Mohy and Higham’s eAb algorithm [2].

In many applications, it is the quantity f (tA)b that is of interest, rather than
f (A)b, where t is a scalar. For example, in applications of exponential integrators, t

typically denotes a time step. In Section 2 we define a condition number that takes
into account the effect of perturbations in A, b and t . We obtain some useful bounds
on which to base our estimates, and show that the effect of perturbing t increases the
condition number by at most a factor 2. Thus for the purposes of condition estimation,
perturbations in t can be neglected. In Section 3 we develop algorithms for estimat-
ing the condition number, based on computing the bounds in Section 2 via the norm
of the Fréchet derivative of f (A). We consider the specific case etAb in Section 4.
Numerical experiments are given in Section 5, using a combination of dense matrices
of size n ≤ 100 and a selection of large, sparse test matrices taken from the f (A)b

literature.

2 Defining the condition number

The standard notation in the matrix function literature uses condrel(f, A) and
condabs(f, A) to denote the relative and absolute condition numbers of f (A).
In this paper we will only consider relative condition numbers, so we drop the
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subscript rel and use cond(f, A, b, t) to denote the relative condition number of
f (tA)b:

cond(f, A, b, t) := lim
ε→0

sup
‖�A‖≤ε‖A‖
‖�b‖≤ε‖b‖
|�t |≤ε|t |

‖f ((t + �t)(A + �A))(b + �b) − f (tA)b‖
ε‖f (tA)b‖ (2.1)

= lim
ε→0

sup
‖�A‖≤ε‖A‖
‖�b‖≤ε‖b‖
|�t |≤ε|t |

1

ε‖f (tA)b‖
(
‖Lf (tA, t�A)b + f (tA)�b

+ Lf (tA, �tA)b + o(‖�A‖)
+ o(‖�b‖) + o(|�t |)‖

)
,

(2.2)

where Lf (A, �A) is the Fréchet derivative of f in the direction of the matrix �A

and ‖ · ‖ denotes any choice of vector norm and the corresponding induced matrix
norm.

Note that if f (A) = A−1 and t is ignored, then (2.1) is precisely equivalent to
the standard normwise condition number for the linear system Ax = b, which, in the
notation of [18], is given by

κA,b(A, x) := lim
ε→0

sup

{‖�x‖
ε‖x‖ : (A + �A)(x + �x) = b + �b,

‖�A‖ ≤ ε‖A‖, ‖�b‖ ≤ ε‖b‖
}
.

It can be shown (see, for example, [18, Section 7.1]) that

κA,b(A, x) = ‖A−1‖‖b‖
‖x‖ + ‖A−1‖‖A‖.

Thus the condition number of A−1b can easily be computed. For general f however,
it is not possible to express cond(f, A, b, t) in such a simple form, so a different
approach is needed.

An upper bound for cond(f, A, b, t) can be obtained by separating out the terms
in the numerator of (2.2), ignoring the o(‖�A‖), o(‖�b‖) and o(|�t |) terms and
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using the linearity of the Fréchet derivative in its second argument. This gives

cond(f, A, b, t) ≤ lim
ε→0

sup
‖�A‖≤ε‖A‖

‖Lf (tA, t�A)b‖
ε‖f (tA)b‖ + lim

ε→0
sup

‖�b‖≤ε‖b‖
‖f (tA)�b‖
ε‖f (tA)b‖

+ lim
ε→0

sup
|�t |≤ε|t |

‖�tLf (tA, A)b‖
ε‖f (tA)b‖

= lim
ε→0

sup
‖�A‖≤ε

‖Lf (tA, �A/ε)b‖‖tA‖
‖f (tA)b‖

+ lim
ε→0

sup
‖�b‖≤ε

‖f (tA)�b/ε‖‖b‖
‖f (tA)b‖ + ‖tLf (tA, A)b‖

‖f (tA)b‖
= sup

‖�A‖≤1

‖Lf (tA, �A)b‖‖tA‖
‖f (tA)b‖ + sup

‖�b‖≤1

‖f (tA)�b‖‖b‖
‖f (tA)b‖

+ ‖Lf (tA, tA)b‖
‖f (tA)b‖

(2.3)

= sup
‖�A‖=1

‖Lf (tA, �A)b‖‖tA‖
‖f (tA)b‖ + ‖f (tA)‖‖b‖

‖f (tA)b‖ + ‖Lf (tA, tA)b‖
‖f (tA)b‖ .

To obtain a lower bound, we take two of the quantities �A, �b, �t to be zero.
Thus

1

‖f (tA)b‖ max

(
‖tA‖ max

‖�A‖=1
‖Lf (tA,�A)b‖, ‖f (tA)‖‖b‖, ‖Lf (tA, tA)b‖

)

≤ cond(f,A, b, t)

≤ 1

‖f (tA)b‖
(

‖tA‖ max
‖�A‖=1

‖Lf (tA,�A)b‖+‖f (tA)‖‖b‖+‖Lf (tA, tA)b‖
)

. (2.4)

The upper and lower bounds differ by a factor of at most 3 so estimating either will
provide a suitable estimate for cond(f, A, b, t). If t = 1 is fixed, the problem reduces
to finding the condition number of f (A)b, which we denote by cond(f, A, b). In this
case (2.4) reduces to

1

‖f (A)b‖ max

(
‖A‖ max

‖�A‖=1
‖Lf (A, �A)b‖, ‖f (A)‖‖b‖

)
≤ cond(f, A, b)

≤ 1

‖f (A)b‖
(

‖A‖ max
‖�A‖=1

‖Lf (A, �A)b‖ + ‖f (A)‖‖b‖
)

,

with the upper and lower bounds now differing by a factor of at most 2. Essentially
the same result was originally obtained by Al-Mohy and Higham [2, Lemma 4.2].
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By choosing �A = A/‖A‖, we find that

‖tA‖ max
‖�A‖=1

‖Lf (tA, �A)b‖ ≥ ‖Lf (tA, tA)b‖,

so, as one might expect, the terms in (2.4) caused by the perturbation of t are smaller
than those caused by perturbing A. It follows that

cond(f, tA, b) ≤ cond(f, A, b, t) ≤ 2 cond(f, tA, b), (2.5)

and that

1

‖f (tA)b‖ max

(
‖tA‖ max

‖�A‖=1
‖Lf (tA, �A)b‖, ‖f (tA)‖‖b‖

)

≤ cond(f, tA, b) ≤ cond(f, A, b, t)

≤ 1

‖f (tA)b‖
(

2‖tA‖ max
‖�A‖=1

‖Lf (tA, �A)b‖ + ‖f (tA)‖‖b‖
)

. (2.6)

In practice, only order of magnitude estimates of condition numbers are ever needed.
The upper bound in (2.6) is an overestimate by at most a factor of 6 and it is this
quantity that we will use as our condition estimate. Furthermore, (2.5) suggests that
for simplicity we can ignore t and consider just f (A)b and cond(f, A, b). A suitable
estimate for cond(f, A, b, t) can be found by simply replacing A with tA.

3 Estimating the condition number of f (A)b

Computing an estimate of the upper bound in (2.6) depends on our ability to esti-
mate max‖�A‖=1 ‖Lf (A, �A)b‖, ‖A‖ and ‖f (A)‖ using only products of the form
Av and A∗v. The main aim of this section is to develop methods for estimating
max‖�A‖=1 ‖Lf (A, �A)b‖, but it will be instructive to briefly discuss ‖A‖ and
‖f (A)‖ first.

The quantity ‖A‖1 can be estimated using the 1-norm estimation algorithm of
Higham and Tisseur [22], hereafter referred to as normest1. The algorithm returns
an estimate using fewer than 10 products of the form Av and A∗v. Turning to the
2-norm, the power method (see for example [19, Algorithm 3.19]) also uses only
matrix-vector products. Convergence depends on the singular values of A, but in
practice very few iterations are required to obtain an order of magnitude estimate of
‖A‖2.

The power method and normest1 can both also be used to estimate ‖f (A)‖.
Products of the form f (A)v or f (A)∗v are now required. These products can be
computed provided that an algorithm for f (A)b is available.

One way of estimating max‖�A‖=1 ‖Lf (A, �A)b‖ is to simply try several ran-
dom choices of �A. Kenney and Laub [26] made this approach rigorous for real
matrices and showed how, in practice, few tries are required in order to achieve
a high probability of being within an order of magnitude of the true maximum.
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However, in the context of the f (A)b problem for large, sparse A, it is undesirable to
store dense O(n2) quantities such as a randomly chosen �A. This approach may be
of interest when only perturbations in the nonzero elements of A are of relevance to
the condition number, but we will not study this further here. Instead we will inves-
tigate another class of methods for estimating max‖�A‖=1 ‖Lf (A, �A)b‖, based on
the Kronecker form of the Fréchet derivative.

By linearity in �A, the vector Lf (A, �A)b can be written in the Kronecker form

Lf (A, �A)b = Kf (A, b) vec(�A), where Kf (A, b) ∈ C
n×n2

and the vec operator
stacks the columns of a matrix on top of each other. The Hermitian conjugate of the
Kronecker form, Kf (A, b)∗, can be related to the adjoint of the Fréchet derivative
as follows. For P,Q ∈ C

p×q let 〈P,Q〉 = trace(Q∗P). Then for y ∈ C
n and

E ∈ C
n×n we have

〈Kf (A, b) vec(E), y〉 = 〈Lf (A, E)b, y〉.

The adjoint of the Fréchet derivative, L�
f : Cn×n → C

n×n, is then defined via

〈Lf (A, E), F 〉 = 〈E,L�
f (A, F )〉.

The Hermitian conjugate Kf (A, b)∗ can now be expressed in terms of L�
f .

〈vec(E), Kf (A, b)∗y〉 = 〈Kf (A, b) vec(E), y〉
= 〈Lf (A, E)b, y〉
= 〈Lf (A, E), yb∗〉
= 〈E,L�

f (A, yb∗)〉.

Hence

Kf (A, b)∗y = L�
f (A, yb∗). (3.7)

Various candidate algorithms to compute or estimate the quantity
max‖�A‖=1 ‖Lf (A, �A)b‖ via the Kronecker form are now available, depending on
our choice of norm. We consider first the Frobenius norm, and note that

max
‖�A‖F =1

‖Lf (A, �A)b‖F = max
‖ vec(�A)‖2=1

‖Kf (A, b) vec(�A)‖2 = ‖Kf (A, b)‖2.

By explicitly forming Kf (A, b) and computing its 2-norm, we can obtain
max‖�A‖F =1 ‖Lf (A, �A)b‖F . The Frobenius norm is not induced by any vector
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norm so it is not an ideal choice for computing the upper bound in (2.6). However,
since

1√
n

max
‖�A‖1=1

‖Lf (A, �A)b‖1 ≤ max
‖�A‖F =1

‖Lf (A, �A)b‖F

≤ √
n max

‖�A‖1=1
‖Lf (A, �A)b‖1, (3.8)

we can use
√

n‖Kf (A, b)‖2 as an upper bound for max‖�A‖1=1 ‖Lf (A, �A)b‖1.
Assuming that we are able to compute quantities of the form Lf (A, E)b, the
following algorithm, analogous to [19, Algorithm 3.17], estimates cond(f, A, b).

Algorithm 3.1 For a function f , a matrix A ∈ C
n×n and a vector b ∈ C

n, this
algorithm computes an upper bound κ for cond(f, A, b) in the 1-norm, with κ ≤
6
√

n cond(f, A, b).

Cost: O(n5) flops assuming evaluation of matrix functions and their derivatives
cost O(n3) flops.

Due to its cost, and the need to store the n×n2 quantity Kf , Algorithm 3.1 will be
of practical use only for small problems, but it will enable us to test the more efficient
algorithms we develop later.

An alternative approach to estimating cond(f, A, b) is to adapt the standard 1-
norm condition estimation method for matrix functions [19, Algorithm 3.22], which
is based on estimating the 1-norm of the Kronecker form of the Fréchet derivative
using normest1. Using [11, Lemma 2.1] we deduce that

1

n
max

‖�A‖1=1
‖Lf (A, �A)b‖1 ≤ ‖Kf (A, b)‖1 ≤ max

‖�A‖1=1
‖Lf (A, �A)b‖1.

The quantity ‖Kf (A, b)‖1 can then be estimated using [11, Algorithm 2.2], which
applies normest1 to the rectangular matrix Kf (A, b). This requires computation

of quantities of the form Kf (A, b)v or Kf (A, b)∗w, where v ∈ C
n2

and w ∈ C
n.

Although these can be computed without explicitly forming Kf (A, b), the approach
still depends on the storage and use of dense vectors of size n2. This will not be
practical if A is large and sparse.

Consider instead [19, Algorithm 3.20]. The algorithm is an application of the
power method to Kf (A)∗Kf (A), where Kf (A) ∈ C

n2×n2
is the Kronecker form of

the Fréchet derivative of f (A). The result is an estimate of ‖Kf (A)‖2 = ‖Lf (A)‖F .
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The power method can instead be applied to Kf (A, b)∗Kf (A, b) to provide an
estimate for ‖Kf (A, b)‖2. This results in the following algorithm.

Algorithm 3.2 For the function f , A ∈ C
n×n and b ∈ C

n this algorithm computes
an estimate γ ≤ ‖Kf (A, b)‖2.

A typical convergence test for γ is |γk+1 − γk| ≤ tolγk+1 or k > it max, where
tol = 0.1 is sufficient for an order of magnitude estimate. In practice very few power
iterations are required and it is reasonable to take it max = 10.

Algorithm 3.2 suffers from the same issues that were encountered when applying
[11, Algorithm 2.2] to Kf (A, b): Zk has size n × n and will in general be dense.
However, a few alterations to Algorithm 3.2 will enable us to estimate ‖Kf (A, b)‖2
whilst only storing vectors of size n.

First we swap the order of Lf and L�
f so that we are estimating the 2-norm of the

n × n matrix Kf (A, b)Kf (A, b)∗ instead of the n2 ×n2 matrix Kf (A, b)∗Kf (A, b).
In particular we can now use a random vector as our starting point rather than a
random n × n matrix.

Second, in Algorithm 3.2 there are two iterated quantities, wk ∈ C
n and Zk ∈

C
n×n. We can merge lines 3 and 4 into single iterated quantity, yk ∈ C

n. Then
yk+1 = Lf (A, L�

f (A, ykb
∗))b.

Using yk as our iterated quantity prevents us from using the ratio γk+1 =
‖Zk+1‖F /‖wk+1‖F in line 5. Instead we must use

√‖yk+1‖F /‖yk‖F . This is a
weaker lower bound to ‖Kf (A, b)Kf (A, b)‖2 than ‖Zk+1‖F /‖wk+1‖F but this is a
necessary evil, and numerical tests will show that the number of iterations required
for convergence is still very low.

Applying these changes to Algorithm 3.2, we obtain the following algorithm.

Algorithm 3.3 For the function f , A ∈ C
n×n and b ∈ C

n this algorithm computes
an estimate γ ≤ ‖Kf (A, b)‖2.
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The ease with which we can compute Lf (A, L�
f (A, ykb

∗))b will determine how

useful Algorithm 3.3 is. To compute Lf (A, L�
f (A, ykb

∗))b for general f , we first
note that the Fréchet derivative of a matrix function can be evaluated by computing
the function of a larger matrix:

f

([
A E

0 A

])
=

[
f (A) Lf (A, E)

0 f (A)

]
.

Under suitable conditions on f [21, Lemma 6.2], which are satisfied for ‘standard’
functions such as the exponential, the adjoint of the Fréchet derivative is given by

L�
f (A, E) = Lf̄ (A, E∗)∗,

where f̄ (z) = f (z̄). This implies

f̄

([
A∗ E

0 A∗
])

=
[

f̄ (A∗) L�
f (A∗, E)

0 f̄ (A∗)

]
.

We can exploit the above relations to develop a very general method of computing
Lf (A, L�

f (A, ykb
∗))b that depends only on the manner in which f (A)b is computed.

We note that Lf (A, L�
f (A, ykb

∗))b is given by the top n elements of

f

([
A L�

f (A, ykb
∗)

0 A

])[
0
b

]
. (3.9)

Suppose we have an algorithm for computing f (A)b which requires � matrix-vector
multiplications. Then computing (3.9) will require � multiplications of the form

[
A L�

f (A, ykb
∗)

0 A

] [
p

q

]

for some p, q ∈ C
n. Each such multiplication requires the computation of

L�
f (A, ykb

∗)q in addition to the two multiplications Ap and Aq. We can evaluate

L�
f (A, ykb

∗)q by computing

f̄

([
A∗ ykb

∗
0 A∗

])[
0
q

]
,

and storing the top n entries. This itself requires � multiplications of the form
[

A∗ ykb
∗

0 A∗
] [

u

v

]
=

[
A∗u + ykb

∗v
A∗v

]
.

Thus the total number of matrix-vector multiplications (of size n) required to com-
pute Lf (A, L�

f (A, ykb
∗))b is 2�(�+1). Since only an order of magnitude condition

estimate is required, Lf (A, L�
f (A, ykb

∗))b need not be evaluated to double preci-
sion accuracy, so � need not be as large as when f (A)b itself is computed in double
precision.

Rational Krylov methods also require linear systems of the form Ar = s or A∗r =
s to be solved to evaluate f (A)b. This can easily be accounted for in our approach.
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Evaluating (3.9) using a Krylov method may require solutions of systems of the form
[

A L�
f (A, ykb

∗)
0 A

] [
x

y

]
=

[
p

q

]
.

The solution can be obtained by solving the smaller systems Ay = q and Ax =
p − L�

f (A, ykb
∗)y. The quantity L�

f (A, ykb
∗)y is computed by finding

f̄

([
A∗ ykb

∗
0 A∗

]) [
0
y

]
,

with any linear systems of size 2n split into 2 systems of size n in a similar manner.
We collate the ideas above into the following algorithm for computing

Lf (A, L�
f (A, ykb

∗))b.

Algorithm 3.4 Given a method for computing f (A)b that requires only matrix-
vector multiplications and the solution of linear systems, this algorithm computes
Lf (A, L�

f (A, ykb
∗))b. The user-supplied subroutine y = fAb(x), where x is a vec-

tor, must compute the quantity y = f (X)x for some matrix X by requesting products
of the form Xv or solutions to linear systems of the form Xv = w.

Cost: If f (A)b can be evaluated using � matrix-vector products and 	 linear
system solves (of size n), then Lf (A, L�

f (A, ykb
∗))b is evaluated using 2�(�+	+

1) products and 2	(	 + � + 1) solves (also of size n).
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If f has a Taylor series with real coefficients, so that f ≡ f̄ , then the complex
conjugation can be removed whenever it appears in Algorithm 3.4.

We are now in a position to state our overall algorithm for estimating
cond(f, A, b). Algorithms 3.3 and 3.4 are used to estimate the quantity
max‖�A‖F =1 ‖Lf (A, �A)b‖F . This is combined with (3.8) to give an estimate of
the upper bound in (2.6) in the 1-norm.

Algorithm 3.5 Given a method for computing f (A)b that requires only matrix-vector
multiplications or linear system solves, this algorithm computes an estimate of a
quantity κ ≥ cond(f, A, b) with κ ≤ 6

√
n cond(f, A, b) in the 1-norm. The user-

supplied subroutine y = fAb(x), where x is a vector, must compute the quantity
y = f (X)x for some matrix X by requesting products of the form Xv or solutions
to linear systems of the form Xv = w.

Some f (A)b algorithms are actually designed to compute f (A)B, where B ∈
C

n×m (for example [2]). Our analysis and algorithms readily generalize to this case.
In (2.3) the term

sup
‖�B‖≤1

‖f (A)�B‖

now arises as a result of perturbing B. In the 1-norm this term is simply ‖f (A)‖1.
The iterated quantity in Algorithm 3.3 becomes

Yk+1 = Lf (A, L�
f (A, YkB

∗))B ∈ C
n×m,

and vector 2-norms in Algorithm 3.3 are replaced with the Frobenius norm for n×m

matrices. No other changes are required to the algorithms in this section.
Algorithm 3.5 is designed to work for general f but it can be made more efficient

by adapting it to specific f (A)b algorithms. In Section 4 we consider the specific
case of the action of the matrix exponential eAb.

4 Application to the action of the matrix exponential

Al-Mohy and Higham’s algorithm [2] uses a scaling scheme based on the identity
eA = (eA/s)s, s ∈ N to reduce the norm of A and improve the convergence properties
of a truncated Taylor series. Error analysis is available to obtain an optimal choice of
scaling parameter s and truncation parameter m for a given precision. Approximately
sm matrix-vector multiplications are required to estimate eAb.

It is natural to ask whether a similar approach might be preferable to Algorithm 3.4
for computing the quantity Lf (A, L�

f (A, ykb
∗))b. Substituting the truncated Taylor
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series for eA/s into (eA/s)s and differentiating, we obtain

Lexp(A, L�
exp(A, yb∗))b =

m∑
i=1

i∑
j=1

m∑
k=1

k∑
l=1

s∑
p=1

s∑
q=1

{aiak

sk+i
(eA/s)q−1Aj−1(eA∗/s)p−1(A∗)l−1

(yb∗)(A∗)k−l (eA∗/s)s−pAi−j (eA/s)s−qb

}
,

where ai = 1/i!. Computing Lf (A, L�
f (A, ykb

∗))b in this manner requires O(s3m7)

matrix-vector multiplications. In comparison, using Algorithm 3.4 requires O(s2m2)

multiplications. We therefore focus on adapting Algorithm 3.4.
Al-Mohy and Higham devised a method of choosing s and m to obtain eAb with a

given precision (in exact arithmetic) in the most efficient manner possible. Quantities
of the form ‖Ap‖1/p

1 are computed using normest1 for p = 2, . . . , 8. These quan-
tities are compared with a set of pre-computed parameters θm, m = 2, . . . , 55 whose
values depend on the desired precision. For each m, θm is used to choose s such that
the backward error bound (in exact arithmetic) does not exceed the desired precision.
The choice of m which results in the smallest value of sm is then used. Since only
an order of magnitude estimate for the condition number is required, the θm for half
precision can be used. Numerical experiments in Section 5 show that this results in a
significant computational saving. Table 1 shows selected values of θm.

The evaluation of Lexp(A, L�
exp(A, yb∗))b using Algorithm 3.4 effectively

requires the computation of quantities of the form eXy where

X =
[

A L�
f (A, ykb

∗)
0 A

]
, or X =

[
A∗ ykb

∗
0 A∗

]
.

In theory, to guarantee the desired precision, for every different X we would need
to recompute s and m to take into account the changing (1, 2) block. In practice,
it is more desirable to compute s and m once at the beginning of the algorithm. If
the 1-norm of the (1, 2) block in X does not exceed ‖A‖1, then the s and m which
are optimal for eAb are also optimal for eXy. If the (1, 2) block is larger in 1-norm
than ‖A‖1, then the s and m which are optimal for eAb may not be optimal for eXy

and a loss of accuracy could result. In practice, since only an order of magnitude
estimate of the condition number is required, our numerical experiments suggest that
computing s and m once at the beginning of the algorithm is nevertheless acceptable.

Table 1 Selected constants θm for half, single and double precision

m 5 10 15 20 25 30 35 40 45 50 55

Half 7.1e-1 2.2e0 3.7e0 5.2e0 6.6e0 8.1e0 9.5e0 1.1e1 1.2e1 1.4e1 1.5e1

Single 1.3e-1 1.0e0 2.2e0 3.6e0 4.9e0 6.3e0 7.7e0 9.1e0 1.1e1 1.2e1 1.3e1

Double 2.4e-3 1.4e-1 6.4e-1 1.4e0 2.4e0 3.5e0 4.7e0 6.0e0 7.2e0 7.5e0 7.5e0
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This provides a considerable computational saving. To choose s and m we therefore
use [2, Code Fragment 3.1], with the half precision θm from Table 1.

To fully adapt Algorithm 3.5 for eAb, we must consider three further points.
First we recall that Al-Mohy and Higham’s algorithm translates A by μ =

trace(A)/n. Incorporating this into the algorithm is straightforward.
Second, in their algorithm balancing can be used if desired. This is a diagonal

similarity transformation, Ã = D−1AD, that attempts to equalize the norms of the
ith row and ith column of A for all i. Balancing can lead to a smaller choice of s and
m, but should not be used if ‖Ã‖1 > ‖A‖1. Note that

f (A) = Df (Ã)D−1,

which can be differentiated to give

Lf (A, E) = DLf (Ã, D−1ED)D−1.

We deduce that

Lf (A, L�
f (A, ykb

∗))b = DLf (Ã, D−1D̄−1Lf̄ (Ã∗, D̄yk(D
−1b)∗)D̄D)D−1b.

For dense A, a candidate balancing transformation can be obtained by using the
LAPACK routines DGEBAL (for real A) or ZGEBAL (for complex A). For sparse
A, the algorithms of Chen and Demmel [7] can be used.

Finally, we reintroduce the scalar t , so that we are computing the condition number
of etAb. We recall from (2.5) that the condition numbers obtained with or without
perturbing t agree to within a factor 2. Simply applying the framework of Algorithm
3.5 to the scaled matrix tA will provide the required upper bound from (2.6).

We can now state our algorithm for estimating cond(exp, A, b, t) in full.

Algorithm 4.1 This algorithm computes an estimate of a quantity κ ≥
cond(exp, A, b, t). κ is within a factor of 6

√
n of cond(exp, A, b, t) in the 1-

norm. The subroutine parameters(A, tol) refers to [2, Code Fragment 3.1], which
computes the parameters m and s for the precision tol.
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Cost: Each iteration (lines 10-43) requires 2m2s2 + 2ms matrix-vector multipli-
cations. The estimation of ‖etAb‖1 and ‖etA‖1 (lines 44-46) requires at most 10ms

matrix-vector multiplications. Approximately 10n of allocatable memory is required.
Algorithm 4.1 can be adapted to return etAb in double precision in addition to the

condition estimate. This provides a saving of ms matrix-vector multiplications over
computing the quantities separately. Before line 46, s and m should be recomputed
using the double precision θm, by calling the subroutine parameters(tA, 2−53).
Then F in line 46 contains etAb in double precision.
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One of the strengths of Al-Mohy and Higham’s algorithm is its ability to exploit
level 3 BLAS operations for etAB, where B ∈ C

n×m, rather than requiring m separate
calls to the algorithm for etAb. This strength extends naturally to Algorithm 4.1,
by simply replacing vectors b, b1, b2, F1, F2, G1, G2, yk with n × m matrices and
replacing ‖yk‖2 with ‖Yk‖F .

5 Numerical tests

For our approach to condition estimation to be deemed useful, numerical experiments
must demonstrate two key points. First they must show that we can obtain accurate
and reliable condition estimates. Second they must show that our approach is not
prohibitively expensive (this could be caused by large numbers of iterations in the
power method in Algorithm 3.3, or large numbers of matrix multiplications required
to evaluate Lf (A, L�

f (A, ykb
∗))b in Algorithm 3.4).

Our implementations and test codes were written in Python, with extensive use
made of NumPy and SciPy [24]. The tests were performed on a 2.8GHz Intel Core i7
MacBook Pro. Our first two numerical experiments are based on etAb and Algorithm
4.1 (the etAb algorithm of [2] is available in SciPy 0.13.0 and later versions via
scipy.sparse.linalg.expm multiply). Our final experiment was a more
general test of Algorithm 3.5 for functions other than the exponential.

Experiment 1: Accuracy of Algorithm 4.1 To investigate the accuracy of Algorithm
4.1, we computed κ , the upper bound in (2.6), exactly using Algorithm 3.1, which
explicitly forms the Kronecker matrix and computes its 2-norm. The iteration in
Algorithm 4.1 has a relative convergence tolerance of 0.1. In theory normest1
can produce arbitrarily inaccurate 1-norm estimates, however in practice it is nearly
always correct to within a factor 2. We therefore expect Algorithm 4.1 to give an esti-
mate of κ with a relative error approximately less than 1. Test matrices were taken
from the special matrix collection in SciPy’s linalg module. The test matrices were
taken to be of size 100, with the exception of the Hadamard matrix, which was of size
64. For matrices larger than 100 × 100 the computation of the exact value of κ , using
Algorithm 3.1, becomes too expensive. For each test matrix, a randomly chosen b

with elements uniformly distributed on [−1, 1), and b = [1, 1, . . . , 1] were tested,
with t ∈ {0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10}. This resulted in a total of 112 tests. We
summarize the results below.

– The largest number of iterations required in the iterative phase of Algorithm 4.1
in any of the tests was 4. No tests failed to converge.

– The relative error in the computation of κ using Algorithm 4.1 was less than 0.1
in each test.

– For each test we computed the product ms and also the product mdsd , where md

and sd are the scaling and truncation parameters that are required to evaluate etAb

in double precision. Each iteration within Algorithm 4.1 requires a number of
matrix-vector products approximately proportional to m2s2. The mean value of
(ms/mdsd)2 over all the tests was 0.42. We conclude that each iteration required
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approximately 42 % of the number of matrix-vector multiplications that would
have been required to evaluate Lexp(A, L�

exp(A, ykb
∗))b in double precision.

– For each test we counted the total number of matrix-vector multiplications �cond
taken to estimate the condition number, and the total number of matrix-vector
multiplications �exp required to compute etAb in double precision. Figure 1
shows the approximate quadratic relationship between the two. For these tests
�cond/�2

exp took a mean value of 0.65, although this ranged between 0.1 and 1.4.

The main conclusions from this set of tests are that Algorithm 4.1 provides
accurate condition number estimates, and that choosing m and s for half precision
accuracy provides a significant computational saving. Nevertheless, the square rela-
tionship, in terms of matrix-vector multiplications, between the cost of forming etAb

and estimating its condition number is evident. This is a result of the method used to
compute Lexp(A, L�

exp(A, ykb
∗))b.

Experiment 2: Sparse matrices with Algorithm 4.1 The action of a matrix function
f (A)b is typically of interest for large, sparse A. Our second set of numerical tests
involve a selection of such matrices. Now, computing κ exactly using Algorithm 3.1
is usually too expensive. Instead, the aim is to demonstrate that, for ‘realistic’ test
matrices, the condition number cond(exp, A, b, t) can be estimated without requiring
a prohibitively large number of matrix-vector multiplications.

Fig. 1 The number of
matrix-vector multiplications
�cond required to estimate
cond(exp, A, b, t) for the tests in
Experiment 1 versus the number
of matrix-vector multiplications
�exp required to compute etAb

in double precision
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We used the same tests as Al-Mohy and Higham [2]. The matrix poisson is
a multiple of the finite difference discretization of the 2D Laplacian (this is most
easily obtained by using the command -2500*gallery(‘poisson’,99) in
MATLAB). This was originally used as a test matrix by Trefethen, Weideman and
Schmelzer [33]. The matrices orani678, bcspwr and gr 30 30 belong to the
Harwell-Boeing collection and are available from the University of Florida Sparse
Matrix Collection [10]. Finally, the matrices boeing767 and 3Ddiffuse were
used as test matrices by Sheehan, Saad and Sidje [31]. The full problem details are:

– poisson, n = 9801, t = 0.02, 1.0, b obtained as described in [33];
– orani678, n = 2529, t = 100, b = [1, 1, . . . , 1]T ;
– bcspwr10, n = 5300, t = 10, b = [1, 0, . . . , 0, 1]T ;
– gr 30 30, n = 900, t = 2, b = [1, 1, . . . , 1]T ;
– boeing767, n = 55, t = 0.01, 0.10, 1.00, b = [1, 1, . . . , 1]T ;
– 3Ddiffuse, n = 250, 000, as described in [31, Section 4.3].

Table 2 shows the results of these tests. Note that the test t = 1.0 for the poisson
matrix was not performed here. Al-Mohy and Higham found that their algorithm
performed poorly for this test, with 47702 matrix-vector multiplications required.
Estimating the condition number would require of the order 109 matrix-vector mul-
tiplications. For the tests shown, the value of �cond/�2

exp varied between 0.05 and
1.19, with a mean of 0.5. For the boeing767 test, the matrix was small enough
to allow us to check the condition estimates using Algorithm 3.1. For the remaining
tests this was not possible due to the excessive memory requirements of Algorithm
3.1. Note that increasing t from 0.01 to 0.1 for the boeing767 matrix decreases the
condition estimate before it then increases when t = 1.0. This behaviour is related
to the well known ‘hump’ phenomenon for the matrix exponential [28].

Table 2 Estimating the condition number of etAb for various large, sparse matrices detailed in Experi-
ment 2

Estimating cond(exp, A, b, t) Computing etAb

κ it m s �cond τ m s �exp τ

poisson 1232 3 52 14 1.1e6 428 54 21 1200 6.10

orani678 2.5e6 3 55 19 7.5e5 240 55 29 1248 0.41

bcspwr10 2.7e7 3 55 5 1.3e5 37.5 54 8 578 0.37

gr 30 30 668 3 30 4 2.8e4 3.25 48 4 155 0.01

boeing767

t = 0.01 2.2e10 3 50 3 9403 0.83 55 4 418 0.02

t = 0.1 1.4e10 3 55 23 2.6e5 25.3 55 35 971 0.09

t = 1.0 1.2e12 3 55 226 2.1e7 1230 55 349 5510 0.68

3Ddiffuse 31.4 2 17 1 1022 15.6 32 1 38 0.18

�cond and �exp denote the total number of matrix-vector multiplications required to compute
cond(exp, A, b, t) and etAb respectively; m and s denote the truncation and scaling parameters; it denotes
the number of iterations of the power method, τ denotes the runtime in seconds and κ is the condition
estimate
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Experiment 3: Accuracy of Algorithm 3.5 for general functions The aim of this
experiment was to demonstrate that the general method described in Algorithm 3.5
can be used for functions other than the exponential without requiring an excessive
number of iterations to converge. In general the algorithm used to compute f (A)b

must be adapted to allow the quantity Lf (A, L�
f (A, ykb

∗))b to be computed effi-
ciently. Adapting various f (A)b algorithms in this manner is the subject of future
research, so for the purposes of this experiment, test matrices were limited to n = 100
and Lf (A, L�

f (A, ykb
∗))b was computed using standard dense f (A) algorithms.

We used the same set of test matrices as in Experiment 1 and the exact value of κ

was computed using Algorithm 3.1. The following matrix functions were used:

– the principal matrix logarithm, available in SciPy as scipy.linalg.logm,
computed using inverse scaling and squaring [3];

– the matrix sine, scipy.linalg.sinm, computed using the Schur-Parlett
algorithm [8];

– the matrix cosine, scipy.linalg.cosm, also computed using the Schur-
Parlett algorithm;

– the matrix square root, scipy.linalg.sqrtm, computed using a blocked
version of the Björck-Hammarling algorithm [5, 12];

– the matrix cube root, scipy.linalg.fractional matrix power, com-
puted using the Schur-Padé algorithm [21].

Discarding tests for which f (A)b could not be computed (for example log(A)b if A

is singular), this resulted in a total of 518 tests with condition numbers ranging from
1.0 to 3.9e12. Since we were using dense f (A) algorithms, counting matrix-vector
multiplications was not relevant to this experiment. Instead we were interested in the
number of iterations required for convergence and the relative error of the condition
estimate. We summarize the results below.

– 97.5 % of the tests converged within 4 iterations. The remaining tests converged
within 6 iterations. No tests failed to converge.

– The relative error in the computation of κ using Algorithm 3.5 was less than 0.1
in 93.4 % of the tests. The relative error was less than 0.4 in 99.4 % of the tests.
The remaining three tests had relative errors less than 0.6.

We conclude that, for general f , Algorithm 3.5 returns accurate condition
estimates and does not require an excessive number of iterations to converge.

6 Conclusions and outlook

We have developed a general framework for estimating the condition number
of f (A)b. Central to our approach is the use of the power method to estimate
max‖�A‖=1 ‖Lf (A, �A)b‖. Our framework can be applied to algorithms that com-
pute f (A)b using combinations of matrix-vector multiplications and linear system
solves. The number of matrix-vector multiplications or linear system solves required
by our method is proportional to the square of the number required to compute
f (A)b. Since only an order of magnitude condition estimate is usually required,
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a considerable amount of computation can be saved by relaxing the tolerances in
whichever f (A)b algorithm is used.

We applied our method to Al-Mohy and Higham’s algorithm for etAb [2]. We
found that, in practice, very few iterations of the power method were required
to estimate max‖�A‖=1 ‖Lexp(A, �A)b‖, and that the total number of matrix-
vector multiplications, �cond, required to estimate the condition number is typically
approximately 0.6 × �2

exp, where �exp is the number of matrix-vector multipli-

cations required to compute etAb in double precision. Experiments using dense
f (A) algorithms to estimate cond(f, A, b, t) for a variety of different f confirmed
that, in general, very few iterations of the power method are required to estimate
max‖�A‖=1 ‖Lf (A, �A)b‖.

The quadratic relationship between �cond and �exp is due to the estimation of
Lf (A, L�

f (A, ykb
∗))b. This behaviour will be present irrespective of which f (A)b

algorithm is used and is a result of avoiding the computation and storage of dense
O(n2) quantities in the power method. It would be desirable to be able to com-
pute Lf (A, L�

f (A, ykb
∗))b more efficiently. In the case of etAb and Algorithm 4.1

this could be done in a multicore setting by parallelizing some of the loops in the
algorithm.

Further work on this topic will focus on applying our methods to other f (A)b

algorithms, such as Krylov subspace projection methods. This would involve devel-
oping implementations of the f (A)b algorithms which allow the user to control
the matrix-vector multiplications (a ‘reverse communication’ interface) and then
modifying the algorithms to allow f (A)b to be returned in lower precision so that
Lf (A, L�

f (A, ykb
∗))b can be computed efficiently by Algorithm 3.4. Alternative

approaches to computing the condition number of f (A)b also warrant investiga-
tion. For example, we were unable to adapt the standard 1-norm condition estimation
method [19, Algorithm 3.22] to the f (A)b problem in a manner which avoided the
explicit use of O(n2) quantities, but this may still be possible. The approach of Ken-
ney and Laub [26] suffers from the same problems, but it may still be of interest when
only the nonzero elements of A should be perturbed.
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